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Abstract 

In this document we provide (1) the R code for simulating Approach– 

Avoidance Reaction Time (AAT) data and for computing AAT indices 

according to the different strategies described in the main paper, (2) an 

example R code for conducting Bayesian repeated measures Analyses of 

Variance (ANOVA), (3) an example Python code for fitting a Bayesian 

hierarchical drift diffusion model (BHDDM) to AAT data, (4) details on 

how we fitted the BHDDM that we describe in the main paper to the first 

and the second data set, (5) the posterior kernel density estimates of the 

posterior distributions for every group parameter, (6) the Markov chains 

for every group parameter as well as convergence assessment statistics, 

and (7) the quality of fit of each model to the data. 
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R code used for simulating AAT data and computing AAT indices according to the 
different strategies 

Below is the R (R Core Team, 2013) code for generating data from an ex-Gaussian distribution 
and for computing the AAT index according to the different strategies described 
in the main paper. R can be freely obtained online (visit http://cran.r-project.org/). 

 
 
 

# Load gamlss.dict package  
library(gamlss.dist) 

 
# Generate data  
set.seed(1000) 
apP <- rexGAUS(1000, mu=550, nu=200, sigma=35)  
avP <- rexGAUS(1000, mu=580, nu=500, sigma=35)  
apN <- rexGAUS(1000, mu=580, nu=200, sigma=35)  
avN <- rexGAUS(1000, mu=550, nu=200, sigma=35) 

 
# Strategy 1 
con <- mean(c(apP, avN))  

inc <- mean(c(apN, avP))  

index1 <- con - inc 

 
# Strategy 2 & 3 
pos <- mean(avP) - mean(apP)  

neg <- mean(avN) - mean(apN) 
index2 <- pos - neg 

 
 

Bayesian repeated measures ANOVA 

For  the  Bayesian  repeated  measures  ANOVA,  we  used  the  BayesFactor  
package (Morey & Rouder,  2013;  Rouder,  Morey,  Speckman, & Province,  
2012;  see also http://bayesfactorpcl.r-forge.r-project.org) available  for  the  
R  programming  language (R Core Team, 2013). Below we provide an example 
R script for running a Bayesian repeated measures ANOVA with AAT data. 
 

 

 

 



  	
  

 

 

 

# Load packages.  
library(BayesFactor)  
library(foreign)  
library(reshape2) 

 
# Read data 
d <- read.spss("AART1final.sav", to.data.frame = T) 

 
 

# Demonstration of the first 5 rows of the data. 
# ID AppCSMin AvoidCSMin AppCSPlus AvoidCSPlus 
# 1 598.20 811.85 651.35 668.90 
# 2 843.60 1408.40 869.60 821.95 
# 3 534.45 521.05 523.80 467.45 
# 4 386.65 351.80 304.80 393.85 

 # 5 519.85 800.25 836.40 580.60 
 # 6 598.40 713.70 655.25 647.95 

 
 

# Transform data to long format.  
ID <- factor(rep(rownames(d), 4)) 

 Stim <- rep(c("CSM", "CSP"), each = nrow(d)*2) 
 Resp <- rep(c("App", "Avoi", "App", "Avoi"), each = nrow(d))  

 d <- cbind(ID, melt(d), Stim, Resp) 

 
 # Perform the Bayesian repeated measures ANOVA. 
 bf1 <- anovaBF(value ~ Stim*Resp + ID, data = d, whichRandom="ID") 

 
# Compute the main effects and the interaction term.  
interactionTerm <-    bf1[4]/bf1[3] 

 StimEff <- bf1[3]/bf1l[2]  
 RespEff <- bf1[3]/bf1[1] 
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Example Python code for fitting the BHDDM to the data 

To fit all the described models to the data we used the hddm package (Wiecki, Sofer, 
&  Frank,  2012,  2013;  see  also  http://ski.clps.brown.edu/hddm_docs)  for  the  
Python programming language (Lutz & Ascher, 2003). The hddm package allows users to 
estimate parameters of the diffusion model, in a hierarchical Bayesian manner, with 
minimal use of computer code. The hddm estimation routine is based on MCMC 
sampling, meaning that the posterior distributions are approximated by repeatedly 
drawing very many samples from those distributions. 

Below is an example Python script for running a single MCMC of the Bayesian 
hierarchical diffusion model in which drift rate differs per condition. In order to run the 
model one needs to have Python as well as the hddm module installed. 

