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Abstract

Whenever parameter estimates are uncertain or observations are contaminated by mea-
surement error, the Pearson correlation coefficient can severely underestimate the true
strength of an association. Various approaches exist for inferring the correlation in the
presence of estimation uncertainty and measurement error, but none are routinely applied
in psychological research. Here we focus on a Bayesian hierarchical model proposed by
Behseta, Berdyyeva, Olson, and Kass (2009) that allows researchers to infer the underlying
correlation between error-contaminated observations. We show that this approach may be
also applied to obtain the underlying correlation between uncertain parameter estimates
as well as the correlation between uncertain parameter estimates and noisy observations.
We illustrate the Bayesian modeling of correlations with two empirical data sets; in each
data set, we first infer the posterior distribution of the underlying correlation and then
compute Bayes factors to quantify the evidence that the data provide for the presence of
an association.

Keywords: Attenuation of the correlation, Bayesian inference, cumulative
prospect theory, diffusion model, estimation uncertainty, measurement error
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Introduction

A growing number of researchers rely on formal mathematical models for analyzing
data obtained from psychological experiments. These models come in many flavors, rang-
ing from simple statistical distributions, such as the ex-Gaussian (Matzke & Wagenmakers,
2009), to sophisticated cognitive process models, such as the diffusion model (Ratcliff, 1978).
Regardless of its degree of sophistication, the general goal of mathematical modeling is to
capture regularities in the data using parameters that represent separate statistical compo-
nents or distinct psychological variables.

Typically, investigators estimate model parameters for each participant separately, for
instance with maximum likelihood (e.g., Myung, 2003) or Bayesian methods (e.g., M. D. Lee
& Wagenmakers, 2013). Once the parameter estimates have been obtained, researchers are
sometimes interested in assessing the association between parameters, or between param-
eters and other observed variables. For example, a researcher may fit the diffusion model
to the individual data sets obtained from a lexical decision task and compute the correla-
tion between parameter estimates that reflect participants’ response caution and parameter
estimates that quantify participants’ rate of information accumulation (e.g., drift rate). Al-
ternatively, a researcher may be interested in computing the correlation between estimates
of drift rate and measurements of general intelligence.

The Pearson product-moment correlation coefficient is a popular measure of the linear
relationship between two variables (for Bayesian solutions, see Ly, Verhagen, & Wagenmak-
ers, 2016a, 2016b; Ly, Marsman, & Wagenmakers, 2015). Its popularity in psychology is
illustrated by the fact that 42% of the 67 articles in the 2012 volume of the Journal of
Experimental Psychology: General (JEP:G) report at least one Pearson correlation coeffi-
cient, with 152 correlations in total, and an average of more than 5 correlations per article.
Despite its popularity, psychology as a field seems generally unaware that the correlation
coefficient can severely underestimate the true strength of the association in the presence
of measurement error or estimation uncertainty.

Measurement Error

It is generally recognized that most—if not all—psychological constructs are measured
imperfectly. It is also well-known among statisticians that measurement error decreases the
correlation coefficient between two sets of observations (e.g., Charles, 2005; Spearman,
1904). Although various approaches are available to obtain correlation coefficients that
take into account measurement error, none are routinely applied in psychology. Indeed, out
of the 28 JEP:G articles in the 2012 volume that reported one or more correlations, only
one acknowledged the deleterious effects of measurement error and corrected the observed
correlation.

Attempts to remedy the problem of the attenuation of the correlation date back
to Spearman (1904), who proposed to correct the correlation coefficient using the relia-
bility with which the observations were obtained. Spearman’s attenuation formula is re-
lated to errors-in-variables models, which are extensions to standard regression models
that aim to correct the bias in parameter estimates that results from measurement error
(e.g., Buonaccorsi, 2010; Cheng & Van Ness, 1999; Fuller, 1987; for Bayesian solutions,
see Congdon, 2006; Gilks, Richardson, & Spiegelhalter, 1996; Gustafson, 2004; Lunn, Jack-
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son, Best, Thomas, & Spiegelhalter, 2012; Muff, Riebler, Held, Rue, & Saner, in press).
If both the criterion and the response variables are assumed to be measured with noise,
Spearman’s method and the correction within standard linear regression models result in
the same disattenuation (see Behseta et al., 2009, Appendix). Cole and Preacher (2014)
discuss solutions to deal with measurement uncertainty in the context of path analysis.

Estimation Uncertainty

It is also generally recognized that if only limited data are available, model parame-
ters are typically estimated with some degree of uncertainty. It is, however, rarely acknowl-
edged that the correlation coefficient computed between two sets of uncertain parameter
estimates can severely underestimate the true strength of the association between the pa-
rameters. This widespread neglect is puzzling because various approaches are available to
obtain correlation coefficients that take into account the uncertainty of the parameter es-
timates. The Bayesian estimation of correlations between parameters in regression models
has been illustrated by Gelman and Hill (2007, p. 279). Bayesian solutions for inferring
the correlation in the context of cognitive models have been outlined by Klauer (2010),
Matzke, Dolan, Batchelder, and Wagenmakers (2015), Rouder, Lu, Morey, Sun, and Speck-
man (2008), and Rouder et al. (2007). Monte Carlo methods that deal with the adverse
consequences of estimation uncertainty in cognitive models have been described by Ratcliff
and Strayer (2014).

Measurement Error and Estimation Uncertainty: A Bayesian Solution

Methods that remedy the attenuation of the correlation typically target uncertainty
that results from either imperfect measurements or parameter estimation, but do not deal
with both sources of uncertainty simultaneously. Here we attempt to address this limitation
and describe a Bayesian method that allows researchers to infer the underlying correlation
between (1) two sets of error-contaminated observations; (2) two sets of uncertain parameter
estimates; and (3) a set of uncertain parameter estimates and a set of error-contaminated
observations. Our approach is based on the Bayesian hierarchical method proposed by
Behseta et al. (2009) that explicitly models measurement error, and so can be conceived as
a principled method for “correcting” the correlation for the presence of noise in the data.

