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Abstract

We show that a single binomial observation carries absolutely no evidential
value for discriminating the null hypothesis θ = 1/2 from a broad class of
alternative hypotheses that allow θ to be between 0 and 1. In contrast,
interval estimation methods suggest that a single binomial observation does
provide some evidence against the null hypothesis. The resolution of this
paradox requires the insight that interval estimation methods may not be
used for model comparison; interval estimates are postdictive rather than
predictive, and therefore fail to take model complexity properly into account.

Keywords: Prediction; NML; Bayes factor; Confidence interval estimation;
Credible interval estimation.

Introduction

In the past few years the limitations and drawbacks of p-value statistical hypothesis
testing have become increasingly evident (e.g., Johnson, 2013; Nuzzo, 2014). As an al-
ternative to p-values, the use of confidence intervals is now widely recommended, both by

This work was supported by an ERC grant from the European Research Council. Correspon-
dence concerning this article may be addressed to Eric-Jan Wagenmakers, University of Amsterdam,
Department of Psychology, Weesperplein 4, 1018 XA Amsterdam, the Netherlands. Email address:
EJ.Wagenmakers@gmail.com.



ANOTHER STATISTICAL PARADOX 2

individual researchers (e.g., Cumming, 2014; Grant, 1962; Loftus, 1996) and through the
APA Manual, the Society for Personality and Social Psychology Task Force on Publication
and Research Practices, the guidelines for journals published by the Psychonomic Society,
and Psychological Science. Although the confidence interval—and its Bayesian version, the
credible interval—are meant for estimation, not for testing, it is nevertheless tempting to
use intervals for model selection, for instance by rejecting H0 whenever a 95% interval does
not include the null value. Here we will demonstrate with an elementary example why this
temptation should be resisted. Because the interval-rejection scheme is formally equivalent
to p-value null hypothesis testing, our demonstration is also a critique of p-values.

A Single Coin Toss Problem

Consider the case of testing two hypotheses for a binomial rate parameter θ: under the
null hypothesis H0 the value of θ is fixed at 1/2, whereas under the alternative hypothesis
H1 the value of θ is allowed to vary from 0 to 1. For instance, the efficacy of an two
experimental medicines X and Y may be assessed by testing patients in pairs, such that
one member receives medicine X, and the other receives medicine Y . In the ith pair, if the
patient receiving medicine X shows more improvement than the patient receiving medicine
Y , the data are scored as yi = 1; when medicine Y outperforms medicine X, the data
are scored as yi = 0. Hence, H0 reflects the hypothesis that the ingredients that differ
between X and Y are biologically inactive and do not impinge on the relevant physiological
mechanism.

Suppose a single observation is obtained, y1 = 1 (i.e., in the first pair, the patient
receiving medicine X improves more than the patient receiving medicine Y ). Based on
this single observation, what can we say about the extent to which hypothesis H0 and H1

can be discriminated? To address this question we first consider two methods of model
comparison.

Normalized Maximum Likelihood Solution

The first model comparison method is Normalized Maximum Likelihood (NML),
an implementation of the Minimum Description Length principle (e.g., Grünwald, 2007;
Myung, Navarro, & Pitt, 2006; Rissanen, 1978, 2001). NML computes the degree to which
models are useful for compressing data; concretely, NML equals the maximum likelihood
for the observed data y, divided or normalized by the sum of maximum likelihoods over all
data sets x that could possibly be observed. For our example we easily obtain the following
NML scores:

NML(H0) =
p(y1 = 1 | θ̂y1 = 1/2)

p(x1 = 0 | θ̂x1 = 1/2) + p(x1 = 1 | θ̂x1 = 1/2)
=

1

2
(1)

NML(H1) =
p(y1 = 1 | θ̂y1 = 1)

p(x1 = 0 | θ̂x1 = 0) + p(x1 = 1 | θ̂x1 = 1)
=

1

2
(2)

Thus, from the perspective of data compression as instantiated by NML, the obser-
vation y1 = 1 does not provide any information about the relative adequacy of H0 versus
H1. The same result holds for y1 = 0, such that the general rule is that, according to NML,
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the first binomial observation, whatever its value, is perfectly uninformative for comparing
H0 to H1.

