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Abstract 
	
  
Common methods for analyzing response time tasks, frequently used across different 

disciplines of psychology, suffer from a number of limitations such as the failure to directly 

measure the underlying latent processes of interest and the inability to take into account 

the uncertainty associated with each individual’s point estimate of performance. Here we 

discuss a Bayesian hierarchical diffusion model and apply it to response time data. This 

model allows researchers to decompose performance into meaningful psychological 

processes and to account optimally for individual differences and commonalities, even with 

relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion 

model decomposition by applying it to performance on Approach-Avoidance Tasks, widely 

used in the emotion and psychopathology literature. Model fits for two experimental data 

sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model 

overcomes important limitations of current analysis procedures and provides deeper insight 

in latent psychological processes of interest. 
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A Bayesian Hierarchical Diffusion Model Decomposition of Performance in 

Approach-Avoidance Tasks 

	
  

Conclusions about latent psychological processes are often based on performance in 

so-called speeded response time tasks, where participants are put under pressure to respond 

to a stimulus quickly and the main dependent variable is response latency. For instance, 

tasks such as the emotional Stroop task (Stroop, 1935; Williams, Mathews, MacLeod, et 

al., 1996), the dot probe task (MacLeod, Mathews, Tata, et al., 1986; Salemink, Hout, & 

Kindt, 2007), the Implicit Association Test (IAT; Greenwald, McGhee, Schwartz, et al., 

1998), and the Approach-Avoidance Task (AAT; De Houwer, Crombez, Baeyens, & 

Hermans, 2001; Krieglmeyer & Deutsch, 2010) are commonly used in psychology in order 

to measure and understand putative latent processes such as cognitive and attentional 

biases, implicit memory associations, and implicit attitudes or action tendencies. 

Despite their substantial contribution to the literature, and despite their empirical 

popularity, most response time tasks suffer from an important limitation. This limitation 

concerns the suboptimal analysis strategies that are employed to draw substantive 

conclusions from the observed data. Specifically, the standard methods of analysis do not 

directly measure the psychological processes of interest, that is, they use a general 

statistical model instead of a cognitive process model. Moreover, the variability or 

uncertainty involved in an individual’s data is ignored by the consideration of a single 

point- estimate (e.g., mean or median) per individual. 

The aim of the present paper is to demonstrate how the above limitations can be 

overcome by a cutting–edge analysis technique known as a Bayesian hierarchical diffusion 

model decomposition. This technique is applicable to the analysis of response time tasks 
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generally, but we illustrate its use here for the AAT, a task that is widely used to measure 

implicit action tendencies in experimental psychopathology research (e.g., Rinck & Becker, 

2007; Spruyt et al., 2013). 

The outline of the paper is as follows. We first describe the theoretical foundations of 

AATs. Secondly, we describe common AAT data analysis techniques and their limitations. 

Next, we present Ratcliff’s diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008) and 

outline its implementation in a Bayesian hierarchical framework. We then present two 

experimental data sets; the first one concerning avoidance tendencies – which are mainly 

studied in anxiety disorders and phobias– and the second data set concerning approach 

tendencies – which are mainly of interest in the addiction literature. Throughout, we 

compare the outcome of traditional analytic techniques to the outcome of our diffusion 

model decomposition. We conclude by summarizing our results and commenting on the 

generality of the new analysis technique and the benefits and challenges that it brings. 

	
  
	
  

Approach-Avoidance Reaction Time Tasks 
	
  
	
  

People have the inherent tendency to approach rewarding stimuli and avoid potential 

dangers (i.e., Thorndike’s “law of effect”, see Chance, 1999). People, for example, tend to 

approach food when hungry but will recoil from a car heading their way. Various 

psychological theories conceptualize these action tendencies as vital emotional reactions, 

with positive valence cues automatically triggering approach responses and negative 

valence cues automatically triggering avoidance reactions (Bradley & Lang, 2007; Frijda, 

1988; Lang & Bradley, 2008; Rutherford & Lindell, 2011). Some theories even posit that 

emotions may be best defined as action tendencies (Frijda, 1988; Lang, 1985). 