The outline of this article is as follows. First, we introduce the basic concepts of
Bayesian parameter estimation and hypothesis testing. Second, we illustrate the conse-
quences of measurement error for the computation of the correlation and show that a simi-
lar problem applies to correlations derived between uncertain parameter estimates. Third,
we describe a Bayesian hierarchical approach for inferring the underlying correlation in the
presence of measurement error (Behseta et al., 2009) and show that the same method can
also aid the recovery of the underlying correlation between two sets of parameter estimates.
Finally, we illustrate our approach with two empirical data sets: one focusing on the cor-
relation between parameters of cumulative prospect theory (Tversky & Kahneman, 1992),
and the other focusing on the correlation between general intelligence and the drift rate
parameter of the diffusion model (Ratcliff, 1978).
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Bayesian Inference: Parameter Estimation and Hypothesis Testing

Bayesian inference starts with a prior distribution for the parameter of interest. The
prior distribution quantifies our belief about possible values of the parameter before any
data have been observed. The prior distribution is then updated by incoming data to
obtain the posterior distribution. The posterior distribution reflects everything we know
about possible values of the parameter after the data have been observed. The central
tendency of the posterior, such as the mean, is often used as a point estimate for the
parameter. The dispersion of the posterior, such as the variance, quantifies the uncertainty
of the estimate: the larger the dispersion, the greater the uncertainty in the estimated
parameter. The present article focuses on the estimation of the posterior distribution of the
correlation coefficient ρ.

The posterior distribution often cannot be derived analytically; rather it must be
approximated using numerical sampling techniques, such as Markov chain Monte Carlo
sampling (Gamerman & Lopes, 2006; Gilks et al., 1996). Parameter estimation for the
Bayesian hierarchical model outlined here may proceed using standard Bayesian statistical
software, such as WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn
et al., 2012; for an introduction for psychologists, see Kruschke, 2010, and M. D. Lee &
Wagenmakers, 2013). The WinBUGS script is presented in the Appendix. Note that the
WinBUGS script requires minimal, if any, modification to run under OpenBUGS (Lunn,
Spiegelhalter, Thomas, & Best, 2009) or JAGS (Plummer, 2003, 2013). The Stan project
(Stan Development Team, 2012) provides yet another alternative to obtain the posterior
distributions of ρ.

Once the posterior distribution of ρ has been computed, we may quantify the evidence
the data provide for the presence of an association using Bayesian hypothesis testing. In
Bayesian hypothesis testing, the prior odds for two models p(M0)/p(M1) are updated by
incoming data to obtain the posterior odds p(M0 | D)/p(M1 | D) of the models:

p(M0 | D)

p(M1 | D)︸ ︷︷ ︸
Posterior odds

=
p(D | M0)

p(D | M1)︸ ︷︷ ︸
Bayes factor

× p(M0)

p(M1)︸ ︷︷ ︸
Prior odds

. (1)

The change in odds brought about by the data is given by the ratio of the marginal
likelihoods p(D | M0)/P (D | M1), also known as the Bayes factor (BF; Jeffreys, 1961;
Kass & Raftery, 1995). In the present situation,M0 instantiates the null hypothesis of the
absence of an association (H0: ρ = 0) andM1 instantiates the alternative hypothesis of the
presence of an association (H1: ρ 6= 0). We follow Jeffreys (1961) and assign the correlation
ρ under M1 a default prior distribution that is uniform from −1 to 1. The Bayes factor
quantifies the probability of the data under H0 relative to the probability of the data under
H1. For instance, BF01 of 10 indicates that the data are 10 times more likely under H0

than under H1. Alternatively, BF01 of 1
10 indicates that the data are 10 times more likely

under H1 than under H0.

We compute Bayes factors for two-sided hypothesis tests using the Savage-Dickey
density ratio (e.g., Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010; Wetzels, Grasman, & Wagenmakers, 2010). Applied to the present situation, BF01 is
given by the ratio of the height of the posterior and the prior distribution of ρ under H1 at
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ρ = 0:

BF01 =
p(D | H0)

p(D | H1)
=
p(ρ = 0 | D,H1)

p(ρ = 0 | H1)
. (2)

The height of the uniform prior distribution under M1 equals 1
2 on the entire range, in

particular at ρ = 0. To compute the height of the posterior distribution, we first obtain
samples from the posterior distribution of ρ. We then approximate the posterior distribution
by fitting the posterior samples with a scaled beta distribution ranging from −1 to +1 with
parameters α and β. Lastly, we evaluate the height of the scaled beta distribution at ρ = 0
using the obtained α and β parameters.

Once the two-sided Bayes factor has been obtained, we compute one-sided—order-
restricted—Bayes factors as recommended by Morey and Wagenmakers (2014), namely
by correcting the two-sided Bayes factor using the proportion of posterior samples that is
consistent with the order-restriction. The R script (R Core Team, 2012) for the computation
of the Bayes factor is available in the supplemental materials at http://dora.erbe-matzke
.com/publications.html.

Attenuation of the Correlation

First we illustrate the deleterious consequences of measurement error for the com-
putation of the correlation. We then show that a similar problem applies to correlations
computed between two sets of parameter estimates that are obtained from scarce data.

The Consequences of Measurement Error

Let θ and β be unobserved random variables and let θ̂ and β̂ be the observed, error-
contaminated measurements:

θ̂ = θ + εθ (3)

and

β̂ = β + εβ, (4)

where εθ and εβ are the measurement errors associated with θ and β, respectively. The
measurement errors are assumed to be normally distributed with variance σ2

εθ
and σ2

εβ
:

εθ ∼ Normal(0, σ2
εθ

) (5)

and

εβ ∼ Normal(0, σ2
εβ

), (6)

so that

θ̂ ∼ Normal(θ, σ2
εθ

) (7)

and

β̂ ∼ Normal(β, σ2
εβ

). (8)

The correlation between the unobserved variables θ and β with variances σ2
θ and σ2

β,
respectively, is given by
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ρ =
σθβ√
σ2
θσ

2
β

. (9)

Assuming that the measurement errors are uncorrelated with θ and β and with each other,
the correlation between the observed variables θ̂ and β̂ is given by

r =
σθβ√

(σ2
θ + σ2

εθ
)(σ2

β + σ2
εβ

)
. (10)

It follows from Equation 9 and Equation 10 that the observed correlation r is always lower
than the unobserved true correlation ρ due to the additional source of variability that results
from measurement error (see also Behseta et al., 2009, Appendix).