Bayes Factor Solution

The second model comparison method is the Bayes factor (Jeffreys, 1961; Kass &
Raftery, 1995). Because the Bayes factor B01 quantifies the extent to which a rational
agent should change its prior model odds to posterior model odds, B01 is said to grade
the decisiveness of the evidence that the data provide for H0 versus H1. The Bayes factor
equals the probability of the observed data under H0 versus H1. For our example:

B01 =
p(y1 = 1 | H0)

p(y1 = 1 | H1)
=

1/2∫ 1
0 p(y1 = 1 | θ)p(θ) dθ

, (3)

where p(θ) is the prior distribution that quantifies one’s uncertainty about θ before the data
are observed. As the reader can easily confirm, for any prior distribution symmetric around
θ = 1/2, it is the case that p(y1 = 1 | H1) = p(y1 = 0 | H1) = 1/2 and, therefore, B01 = 1.1

Thus, from the perspective of belief revision as quantified by the Bayes factor, the ob-
servation y1 = 1 does not provide any information about the relative adequacy of H0 versus
H1. The same result holds for y1 = 0, such that the general rule is that, according to the
Bayes factor, the first binomial observation, whatever its value, is perfectly uninformative
for comparing H0 to H1 (see also Jeffreys, 1961, p. 257).

Thus, the Bayes factor arrives at the same conclusion as NML: the value of the first
binomial observation is perfectly ambiguous and does not provide any reason to prefer
H0 over H1. The agreement between NML and Bayes factors is not coincidental: both
have a predictive interpretation in the sense of accumulating one-step ahead prediction
errors (Wagenmakers, Grünwald, & Steyvers, 2006). The predictive interpretation is most
apparent in the Bayes factor formulation, where H0 and H1 both predict that y1 = 1
occurs with probability 1/2. When competing models make identical predictions about
to-be-observed data, the actual observation of such data cannot be used to discriminate the
models (see also Jeffreys, 1931, pp. 19-20). In other words, the value of the first binomial
observation is irrelevant for discriminating H0 from H1.

Confidence Interval Solution

Having established the perfect non-informativeness of the first binomial observation
for comparing H0 to H1, we now turn to two statistical methods for interval estimation,
methods that are commonly used to contrast H0 and H1, even though they were not devel-
oped for that purpose.

The first method is the confidence interval. For the case of binomial data, there exist
many different confidence intervals (Brown, Cai, & DasGupta, 2001); for the case of y1 = 1,
all confidence intervals have a lower bound greater than zero and a higher bound at 1. The
Wilson confidence interval, recommend for small samples, has a 95% confidence bound for
θ that ranges from 0.21 to 1. These intervals have no immediate relation to the fact that
y1 was perfectly uninformative for discriminating H0 from H1. Consequently, confidence
intervals may not be interpreted with the goal of discriminating H0 from H1. In an extreme

1In the remainder of this article we will tacitly assume that p(θ) is symmetric around θ = 1/2.
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scenario, it is even possible that, after observing y1 = 1, a particular confidence interval
yields a lower confidence bound greater than 1/2, prompting the researcher to “reject the
null” for data that are perfectly uninformative. In our example, this happens when inference
is based on a 66% interval instead of a 95% interval: after observing y1 = 1, the Wilson
66% confidence interval for θ ranges from .52 to 1.2

Credible Interval Solution

The second method for interval estimation is the credible interval, the Bayesian ver-
sion of the confidence interval. The credible interval is based on the posterior distribution;
here we determine the bounds such that x% of posterior probability falls in the smallest
possible range (i.e., the highest posterior density or HPD interval). The HPD interval de-
pends on the prior distribution p(θ). For instance, if p(θ) ∼ beta(.5, .5) (i.e., the Jeffreys’
prior), observing y1 = 1 results in a 95% credible interval for θ that ranges from .23 to 1;
the 66% credible interval ranges from .70 to 1. Under the Jeffreys’ prior, 82% of posterior
mass for θ is larger than 1/2.3