A common way to identify and measure action tendencies is via Approach-Avoidance 

Tasks. Although different versions of AAT exist (Krieglmeyer & Deutsch, 2010), 
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participants are typically instructed to symbolically approach and avoid categories of 

stimuli that differ in their emotional valence; the critical assumption is that response times 

are influenced both by the valence of the stimulus (i.e., appetitive vs. aversive) and by the 

response assignment (approach vs. avoidance). For instance, participants in De Houwer et 

al. (2001) had to maneuver a virtual manikin towards and away from positively and 

negatively valence words. Results confirmed the expected interaction between stimulus 

valence and response assignment: Participants responded faster when they had to make the 

manikin approach words with positive valence or when they had to make it  avoid words 

with negative valence than vice versa. In a similar vein, Rinck and Becker (2007) instructed 

spider-fearful individuals and non–anxious individuals to respond to pictures by pushing 

(avoidance) or pulling (approach) a joystick. In the first block of trials, half of the 

participants had to push the joystick in response to pictures depicting spider stimuli and 

pull the joystick in response to pictures showing neutral stimuli, with the other half of the 

participants doing the opposite. Instructions were reversed for the second block. The 

results showed that –compared to the control participants and compared to the neutral 

pictures– the spider-fearful participants were quicker to respond to the spider pictures 

when they had to push than when they had to pull. Similar AATs have been used with a 

diversity of stimuli, including alcohol (Spruyt et al., 2013; Wiers, Rinck, Kordts, Houben, 

& Strack, 2010; Wiers, Eberl, Rinck, Becker, & Lindenmeyer, 2011), cannabis (Cousijn, 

Goudriaan, & Wiers, 2011), social groups (Neumann, Hülsenbeck, & Seibt, 2004), facial 

expressions (Heuer, Rinck, & Becker, 2007), conditioned appetitive cues (Van Gucht, 

Vansteenwegen, van den Bergh, & Beckers, 2008), and conditioned fear cues (Krypotos, 

Effting, Arnaudova, Kindt, & Beckers, 2014). 

	
  
Although widely used across social and clinical psychology, no consensus has been 
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reached on how to best analyze AATs statistically. After reviewing the published literature, 

we found divergence in analytic techniques as regards (a) the normalization of the response 

time distributions; (b) the estimation of central tendency; (c) the handling of error 

responses; and (d) the computation of an approach-avoidance tendencies index. At the 

same time, there is consensus regarding other data analysis strategies such as the collapsing 

of data across participants. Regardless of the degree of consensus, all current methods of 

analysis have serious limitations: Response times and error rates are not accounted for in a 

common framework, the psychological process of interest is not estimated directly, the 

shape of the response time distribution (for correct and error responses) is left unaccounted 

for, and the calculation of a single point-estimate per individual ignores variability and 

implies a considerable loss of information. These limitations constrain the substantive 

conclusions that can be drawn from AAT data. Increasing the validity of the conclusions 

derived from AAT data is timely given that AATs are increasingly applied in intervention 

research. Specifically, variations of the AAT tasks are currently being applied to clinical 

populations (e.g., in alcohol addicts) as a way to change dysfunctional action tendencies 

(i.e., excessive approach towards alcohol stimuli in the study of Wiers et al., 2011). Since 

decisive conclusions as to whether action tendencies have been successfully modified are 

based on the AAT data, a more accurate estimation of AAT performance will allow more 

solid conclusions regarding the success or failure of action tendency modification. 

	
  
	
  

Common Analysis Techniques for AAT data 
 

In this section, we summarize the common analysis strategies for AAT data. We 

accompany each strategy with examples from the literature on the use of AAT in emotion 

or psychopathology research along with our considerations. 

Normalization of the response time distribution. Response times (RTs) are 
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positively skewed and this complicates their statistical analysis (Heathcote, Popiel, & 

Mewhort, 1991). Consequently, researchers follow several strategies for data normalization. 

The two most common strategies applied to the RTs of each individual are outlier removal 

(Ratcliff, 1993) and data transformation (Mead, 1990). For outlier removal, different 

cut-off points are used which can either be fixed (e.g., RTs longer than 3000 msec in Van 

Gucht et al., 2008) or variable (e.g., top and bottom 1% of RT distribution in Vrijsen, 

Oostrom, Speckens, Becker, & Rinck, 2012; or RTs deviating more than 2 standard 

deviations from the mean in Klein, Becker, & Rinck, 2011). For data transformation, the 

log transformation is the most popular (e.g., in Adams, Ambady, Macrae, & Kleck, 2006 

and in Chen & Bargh, 1999). 