The Consequences of Estimation Uncertainty

In many applications of mathematical modeling, researchers estimate model param-
eters for each participant separately with maximum likelihood or Bayesian methods. In
situations with only a limited number of observations per participant with respect of the
number of parameters, the model tends to overfit the data. The resulting parameter esti-
mates are therefore often overdispersed relative to the true parameters that generated the
data (Farrell & Ludwig, 2008; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder, Sun,
Speckman, Lu, & Zhou, 2003). In fact, we can distinguish two sources of variability in pa-
rameter estimates: variability that reflects true individual differences in model parameters
and variability that reflects the uncertainty of the estimates that results from estimating
model parameters from limited information. The inflation of the variability of the estimates
as a result of estimation uncertainty may in turn decrease the observed correlation; as shown
in Equation 9 and Equation 10, all else being equal, the larger the variances, the smaller
the correlation.

Example. Consider the following hypothetical scenario. A researcher is interested in
the heritability of the latencies of speeded two-choice decisions. In particular, the researcher
hypothesizes that fast response times (RTs) are positively correlated between pairs of ho-
mozygotic twins. The researcher tests 80 twin pairs in a simple letter discrimination task
(e.g., Thapar, Ratcliff, & McKoon, 2003) with 100 trials. The researcher models the RT
data of each participant with the ex-Gaussian distribution (Hohle, 1965; Matzke & Wagen-
makers, 2009). The ex-Gaussian distribution is a popular RT distribution that results from
the convolution of a normal and an exponential distribution; the ex-Gaussian µ parameter
gives the mean of the normal component and is often used to quantify the latency of fast re-
sponses. The researcher obtains posterior distributions for the µT1 (Twin 1) and µT2 (Twin
2) parameter for each twin pair using Bayesian inference. The researcher then computes
the mean of the posterior distribution of the parameters and uses these as point estimates.
Lastly, the researcher obtains a Pearson correlation coefficient of r = 0.75 between the two
sets of point estimates.

Suppose that—unbeknownst to the investigator—the true value of the µT1 and µT2

parameters that generated the data are known for each twin pair, and so is the true corre-
lation between the parameters: ρ = 0.86. The gray points in the top rows of Figure 1 show
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the point estimates µ̂T1 and µ̂T2 plotted against their true values. The gray vertical arrows
indicate the range of the point estimates; the black horizontal arrows indicate the range
of the true values. The arrows show that the point estimates are more variable than the
true values. Note that this result also holds in the maximum likelihood framework. Most
importantly, as shown in the bottom panel, the Pearson correlation coefficient computed
between the point estimates µ̂T1 and µ̂T2 (i.e., dotted line at ρ = 0.75) underestimates the
true correlation between µT1 and µT2 (i.e., dashed line at ρ = 0.86).

A Bayesian Solution to Remedy the Attenuation of the Correlation

In this section, we outline the Bayesian approach proposed by Behseta et al. (2009)
that allows for the estimation of the underlying correlation between error-contaminated
observations. We then show that the same Bayesian model can also aid the recovery of the
underlying correlation between uncertain parameter estimates.

Inferring the Correlation in the Presence of Measurement Error

Behseta et al.’s (2009) method for inferring the underlying correlation in the presence
of measurement error relies on Bayesian hierarchical modeling (e.g., Farrell & Ludwig, 2008;
Gelman & Hill, 2007; M. D. Lee, 2011; Rouder et al., 2005). The graphical representation of
the hierarchical model is shown in Figure 2. Observed variables are represented by shaded
nodes and unobserved variables are represented by unshaded nodes. The graph structure
indicates dependencies between the nodes (e.g., M. D. Lee & Wagenmakers, 2013)

Level I: Observed Data. As before, let θ and β represent the true values, θ̂ and β̂
the corresponding observed values, and εθ and εβ the normally distributed errors associated

with θ and β, respectively. For each observation i, i = 1, ..., N , θ̂i and β̂i are given by

θ̂i ∼ Normal(θi, σ
2
εθi

) (11)

and

β̂i ∼ Normal(βi, σ
2
εβi

). (12)

The error variances σ2
εθi

and σ2
εβi

are assumed to be known a priori or are estimated
from data. Note that the model does not assume homogenous error variances across the N
observations. Instead, each observation i has its own error variance.

Level II: Inferred Variables. For each observation i, the inferred parameters ηi =
(θi, βi) are assumed to follow a bivariate normal distribution, with means µ and variance-
covariance matrix Σ:

ηi ∼ Normal(µ,Σ), (13)

where

µ =

(
µθ
µβ

)
(14)

and
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Σ =

(
σ2
θ ρσθσβ

ρσθσβ σ2
β

)
. (15)

Here ρ is the underlying correlation between θ and β that is not contaminated by measure-
ment error.

The group-level means µ and the three elements (i.e., σθ, σβ, and ρ) of the variance-
covariance matrix Σ are estimated from data and require prior distributions. We use the
following prior set-up:

µθ ∼ Normal(0, σ2
µθ

), (16)

µβ ∼ Normal(0, σ2
µβ

), (17)

σθ ∼ Uniform(0, bσθ), (18)

σβ ∼ Uniform(0, bσβ ), (19)

where σ2
µθ

, σ2
µβ

, bσθ and bσβ are set to large values to create relatively uninformative prior
distributions. We assume that all values of the correlation are equally likely a priori and
specify the following prior for ρ (Jeffreys, 1961):

ρ ∼ Uniform(−1, 1). (20)

A benefit of the hierarchical formulation is that the correlation ρ is automatically
adjusted for the additional source of variability that results from the uncertainty of the
observations. In particular, the observations θ̂ and β̂—especially those that are measured
with great uncertainty—are “shrunk” toward their corresponding group mean. The degree
of shrinkage is determined by the relative uncertainty of the observations, so that the
posterior means of the inferred parameters θ and β are given by a weighted combination
of the observations and the weighted group means. The inferred parameters are therefore
less dispersed than the observed data points, and the inferred correlation is typically higher
than the correlation computed with the direct observations.

Inferring the Correlation in the Presence of Estimation Uncertainty

The Bayesian hierarchical model proposed by Behseta et al. (2009) may be also used
to infer the correlation between uncertain parameter estimates. We focus on parameter
estimates obtained with Bayesian inference because the resulting posterior distributions
can be conveniently used to quantify estimation uncertainty.