 
# Import module  
import hddm 

   
  # Load Data 
  data = hddm.load_csv(‘data.csv’) 
 
  # Define model 

m = hddm.HDDMRegressor(data, “v∼C(coninc, Treatment(‘avoiCSM’))”, 
group_only_regressors=False) 

 
  # Find starting values 

  m.find_starting_values() 
   
  #Run model 
  m.sample(120000, burn = 20000, thin = 10, tune_throughout=False) 

   

# Inspect results  
m.print_stats()



  	
  

 
BHDDM: Drift rate model for data set 1 and 2 

In the following section we describe how we fitted a BHDDM in which 
drift rate differed per condition to data set 1 and 2. This is the main model 
described in our paper. 

 
Model specification – Data set 1 

All observations for every participant were entered in our analysis. As also 
described in the main paper, for the present model we assumed that differences 
across the four conditions stemmed from differences in the drift rate parameter 
(v). Regarding the remaining parameters, we assumed a symmetric starting 
point, z = a/2, and we did not allow the parameters a and Ter to vary across 

conditions. As described in the main paper, for the specific model we chose an 

arbitrary drift rate – here the one corresponding to the “Avoid CS−” condition – 
with the other three drift rates estimated as differences from the baseline. We 
point that any other condition could have served as a valid “baseline” condition, 
with results being essentially the same. 

 
Convergence assessment – Data set 1 

When using the MCMC method, it is important to ensure that the sampled 
values have converged from the random starting value to the posterior 
distribution. To assess convergence we ran three chains. Each single chain (i.e., 
a sequence of samples) con- sisted of 120,000 samples, and we discarded the 
first 20,000 samples as burn in. We then used a thinning factor of 10, so that 
the posterior distributions are based on a total of (120, 000 − 20, 000)/10 = 10, 
000 samples. The markov chains were initialized using the default 
“find_starting_values()” function in the hddm package. 

Convergence was assessed by computing the R-hat Gelman-Rubin statistic, 
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with values below 1.1 indicating successful converge, and by visually inspecting 
the chains in order to see whether they resembled “fat hairy caterpillars” (see 
Figure 1). 

All R-hat values for the present model were below 1.1 indicating successful 
convergence for all chains. Furthermore, we visually inspected the chains and 
confirmed that they resembled “fat hairy caterpillars”. All chains for each group 
parameter can be found below (see Figure 2). See the y-axis of each plot to see the 
parameter that each plot refers to. 

Kernel density estimates of the posterior distributions – Data set 
1. The kernel density estimate of the posterior distribution of each parameter can 
be found below (see Figure 3). Each density refers to a group parameter. See the 
y-axis of each plot for the parameter that each plot refers to. 

 
Quality of model fit– Data set 1 We assessed the quality of the model fit by 
plotting the real data against simulated data for the .1, .3, .5, and .9 RT quantiles 
for each stimulus by response condition. 
  For the simulated data, we simulated error-free model predictions by 
generating 8, 000, 000 data points for each condition for each individual, based 
on the posterior values (from the 1 to the 9001 point, with steps of 1000, of the 
first Markov samples) for each one of the individual parameters. We then 
computed the .1, .3, .5, and .9 RT quantiles for each individual and averaged those 
quantiles across the whole sample. Finally we compared the .1, .3, .5, and .9 RT 
quantiles generated by the model against those from the observed data. Error 
bars on the observed data were computed by a double bootstrap technique 
(Efron & Tibshirani, 1993); on each of 100 bootstrap runs, we randomly 
selected, with replacement, 32 individuals. We then sampled, again with 
replacement, the observed data for each participant in each of the four 
conditions. Then, for each bootstrap data set, we computed the RT quantiles; 
the standard deviation across 100 bootstrap RT quantiles was then used as an 
estimate for the standard error. As can be seen in Figure 4, the model fits the 



  	
  

observed data well. 
 
 

 
 

 
 

Figure 1 . Three Markov chains for the group parameter v(Avoid CS+) for data set 1. The 

three chains resemble a “fat, hairy caterpillar” suggesting successful convergence. 

 
 

AAT index– Data set 1 

Please see the main text for the corresponding AAT index. 
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Figure 2 . The Markov chains for each group parameter of the “drift rate model” for the 

first data set. See the y-axis of each plot to see the parameter that each plot refers to. 
 



  

	
  

 

 
 

 

 
 

 

 
 

 
Figure 3 . Kernel density estimates of the posterior distributions for every parameter of the 

“drift rate model” for the first data set.  See the y-axis of each plot to see the parameter 

that each plot refers to. 
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Figure 4 . Comparison of the simulated data generated by the “drift rate model” param- 

eters and the observed data for each stimulus (CS+vs. CS−) by response (Approach vs. 