Another HPD interval can be constructed using a prior that puts most mass near
extreme values of θ = 0 and θ = 1, as is appropriate when it is remains possible that the
potentially binary event always happens or never happens, such as a drug always thinning
the blood, or the addition of a chemical never turning a solution green (Jaynes, 2003, pp.
382-385). For instance, if p(θ) ∼ beta(.05, .05), observing y1 = 1 results in a 95% credible
interval for θ that ranges from .66 to 1; the 66% credible interval ranges from .9998 to 1.
Under the beta(.05, .05) prior, 97% of posterior mass for θ is larger than 1/2.4

Discussion

Figure 1 provides an overview of the problem, and the model comparison and interval
estimation results. For a single binomial observation y1 = 1, the conclusion of the interval
estimation methods (i.e., confidence intervals and credible intervals) seems to conflict with
that of the model comparison methods (i.e., NML and Bayes factors). It appears paradoxical
that data can be perfectly uninformative for comparing H0 to H1 (cf. Figure 1, middle
panels), and at the same time provide some reason to believe that θ > 1/2 (cf. Figure 1,
bottom left panel).5 The practical relevance is that when misused for model comparison,
interval methods can easily mislead researchers into believing that uninformative data cast
doubt on H0. Similarly, our example proves that interval methods cannot be used to assess
the degree to which the data are uninformative in terms of their support for H1 versus H0.

2The above analyses can be confirmed in R by executing library(binom); binom.confint(1, 1,

conf.level=.95); binom.confint(1, 1, conf.level=.66).
3This can be confirmed in R by executing library(binom); binom.bayes(1, 1, conf.level=.95,

type="h", prior.shape1=.5, prior.shape2=.5); binom.bayes(1, 1, conf.level=.66, type="h",

prior.shape1=.5, prior.shape2=.5).
4This can be confirmed in R by executing library(binom); binom.bayes(1, 1, conf.level=.95,

type="h", prior.shape1=.05, prior.shape2=.05); binom.bayes(1, 1, conf.level=.66, type="h",

prior.shape1=.05, prior.shape2=.05).
5We use the word paradox in the sense implied by Lindley (1957), that is, “a statement or proposition

that seems self-contradictory or absurd but in reality expresses a possible truth.” (http://dictionary.
reference.com/browse/paradox).
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Figure 1. Interval estimation methods cannot be used for model comparison. The top left panel
shows the alternative hypothesis implemented through the Jeffreys’ prior, H1 : p(θ) ∼ beta(.5, .5);
the top right panel shows the null hypothesis, H0 : θ = 1/2. The middle two panels show that for
the first observation, y1, both H1 and H0 make identical predictions. Consequently, y1 is irrelevant
for discriminating H1 from H0. The bottom left panel shows that under H1, the posterior mass
is skewed towards 1 and away from 1/2, giving the false impression that the first observation does
carry evidential value that θ does not equal 1/2, and that H1 may be favored over H0.
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Two remarks are in order. First, the argument above extends to an infinite collection
of equivalent examples; with a symmetric prior, as soon as the number of successes equals
the number of failures (i.e., s = f), the next observation is uninformative for comparing H0

versus H1 (Jeffreys, 1961, p. 257). For instance, consider H1 : θ ∼ beta(1, 1), s = f = 10.
Then the posterior distribution p(θ | s = 10, f = 10) ∼ beta(11, 11) and B01 = 3.7;
Because this posterior distribution is symmetrical around θ = 1/2, the next observation,
regardless of its value, will leave B01 unaffected. Second, interval estimation and Bayes
factors do correspond in the case of symmetric priors and two hypotheses H2 : θ < 1/2
versus H3 : θ > 1/2 (see the appendix for a proof). For a test between these directional
hypotheses, it is clear that the value of the first observation does carry evidential value.
Crucially, the fact that interval methods are equivalent to a test between two directional
hypotheses means that they are not equivalent to a test that involves a point null hypothesis
such as H0 : θ = 1/2.