In the first step, we infer the posterior distribution of the model parameters for each
participant. We use the posterior mean as a point estimate for the parameters; we use
the posterior variance as a measure of the uncertainty of the estimates. Moreover, we
assume that the point estimates can be conceptualized as an additive combination of a true
parameter value and a normally distributed displacement parameter (see Equations 11-12).1

1Naturally, this assumption is sensible only if the posterior distribution is approximately normally dis-
tributed.
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In the second step, we use the graphical model in Figure 2 with two minor adjustments
to infer the underlying correlation between the model parameters. First, we replace the
observed measurements θ̂i and β̂i with the point estimates (i.e., mean of the posterior
distributions). Second, we substitute the measurement error variances σ2

εθi
and σ2

εβi
with

the uncertainty of the point estimates (i.e., variance of the posterior distributions).

As a result of the hierarchical formulation, the point estimates are shrunk toward
their corresponding group mean, where the degree of shrinkage is determined by the relative
uncertainty of the estimates. The correlation ρ is therefore automatically adjusted for the
additional source of variability that results from imperfect parameter estimation.

Example Continued. Aware of the disadvantages of parameter estimation with scarce
data, the researcher sets out to use Bayesian hierarchical modeling to infer the underlying
correlation between µT1 and µT2. The researcher uses the mean of the posterior distri-
bution of the individual parameters as point estimates (µ̂T1 and µ̂T2) and quantifies their
uncertainty with the variance of the posteriors (σ2

εµT1
and σ2

εµT2
). The researcher then feeds

the posterior means and posterior variances into the hierarchical model in Figure 2 and
adjusts the prior distribution of the group-level means and group-level standard deviations
to match the measurement scale of the RT data.

The black points in the top rows of Figure 1 show the posterior means of the inferred
µT1 and µT2 parameters plotted against their true values. The black vertical arrows indicate
the range of the inferred parameters; the inferred parameters from the hierarchical analysis
are less dispersed than the point estimates (i.e., gray points). Most importantly, as shown
in the bottom panel, the posterior distribution of the correlation ρ from the hierarchical
analysis more closely approximates the true correlation between µT1 and µT2 than the
Pearson correlation coefficient r computed between the point estimates.

Empirical Examples

We now turn to two examples from the existing literature. In the first example, we
demonstrate how our Bayesian approach can be used to infer the underlying correlation
between two sets of parameter estimates. In particular, we assess the correlation between
parameters of cumulative prospect theory obtained at two different time points. In the
second example, we show how the Bayesian approach can be used to infer the underlying
correlation between a set of parameter estimates and a set of error-contaminated measure-
ments. In particular, we assess the correlation between the drift rate parameter of the
diffusion model and general intelligence as measured by the Raven Progressive Matrices
Test.

Both examples proceed as follows: We estimate the posterior distribution of the model
parameters for each participant separately and use the mean of the posterior distributions
as point estimates. To highlight the advantages of our approach, we then conduct two
separate analyses. In the first analysis, we compute the posterior distribution of the observed
correlation r by modeling the point estimates or the Raven scores directly using a bivariate
normal distribution. In the second analysis, we take into account the uncertainty of the
parameter estimates or the Raven scores and compute the posterior distribution of the
inferred underlying correlation ρ. Finally, for both analyses, we compute the Bayes factor
(BF0+) to quantify the evidence the data provide for the presence of a positive association.
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Example 1: Correlation between Parameters of Cumulative Prospect Theory

Our first example features a data set obtained from a decision-making experiment
reported in Glöckner and Pachur (2012). The 64 participants were instructed to choose
between monetary gambles in two experimental sessions. The two sessions were separated
by one week and each consisted of 138 two-outcome gambles.

We model the observed choice data with cumulative prospect theory (CPT; Tversky
& Kahneman, 1992) and focus on the δ parameter that governs how individual decision
makers weight the probability information of the gambles: high values of δ indicate high
degree of risk aversion. As the CPT parameters are assumed to be relatively stable across
short periods of time, we examine the correlation between the δ parameters estimated from
data collected during the two experimental sessions. We infer posterior distributions for the
model parameters for each participant, separately for the two testing occasions, by adapting
the model used by Nilsson, Rieskamp, and Wagenmakers (2011).2 The prior distribution
for δ covers a wide range of plausible values based on previous research.

Once the posterior distributions of the individual model parameters are obtained,
we use the posterior means as point estimates for the δ parameters on the two testing
occasions: δ̂1 and δ̂2. For the estimation of the inferred correlation ρ, we use the variance
of the posterior distributions to quantify the uncertainty of δ̂1 and δ̂2: σ2

εδ1
and σ2

εδ2
.

Results

The results are shown in Figure 3. Panel A shows a scatterplot between the point
estimates δ̂1 and δ̂2. Panel B shows the same scatterplot but includes the corresponding
estimation uncertainties σεδ1 and σεδ2 . Panel C shows a scatterplot of the mean of the
posterior distribution of the inferred η = (δ1, δ2) parameters. Panel D shows the posterior
distribution of the observed (r) and the inferred (ρ) correlation.

As shown in Panel A, the Pearson correlation coefficient r between the point estimates
is 0.62. If we take into account the uncertainty of the point estimates, the correlation
increases substantially. Panel C shows that the posterior means of the inferred δ1 and δ2

parameters are shrunk toward their group mean and are associated very strongly. Panel D
shows that the posterior distribution of the inferred correlation ρ is shifted to higher values
relative to the posterior of the observed correlation r. In fact, after accounting for the
uncertainty in δ̂1 and δ̂2, the mean of the posterior distribution of the correlation increases
from 0.61 to 0.92.

One-sided Bayes factors indicate decisive evidence (Jeffreys, 1961) for the presence
of a positive association for the observed r as well as the inferred ρ correlation; in both
analyses, the data are more than 4, 000, 000 times more likely under H1 than under H0.
This result is visually evident from the fact that both posterior distributions are located
away from zero such that their height at ρ = 0 is all but negligible.