When used jointly, these approaches result in RT distributions that are (almost) 

normal. However, outlier removal for skewed distributions is by definition problematic: It 

can be difficult to tell whether an extremely long RT is due to an attentional lapse or 

whether it is a valid sample from a right-skewed distribution (Heathcote et al., 1991). 

Rather than transforming data so that they meet the requirements of standard statistical 

tests, it may be better to use statistical models that are valid for the kind of skewness that 

is present in RT data. 

Estimation of central tendency. There is some debate on what measure of 

central tendency best summarizes response times for each stimulus-response condition. The 

most common choices are the mean (e.g., in De Houwer et al., 2001) and the median (e.g., 

in Rinck & Becker, 2007). The median RT arguably provides a better summary statistic (Hays, 

1973) because it is less influenced by outlying values compared to the mean (but see Miller, 

1988, for counter arguments). The main problem with measures of central tendency is that they 

summarize an entire RT distribution using a single number, which implies a considerable 

loss of information (McAuley, Yap, Christ, & White, 2006). 
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Error responses. In the statistical analyses of AATs, error responses are typically 

ignored (e.g., in Van Gucht et al., 2008) or taken into account separately, by conducting 

additional statistical tests with proportion of errors as the new dependent variable (e.g., in 

De Houwer et al., 2001). Both approaches can yield misleading results. Ignoring error 

responses results in a loss of information and can blind the researcher to the signature 

finding of a speed-accuracy tradeoff, where faster responses can be obtained at the cost of 

making more errors (Pachella, 1974; Schouten & Bekker, 1967). Conducting separate tests 

for RT and accuracy similarly fails, as it does not acknowledge the intimate connection 

between these two measures of performance (e.g., Wagenmakers, van der Maas, & Grasman, 

2007). These drawbacks are exacerbated by the fact that the speed-accuracy tradeoff is 

nonlinear, such that an increase in accuracy of a few percentage points may correspond to a 

decrease in mean RT of hundreds of milliseconds (e.g., Ratcliff & McKoon, 2008). 

Ignoring within-subjects uncertainty. In most AAT studies, the mean or median 

RTs (e.g., in De Houwer et al., 2001; Van Gucht et al., 2008; Wiers, Rinck, Dictus, & 

Wildenberg, 2009) of each participant are included in the statistical analyses. Importantly, 

such an approach, in which only one value per participant is retained, implies that the 

individuals’ RTs are known with absolute accuracy (i.e., without any statistical noise), which is 

hardly the case in sparse data sets, such as those in many applications in clinical psychology. 

In view of this difficulty in individual data averaging, it could be argued that analyzing each 

participant separately would be more accurate. However, such an approach would hinder the 

valid generalization of the results to the population. 

Computation of an AAT index. After the computation of central tendencies for the 

different types of trials, researchers typically calculate an approach-avoidance tendencies 

index that represents the relative strength of the corresponding action tendencies. Strategies 
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for calculating this index include (1) taking the difference between the mean response times for 

congruent trials (i.e., approach positive valence stimuli and avoid negative valence stimuli) and 

for incongruent trials (i.e., avoid positive valence and approach negative valence), as in De 

Houwer et al., 2001; (2) taking the difference of the differences between approach and 

avoidance trials for each type of stimulus (e.g., in Wiers et al., 2010) and (3) assessing 

approach and avoidance tendencies separately for each stimulus category (e.g., in Voncken, 

Rinck, Deckers, & Lange, 2011). 

To illustrate the differences of the above computational strategies, we present a 

hypothetical example in which an experimenter has collected approach–avoidance RT data in 

response to picture stimuli with positive or negative valence. We generated data from an ex-

Gaussian distribution that generally fits RT data well (Ratcliff, 1979), for each stimulus-

response category for one participant (See Table 1 and online Supplementary Material). 

According to the first strategy, we compute the AAT index by following three steps: 

(1) take the mean RT of the congruent trials, in this example the approach positive and 

avoid negative conditions, (2) take the mean RT of the incongruent trials, in this example 

the approach negative and avoid positive conditions, and (3) subtract the incongruent 

from the congruent trials. In our simulated data set, this results in an AAT index of −167 

ms.  According to the second strategy, we compute the AAT index as follows: (1) compute the 

mean RT for each stimulus-response category – in this example the combinations are: (i) 

approach speed for positive pictures, (ii) approach speed for negative pictures, (iii) avoidance 

speed for positive pictures, and (iv) avoidance speed for negative pictures –, and (2) for each 

stimulus category separately, subtract the avoidance responses from the approach responses. 