The paradox is resolved by recalling that model comparison and interval estimation
have different aims. Both NML and Bayes factors aim to select the model that best pre-
dicts the observed data. Predictive performance can be assessed sequentially, much like
the performance of a weather forecaster who has access only to past measurements, and
whose forecasting ability is quantified by the adequacy of predicting tomorrow’s weather.
By focusing on prediction, NML and Bayes factors compensate automatically for model
complexity, discounting the close fit of models that are relatively complex (Myung & Pitt,
1997). In contrast, interval estimation methods aim to quantify one’s uncertainty about
the true parameter values after the data have fully been taken into account. Both model
comparison and estimation are important scientific goals. However, when the goal is model
selection, interval methods are generally inappropriate; they are based on postdiction in-
stead of prediction, and therefore fail to correct appropriately for model complexity. This is
all the more relevant because in many models, the assessment of whether an x% confidence
interval encloses the null value is formally equivalent to a null-hypothesis significance test
with α = 1−x (e.g., Lindley, 1965; Morey & Wagenmakers, 2014). Hence, our example also
shows that p-values do not properly correct for model complexity (e.g., Edwards, Lindman,
& Savage, 1963; Sellke, Bayarri, & Berger, 2001).

The paradoxical conflict between interval estimation and model comparison relates
to the famous Jeffreys-Lindley paradox (Jeffreys, 1961; Lindley, 1957; Wagenmakers &
Grünwald, 2006), where a conflict between p-values and Bayes factors is certain to arise in
the large-sample limit, regardless of the prior distribution. Instead, our example shows that
for a single binomial observation, interval methods may suggest that the true value for θ is
away from the null value even though the observation is completely uninformative.

Conclusion

There is a fundamental difference in goals and in conclusions between model com-
parison and parameter estimation. Model selection methods compare the predictive per-
formance of competing models, whereas parameter estimation methods quantify knowledge
after having incorporated the observed data. Although it is tempting to use interval meth-
ods for model selection, and reject H0 whenever a 95% interval does not include the null
value, such a procedure leads to conclusions that are biased in favor of H1, a bias that
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can fool researchers into reporting results that have a relatively low probability of being
reproducible.
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Appendix
Correspondence between Posterior Distributions and Bayes Factors

for Directional Hypotheses

Consider a Bayes factor between two directional hypotheses for a binomial rate pa-
rameter: H2 : θ < 1/2 versus H3 : θ > 1/2. Let H1 be the encompassing hypothesis where θ
is unrestricted; hence, H2 and H3 are nested under H1. Specifically, if H1 : θ ∼ beta(a, a),
then H2 : θ ∼ beta−(a, a) and H3 : θ ∼ beta+(a, a), where beta−(a, a) indicates a folded
beta distribution with mass lower than 1/2 and beta+(a, a) indicates a folded beta distri-
bution with mass higher than 1/2.

As shown by Klugkist, Laudy, and Hoijtink (2005), the Bayes factor in favor of each of
the directional hypotheses against the encompassing hypothesis can be obtained by assessing
the change from prior to posterior probability consistent with the specified restriction. That
is:

B21 =
p(θ < 1/2 | y,H1)

p(θ < 1/2 | H1)
, (4)

and

B31 =
p(θ > 1/2 | y,H1)

p(θ > 1/2 | H1)
. (5)

From the definition of the Bayes factor we have B23 = B21/B31. Consequently,

B23 =
p(θ < 1/2 | y,H1)

p(θ > 1/2 | y,H1)
× p(θ > 1/2 | H1)

p(θ < 1/2 | H1)
. (6)

With a symmetric prior, the second term cancels, yielding:

B23 =
p(θ < 1/2 | y,H1)

p(θ > 1/2 | y,H1)
. (7)

Hence, with a symmetric prior the Bayes factor for comparing two directional hypotheses
simplifies to a comparison of encompassing posterior mass consistent with the restriction.
For example, consider Jeffreys’ prior and y1 = 1. As mentioned in the main text, 82% of
posterior mass for θ is larger than 1/2, and 18% is lower. Applying Equation 7 we obtain
B23 = .18/.82 = 0.22; hence, B32 = 1/0.22 = 4.55, indicating that the datum is about 4.55
times more likely under H3 than it is under H2.