The dramatic increase in the correlation is not unusual. Figure 4 shows the results of
a simulation study investigating the magnitude of the attenuation for different values of the

2The CPT account of performance in the Glöckner and Pachur (2012) data set is merely an illustration;
we do not suggest that the CPT with the present parameter setting provides the best description of the
data of the individual participants. Note also that Glöckner and Pachur reported the results from fitting a
slightly different model than the one used in the present article.
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true correlation in a parameter setting that resembles the one found in the present data.
We conducted five sets of simulations, each with a different value of the true correlation:
0.92 (i.e., the posterior mean of the inferred correlation ρ in the present data), 0.21, 0,
−0.21, and −0.92. For each set of simulations, we generated 1, 000 synthetic data sets with
N = 64, using the estimation uncertainties σ2

εδ1
and σ2

εδ2
and the posterior mean of the

group-level µδ1 , µδ2 , σ2
δ1

, and σ2
δ2

parameters.3 We then computed the Pearson correlation
coefficient r∗ in each synthetic data set. The gray violin plots (e.g., Hintze & Nelson, 1998)
show the distribution of the 1, 000 r∗ values for the five levels of the true correlation.

Two results are noteworthy. First, all else being equal, the larger the absolute value
of the true correlation, the larger the attenuation. This relationship is also evident from
Equation 9 and Equation 10. Secondly, considering the very high inferred correlation of
ρ = 0.92 in the present data set (upper arrow), the observed Pearson correlation of r = 0.62
(lower arrow) seems reasonable. In particular, the observed Pearson r between the point
estimates δ̂1 and δ̂2 is well within the 2.5th and 97.5th percentile of the Pearson correlations
coefficients r∗ predicted by the simulations.

In sum, taking into account the uncertainty of the point estimates resulted in a
dramatic increase in the correlation between CPT parameters; the mean of the posterior
distribution of the correlation increased from 0.61 to 0.92. The Bayes factor indicated
decisive evidence for the presence of a positive association for the observed as well as the
inferred correlation.

Example 2: Correlation between Drift Rate and General Intelligence

Our second example focuses on the correlation between the drift rate parameter of the
diffusion model and general intelligence as measured by the total score of the 20-min version
of the Raven Progressive Matrices Test (Hamel & Schmittmann, 2006; Raven, Raven, &
Court, 1998) in a data set collected by Weeda and Verouden (unpublished data). The data
set featured RT and accuracy data from 51 participants. The stimuli were borrowed from
the π-paradigm (Vickers, Nettelbeck, & Willson, 1972; Jensen, 1998), a speeded two-choice
RT task and consisted of a series of images, each with one horizontal and two vertical lines
(i.e.; two legs) that together formed the letter π, with one of the vertical lines longer than
the other. The task was to indicate by means of a button press whether the left or the right
leg of the π was longer. Task difficulty was manipulated on three levels—easy, medium,
and difficult—by varying the difference between the length of the two legs.

We model the RT and accuracy data with the diffusion model (Ratcliff, 1978; Wa-
genmakers, 2009). The diffusion model provides a theoretical account of performance in
speeded two-choice tasks. The four key parameters of the diffusion model correspond to
well-defined psychological processes (Ratcliff & McKoon, 2008; Voss, Rothermund, & Voss,
2004): response caution, bias, the time taken up by encoding and motor processes, and
the rate of information accumulation, which is the drift rate parameter of interest.4 As
drift rate v is often associated with higher cognitive functions and reasoning (i.e., Ratcliff,
Schmiedek, & McKoon, 2008; Ratcliff, Thapar, & McKoon, 2010; Schmiedek, Oberauer,

3Note that this procedure is not the same as the posterior predictive assessment of a model’s absolute
goodness-of-fit (e.g., Gelman & Hill, 2007; Gelman, Meng, & Stern, 1996).

4In addition to these key parameters, the diffusion model also features parameters that describe the
trial-to-trial variability of the key parameters.
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Wilhelm, Suss, & Wittmann, 2007; van Ravenzwaaij, Brown, & Wagenmakers, 2011), we
examine the correlation between drift rate and general intelligence.

We infer posterior distributions of the four key diffusion model parameters for each
participant using the diffusion model JAGS module (Wabersich & Vandekerckhove, 2014).
The prior distributions of the model parameters are based on parameter values reported in
Matzke and Wagenmakers (2009). As drift rate is known to decrease with increasing task
difficulty (e.g., Ratcliff & McKoon, 2008), we implement the following order-restriction:
vdifficult < vmedium < veasy. For simplicity, we focus on the average of the drift rate pa-
rameters across the three task difficulty conditions (v̄). The remaining parameters are
constrained to be equal across the conditions, and we set z = a

2 .5

Once the posterior distributions of the model parameters are obtained, we use the
posterior means as point estimates for average drift rate: ˆ̄v.6 For the estimation of the
inferred correlation ρ, we use the variance of the posterior distributions to quantify the
uncertainty of ˆ̄v: σ2

εv̄ . For the Raven total score g, we assume homogenous error variance
across participants and—for illustrative purposes—investigate how the inferred correlation
changes as a function of the amount of measurement noise assumed in the data. In particu-
lar, we examine three scenarios: we assumed that 5%, 25%, and 55% of the total variance in
Raven scores is attributable to measurement error, corresponding to excellent, acceptable,
and very poor reliability, respectively.7

Results. The results are shown in Figure 5. Panels A to C show scatterplots between
the point estimates ˆ̄v and the Raven total scores ĝ. The gray lines show the corresponding
estimation uncertainties σεv̄ and the standard deviation of the measurement error σεg for
the 5%, 25%, and 55% noise scenarios. Panels D to F show scatterplots between the mean
of the posterior distribution of the inferred η = (v̄, g) parameters for the three scenarios.
Panels G shows the posterior distribution of the observed (r) and the inferred correlations
(ρ) for the three scenarios.

As shown in panel A, the Pearson correlation coefficient between the point estimates
is 0.14. Panels D to F show that the posterior means of the inferred v̄ and g parameters
are slightly shrunk toward their group mean. The degree of shrinkage is determined by the
amount of measurement noise assumed for g: the larger the noise, the larger the shrinkage.
Panel G shows that the mean of the posterior distribution of the inferred correlation ρ
(i.e., black posteriors) is progressively shifted to higher values relative to the posterior of
the observed correlation r (i.e., gray posterior). As expected, the magnitude of the shift
increases as the amount of measurement noise increases. Note, however, that the shift is

5The diffusion model account of performance in the Weeda and Verouden data set (unpublished data) is
merely an illustration; we do not suggest that the diffusion model with the present parameter constraints
provides the best description of the data of the individual participants.