Avoidance) combination for the .1, .3, .5, and .9 RT quantiles. The model seems to capture 

the data quite well. Error bars represent bootstrapped standard error of means for each 

quantile. 
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Figure 4 . Comparison of the simulated data generated by the “drift rate model” param-
eters and the observed data for each stimulus (CS+vs. CS≠) by response (Approach vs.
Avoidance) combination for the .1, .3, .5, and .9 RT quantiles. The model seems to capture
the data quite well. Error bars represent bootstrapped standard error of means for each
quantile.



  	
  

 
 

Model specification – Data set 2 

Model specifications were the same as for the first data set with the exception that 

the drift rate corresponding to the “Approach CS+” condition served as baseline. Any other 

condition could have served as a baseline, with results being essentially the same. Note 

that we fitted the model to the data of each group (i.e., AAA and ABA) separately. 
 

Convergence assessment – Data set 2 

MCMC convergence was assessed similarly to the “drift rate model” of data set 1. 

All chains for every parameter had an R-hat statistic below 1.1 suggesting successful 

convergence. All chains were also visually inspected and they also resembled “fat hairy 

caterpillars”. The Markov chains for each group parameter and for each group can be found 

below (see Figure 5 for the AAA group and Figure 6 for the ABA group). See the y-axis of 

each plot for the parameter that the plot refers to. 
 

Kernel density estimates of the posterior distributions – Data set 2 

The kernel density estimates of the posterior distributions of each group parameter, 

separately for each group, can be found below (see Figure 7 for the AAA group and Figure 

8 for the ABA group). See y-axis of each plot for the parameter that each plot refers to. 
 

Quality of model fit – Data set 2 

The quality of model fit was assessed by plotting the RT quantiles of the real against 

the simulated data, for each group separately, in a manner similar to the “drift rate model” 

of the first data set. Error bars were also computed as before. Figure 9 for group AAA and 

Figure 10 for the ABA group show that model predictions fit the data quite well. 
 

AAT index– Data set 2 

Please see the main text for the corresponding AAT index for each group of the second 

data set. 
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Figure 5 . The Markov chains for every group parameter of the “drift rate model” for the 

AAA group of the second data set. See the y-axis of each plot for the parameter that each 

plot refers to. 
 
  



  

	
  

 
 

 

 
 

Figure 6 . The Markov chains for every group parameter of the “drift rate model” for the 

ABA group of the second data set. See the y-axis of each plot for the parameter that each 

plot refers to. 
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Figure 7 . Kernel density estimates of the posterior distributions for every group parameter 

of the “drift rate model” for the AAA group of the second data set. See the y-axis of each 

plot for the parameter that each plot refers to. 
 
 
 
 
 
 
 
 
 
 
  



  

	
  

 

Figure 8 . Kernel density estimates of the posterior distributions for every group parameter 

of the “drift rate model” for the ABA group of the second data set. See the y-axis of each 

plot for the parameter that each plot refers to. 
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Figure 9 . Comparison of the simulated data generated by the “drift rate model” parameters 

and the observed data, group AAA of the second data set, for each stimulus (CS+vs. CS−) 

by response (Approach vs. Avoid) combination for the .1, .3, .5, and .9 RT quantiles. The 

model seems to capture the data quite well. Error bars represent bootstrapped standard 

error of means for each quantile. 
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Figure 9 . Comparison of the simulated data generated by the “drift rate model” parameters
and the observed data, group AAA of the second data set, for each stimulus (CS+vs. CS≠)
by response (Approach vs. Avoid) combination for the .1, .3, .5, and .9 RT quantiles. The
model seems to capture the data quite well. Error bars represent bootstrapped standard
error of means for each quantile.



  

	
  

 

Figure 10 . Comparison of the simulated data generated by the “drift rate model” parame- 

ters and the observed data, group ABA of the second data set, for each stimulus (CS+vs. 

CS−) by response (Approach vs. Avoid) combination for the .1, .3, .5, and .9 RT quan- 

tiles. The model seems to capture the data quite well. Error bars represent bootstrapped 

standard error of means for each quantile. 
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Figure 10 . Comparison of the simulated data generated by the “drift rate model” parame-
ters and the observed data, group ABA of the second data set, for each stimulus (CS+vs.
CS≠) by response (Approach vs. Avoid) combination for the .1, .3, .5, and .9 RT quan-
tiles. The model seems to capture the data quite well. Error bars represent bootstrapped
standard error of means for each quantile.
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