6Note that the scale of both drift rate and general intelligence is bounded: v̄ can take on values between
0 and 5.86 (i.e., prior range) and the Raven total score can take on values between 0 and 36. The use of
the bivariate normal group-level distribution shown in Figure 2 is therefore theoretically unjustified. As a
solution, we may transform the drift rate parameters and the Raven scores to the real line using a probit
transformation. Additional analyses not reported here confirmed that using the transformed v̄ and g values
yields results that are very similar to the ones obtained using the untransformed drift rates and Raven scores.
For simplicity, here we report the results of modeling the untransformed parameters.

7Note that this is only an illustration; the reliability of the Raven is well documented and is considered
adequate (internal consistency ∼ 0.90 and test-retest reliability ∼ 0.82).
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modest even if we assume that the Raven total score is an extremely unreliable indicator
of general intelligence. The mean of the posterior distribution of the observed correlation
r equals 0.13; the mean of the posterior of the inferred correlation ρ equals 0.14 in the
5% noise, 0.16 in the 25% noise, and 0.21 in the 55% noise scenario. Note also that the
posterior of ρ is quite spread out, a tendency that becomes more pronounced as the amount
of measurement noise in g increases.

One-sided Bayes factors indicate evidence for the absence of an association between
drift rate and general intelligence for the observed as well as the inferred correlation. The
evidence, however, is “not worth more than a bare mention” (i.e., 1 < BF01 < 3), following
the categorization of evidential strength provided by Jeffreys (1961). The BF0+ for the
observed correlation r equals 2.13. The BF0+ for the inferred correlation ρ decreases from
2.00 in the 5% noise, to 1.75 in the 25% noise, and to 1.32 in the 55% noise scenario.
Even with extremely unreliable Raven scores, the data are thus still more likely to have
occurred under H0 than under H1. Note however that BF0+ of 1.32—or even BF0+ of
2.13—constitutes almost perfectly ambiguous evidence, indicating that the data are not
sufficiently diagnostic to discriminate between H0 and H1. Inspection of the posterior
distribution of the correlations suggests a similar conclusion: both the observed and the
inferred correlations are estimated quite imprecisely.

Figure 6 shows the results of a simulation study investigating the magnitude of the
expected attenuation for different values of the true correlation in a parameter setting that
resembles the one found in the present data. Throughout the simulations, we assumed
that 55% of the total variance of the Raven scores is attributable to error variance. We
conducted five sets of simulations, each with a different value of the true correlation: 0.92,
0.21 (i.e., the posterior mean of the inferred correlation ρ in the present data set), 0, −0.21,
and −0.92. For each set of simulations, we generated 1, 000 synthetic data sets with N = 51,
using the estimation uncertainties σ2

εv̄ and the posterior means of the group-level µv̄, µg,
σ2
v̄ , and σ2

g parameters. We then computed the Pearson correlation coefficient r∗ in each
synthetic data set. The gray violin plots show the distribution of the 1, 000 r∗ values for
the five levels of the true correlation.

As before, all else being equal, the larger the absolute value of the true correlation,
the larger the attenuation. Moreover, considering the relatively low inferred correlation of
ρ = 0.21 in the present data (upper arrow), the observed Pearson correlation of r = 0.14
(lower arrow) seems perfectly reasonable. In fact, the median of the Pearson correlation
coefficients r∗ predicted by the simulations very closely approximates the observed Pearson
r between ˆ̄v and ĝ.

In sum, taking into account the uncertainty of the variables resulted in negligible
increase in the correlation between drift rate and general intelligence; even when assuming
unrealistically unreliable Raven scores, the mean of the posterior distribution of the corre-
lation increased only from 0.13 to 0.21. The Bayes factor indicated evidence for the absence
of an association between drift rate and general intelligence for the observed as well as the
inferred correlations, regardless of the magnitude of the error variance assumed for g. The
evidence for H0 was, however, only anecdotal, a result that is attributable to the substantial
uncertainty in the estimated correlations.
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Discussion

In the psychological sciences, few researchers acknowledge that the Pearson correla-
tion coefficient may underestimate the true strength of the association between two sets of
observations as result of measurement error. Even fewer recognize that the attenuation also
plagues correlation coefficients derived from uncertain parameter estimates. Although var-
ious approaches are available to infer the correlation in the presence of measurement error
or estimation uncertainty, none of these methods deal with both sources of noise simulta-
neously. The goal of the present paper was to outline a method that allows researchers to
infer the underlying correlation between (1) two sets of error-contaminated observations;
(2) two sets of uncertain parameter estimates; and (3) a set of noisy parameter estimates
and a set of error-contaminated observations.

We illustrated the use of the Bayesian approach with two empirical data sets. In the
first example, we assessed the correlation between parameters of cumulative prospect theory
and demonstrated that taking into account the uncertainty of the parameter estimates
can result in a dramatic increase in the inferred correlation: the mean of the posterior
distribution of the correlation increased from 0.61 to 0.92. In the second example, we
assessed the correlation between general intelligence and the drift rate parameter of the
diffusion model, where we examined three scenarios: we assumed that 5%, 25%, and 55%
of the total variance in Raven scores is attributable to measurement error. The estimated
correlation increased only marginally when the uncertainty of the variables was taken into
account; even with extremely unreliable Raven scores, the posterior mean of the correlation
increased from 0.13 to only 0.21. Importantly, although the posterior mean of the inferred
correlation increased slightly as a function of the amount of measurement noise in g, so did
the posterior standard deviation. This result is only logical; if we measure both variables
with a great degree of uncertainty, we cannot be confident about the underlying value of
the correlation either.

Our approach for inferring correlations between model parameters is a straightforward
application of the hierarchical method proposed by Behseta et al. (2009) for modeling
measurement error. The present framework can be in fact viewed as a simple Bayesian
structural equation model with two latent variables, each with a single indicator (e.g., S.-
Y. Lee, 2007; Song & Lee, 2012). The original formulation of the model relies on a slightly
different prior set-up than the one used in this article. In particular, Behseta et al. used
an Inverse-Wishart distribution to model the variance-covariance matrix Σ of the latent
variables, whereas we chose to model the individual components in Σ rather than Σ itself.
We feel that the latter specification is more intuitive and flexible. It allows researchers to
adapt the range of the prior for the group-level σθ and σβ to the measurement scale of their
variables and to express prior knowledge about the likely values of the inferred correlation
in a straightforward manner.

Of course, we can take into account measurement error only when the error variance
of the observations is known or when it can be estimated from data. Our investigation of
the extent of the disattenuation as a function of the amount of measurement noise in the
Raven scores served merely as an illustration. In real-life applications, the magnitude of
the error variance should not be cherry-picked to obtain the desired (higher) correlation;
rather it should be estimated from data. Note that the questionable practice of using
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arbitrary reliability coefficients is one of the major objections to Spearman’s (1904) original
attenuation formula (e.g., Muchinsky, 1996). Luckily, our literature review suggested that
the uncertainty of the observations may have been estimated for approximately 25% of the
reported correlations. This is possible, for example, when each observation was derived as
the average of multiple trials in a repeated measures design.

Similarly, we can infer the underlying correlation between two sets of parameter esti-
mates only if the estimation uncertainty is known. Throughout this article we used Bayesian
inference because the resulting posterior distributions can be automatically used to quantify
the uncertainty of the parameter estimates. In particular, we treated the mean of the pos-
terior distribution of the CPT and diffusion model parameters as point estimates and used
the variance of the posterior distributions as a measure of the participant-specific estimation
uncertainty.

With scarce data, however, the posterior distribution of the individual parameters
can be sensitive to the choice of the prior. As a result, estimation uncertainty—expressed
in terms of the variance of the posterior—can depend on the prior setting used to derive the
individual estimates. It follows that the inferred correlation can only be interpreted given
the particular prior setting used to obtain the individual parameter estimates. The present
two-step framework should therefore be considered as a post-hoc method for inferring cor-
relations: in the first step we obtain posterior distributions for the model parameters under
a particular prior setting; in the second step we infer the correlation between the estimates
given the estimation uncertainties obtained under the prior setting used in the first step.
In the context of theory-laden models, such as the CPT and the diffusion model, we do not
consider prior sensitivity as a shortcoming of the two-step approach; we consider the prior
as part of the model which should come from theory just as the likelihood does (M. D. Lee
& Vanpaemel, 2016; Vanpaemel & Lee, 2012).

Within the Bayesian framework, we are not limited to the two-step procedure illus-
trated here; Bayesian hierarchical modeling allows for the simultaneous estimation of the
individual parameters and their correlations. In simultaneous hierarchical modeling, the in-
dividual parameters are assumed to follow a bivariate (or multivariate) normal distribution
that is described by the group-level means and a variance-covariance matrix. The group-
level and the participant-level parameters are estimated simultaneously from the data, where
the group-level bivariate normal distribution acts as a prior to adjust extreme individual
estimates to more moderate values. As a result of shrinkage of the individual parameters,
the correlation automatically takes into account the uncertainty of the participant-level
estimates. The Bayesian estimation of the covariance structure of model parameters is il-
lustrated, for example, by Gelman and Hill (2007), Klauer (2010), Matzke et al. (2015),
Rouder et al. (2008), and Rouder et al. (2007).

The two-step procedure and the simultaneous hierarchical framework assume differ-
ent generative models for the data and as such constitute different approaches to modeling
correlations. The two-step procedure assumes that the individual model parameters that
generated the data are uncorrelated a priori. The simultaneous framework assumes a priori
correlated parameters and automatically uses this prior information during the estimation
of the individual parameters. We see merits in both approaches. The two-step approach is
easy-to-use and can be applied when only point estimates—from Bayesian or non-Bayesian
procedures—and the corresponding estimation uncertainties are available. Moreover, the
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two-step approach can be useful in exploratory analyses of the correlation between model
parameters and external observations. The simultaneous modeling framework has the po-
tential to correct for bias in the individual parameter estimates that may result from fitting
a simpler but unrealistic model with a priori uncorrelated parameters to scarce data. How-
ever, in the context of theory-laden models with meaningful priors, one should consider
whether the prior set-up for the multivariate normal distribution used in the simultaneous
framework adequately approximates the desired prior set-up for the cognitive model in ques-
tion. Note that the two-step and simultaneous modeling frameworks yield similar results
when the prior has little or no influence on the individual posterior distributions, such as in
situations with a large number of observations per participant. Of course, if the individual
parameters are estimated accurately and precisely, the attenuation of the correlation tends
to be negligible.

Our literature review showed that nearly 50% of the articles published in the 2012
volume of the Journal of Experimental Psychology: General reported at least one Pearson
product-moment correlation coefficient. Despite the wide-spread use of correlations, most
researchers fail to acknowledge that the correlation computed between noisy observations
or uncertain parameter estimates often underestimates the true strength of the relationship
between the variables. Here we outlined a Bayesian method that allows researchers to infer
the underlying correlation in the presence of measurement error and estimation uncertainty.
Of course, the measurement error of the observations and the uncertainty of the parameter
estimates are not always readily available. Also, our simulations confirmed that for relatively
low underlying correlations, correcting the attenuation is likely to have only a small effect.
We nevertheless encourage researchers to carefully consider the issue of attenuation and
whenever sensible take into account the uncertainty that accompanies parameter estimation
and psychological measurement.
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Figure 1. Bayesian hierarchical inference for the correlation in the presence of estimation
uncertainty. The gray points show the point estimates µ̂T1 and µ̂T2 plotted against their
true values. The black points show the posterior means of the inferred µT1 and µT2 param-
eters from the hierarchical analysis plotted against their true values. The horizontal black
arrows indicate the range of the true values; the vertical gray and black arrows indicate the
ranges of the point estimates and the inferred parameters, respectively. The inferred pa-
rameters are less dispersed than the point estimates. The bottom panel shows the posterior
distribution of the correlation ρ from the hierarchical analysis: it more closely approxi-
mates the true correlation between µT1 and µT2 than the Pearson correlation coefficient r
computed between the point estimates.
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Figure 2. Graphical model for inferring the correlation in the presence of measurement
error. Observed variables are represented by shaded nodes and unobserved variables are
represented by unshaded nodes. The graph structure indicates dependencies between the
nodes. The node η = (θ, β) represents the unobserved true values, θ̂ and β̂ represent the
observed variables, and σ2

εθ
and σ2

εβ
represent the observed error variances. The nodes µθ and

µβ represent the unobserved group-level means, and σθ and σβ represent the unobserved
group-level standard deviations. The node ρ represents the unobserved true correlation
between θ and β.
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Figure 3. Observed and inferred correlation between parameters of cumulative prospect the-
ory (CPT). Panel A shows the Pearson correlation coefficient r and a scatterplot between
the point estimates δ̂1 and δ̂2. Panel B shows the same scatterplot but includes the esti-
mation uncertainties σεδ1 and σεδ2 (gray lines). Panel C shows a scatterplot between the
posterior means of the inferred η = (δ1, δ2) parameters. The gray lines show the standard
deviation of the posterior distributions. The posterior means of the inferred δ1 and δ2 pa-
rameters are shrunk toward their group mean and are associated more strongly than the
point estimates. Panel D shows that the posterior distribution of the inferred correlation
ρ (black density line) is shifted to higher values relative to the posterior of the observed
correlation r (gray density line).
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Figure 4. Expected attenuation of the correlation between the δ parameters of cumulative
prospect theory (CPT). We conducted five sets of simulations, each with a different value of
the true correlation. For each set, we generated 1, 000 synthetic data sets. The gray violin
plots show the distribution of the 1, 000 Pearson correlation coefficients r∗ for the five values
of the true correlation. The r∗ values were generated using the estimation uncertainties σ2

εδ1
and σ2

εδ2
and the posterior means of the group-level µδ1 , µδ2 , σ2

δ1
, and σ2

δ2
parameters. The

upper arrow shows the posterior mean of the inferred correlation ρ in the observed data.
The lower arrow shows the Pearson correlation coefficient r between the point estimates δ̂1

and δ̂2 in the observed data. The figure shows that (1) the attenuation increases with the
absolute value of the true correlation, and (2) the observed Pearson r between the point
estimates is well within the 2.5th and 97.5th percentile of the r∗ values predicted by the
simulations.
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Figure 5. Observed and inferred correlation between mean drift rate v̄ and Raven total
score g. Panels A - C show scatterplots between the point estimates for mean drift rate ˆ̄v
and the observed Raven total score ĝ. The gray lines show the corresponding estimation
uncertainties σεv̄ and the standard deviation of the measurement error σεg for the 5%,
25%, and 55% measurement noise scenarios. Panel A also shows the Pearson correlation
coefficient r. Panels D - F show scatterplots between the posterior means of the inferred
η = (v̄, g) parameters for the three scenarios. The gray lines show the standard deviations
of the posterior distributions. The posterior means of the inferred v̄ and g parameters
are shrunk toward their group mean, where the degree of shrinkage is determined by the
amount of measurement noise assumed for g. Panel G shows the posterior distribution of
the observed (r; gray density line) and the inferred correlations (ρ) for the 5% (solid black
density line), 25% (dotted black density line,), and 55% (dotted-dashed black density line)
measurement noise scenarios. Note the only negligible shift is the mean of the posterior
distribution of the inferred correlation ρ as a function of the amount of measurement noise.
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Figure 6. Expected attenuation of the correlation between mean drift rate v̄ and Raven
total score g. We conducted five sets of simulations, each with a different value of the true
correlation. For each set, we generated 1, 000 synthetic data sets. The gray violin plots show
the distribution of the 1, 000 Pearson correlation coefficients r∗ for the five values of the true
correlation. The r∗ values were generated assuming 55% error variance in the Raven scores,
using the estimation uncertainties σ2

εv̄ and the posterior means of the group-level µv̄, µg, σ
2
v̄ ,

and σ2
g parameters. The upper arrow shows the posterior mean of the inferred correlation ρ

in the observed data. The lower arrow shows the Pearson correlation coefficient r between
the point estimates ˆ̄v and ĝ in the observed data. The figure shows that the median (white
circle) of the Pearson correlation coefficients r∗ predicted by the simulations very closely
approximates the observed Pearson r between the point estimates.
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Appendix
WinBUGS Implementation

{

# Data

for (i in 1:N){

# eta[i,1] = theta[i]; eta[i,2] = beta[i];

# mu[1] = mu_theta; mu[2] = mu_beta;

# ISigma_cov = inverse of Sigma_cov matrix

eta[i,1:2] ~ dmnorm(mu[],ISigma_cov[,])

# observed[i,1] = theta_hat[i]; observed[i,2] = beta_hat[i];

# Isigma_epsilon[i,1] = Inverse of sigma_epsilon^2_theta[i];

# Isigma_epsilon[i,2] = Inverse of sigma_epsilon^2_beta[i]

for (j in 1:2){

observed[i,j] ~ dnorm(eta[i,j],Isigma_epsilon[i,j])

}

}

# Priors

mu[1] ~ dnorm(0,prec_mu_theta)

mu[2] ~ dnorm(0,prec_mu_beta)

sigma_theta ~ dunif(0,b_sigma_theta)

sigma_beta ~ dunif(0,b_sigma_beta)

rho ~ dunif(-1,1)

# Reparameterization

Sigma_cov[1,1] <- pow(sigma_theta,2)

Sigma_cov[1,2] <- rho*sigma_theta*sigma_beta

Sigma_cov[2,1] <- rho*sigma_theta*sigma_beta

Sigma_cov[2,2] <- pow(sigma_beta,2)

ISigma_cov[1:2,1:2] <- inverse(Sigma_cov[1:2,1:2])

}

The R code that calls the WinBUGS code using the R2WinBUGS (Sturtz, Ligges,
& Gelman, 2005) package is available in the supplemental materials at http://dora.erbe
-matzke.com/publications.html. The R code allows users to adjust the precision (i.e.,
inverse variance) of the normal prior distribution of mu[1] and mu[2] by specifying the
value of prec mu theta and prec mu beta. Similarly, the R code allows users to adjust the
range of the uniform prior distribution of sigma theta and sigma beta by specifying the
value of b sigma theta and b sigma beta.