In our example, for the positive valence stimuli we should subtract the mean RT of the avoid 

positive picture condition from the approach positive picture condition, and similarly for the 

negative stimuli. The third step, (3), would be to compute the difference between the two 
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resulting numbers. In our example, this resulted in an AAT index of −333 m,s. The third and 

final strategy entails the first two steps of the second strategy. In our data set, this resulted in a 

value of −307.07 ms for positive stimuli, and a value of 26.01 ms for the negative stimuli.  

The example above shows that even with the same data, the resulting AAT index differs 

according to the selected computational strategy.  More importantly still, although one could 

debate the merits and drawbacks of each approach, and although in practice all strategies 

may lead to similar conclusions, a core problem across the different strategies as they are 

typically used is that they collapse across different RT distributions. As such, they may lead 

to inaccurate AAT estimations. Moreover, by computing the difference between two 

quantities that have been averaged across participants and across trials, the index of 

action tendencies is necessarily coarse. 

Psychological processes involved in decision making. Like any other decision 

making task in which participants have to choose quickly between alternative responses, AAT 

performance recruits basic cognitive processes such as the speed of information 

accumulation, bias, motor execution time, and response caution. In other tasks, these 

processes have been quantified using the diffusion model (Ratcliff, 1978; Wagenmakers, 

2009), one of the most prominent process models in experimental psychology and 

neuroscience. AAT data have not yet been analyzed using the diffusion model. It is therefore 

an open issue whether the model can provide an adequate account of the data. 

	
  
Summary. To sum up, the current data analysis strategies employed in the AAT literature 

suffer from substantial shortcomings stemming from (1) their need for normally distributed 

data, while RT distributions are often skewed; (2) the disregard of error trials which can 

result in loss of information; (3) the non-consideration of the speed-accuracy tradeoff, 

where faster responses are obtained in sacrifice of accuracy; (4) the computation of an 

approach-avoidance tendencies index that is relatively coarse, as its computation is typically 
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based on the collapsing of different RT distributions; (5) the non-consideration of within-

subjects uncertainty; and (6) the neglect of latent psychological processes involved in the 

AAT. 

	
  
Bayesian Hierarchical Diffusion Modeling 

	
  
	
  

This section outlines a statistical process model approach that aims to overcome the 

shortcomings discussed above. We first describe the diffusion model and then present the 

advantages of the hierarchical Bayesian framework that we use to estimate the model’s 

parameters. 

 

The Diffusion Model 

	
  
The Ratcliff diffusion model (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008; Smith & 

Ratcliff, in press; Wagenmakers, 2009) conceptualizes the decision process as the interplay 

between different psychological processes that are each represented by a separate model 

parameter. According to the model, every binary decision process starts at z, a parameter 

reflecting the a priori bias towards the upper or lower boundary (representing one or the 

other decision). The decision process itself consists of the gradual accumulation of noisy 

information, a process whose efficiency is reflected in drift rate v. High absolute drift rates 

generate decisions that are fast and accurate; slow absolute drift rates (i.e., drift rates near 

zero) generate decisions that are slow and error-prone. Information accumulation continues 

until an upper or lower boundary is reached and a decision is initiated. Boundary 

separation a represents response caution and hence quantifies the speed-accuracy tradeoff. 

High values of boundary separation result in accurate but long RTs and low values of 

boundary separation result in short but error-prone RTs. The final parameter, non-decision 

time Ter , captures everything that precedes or follows the decision process, such as stimulus 
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encoding and response execution (Luce, 1991). Although extensions of the diffusion model 

(Ratcliff & Tuerlinckx, 2002) account for across trial variability in drift rate, starting point, 

and non–decision time, we limit ourselves here to the four main parameters.1 

In sum, the major components of the diffusion model (see Figure 1) are: (1) drift rate 

v; (2) boundary separation a; (3) starting point z; and (4) non–decision time Ter. 

The diffusion model naturally accounts for a number of benchmark findings (Ratcliff, 

2002), including the right- skew of RT distributions, the speed-accuracy tradeoff, the linear 

relation between RT mean and RT standard deviation (Wagenmakers & Brown, 2007), the 

relative speed of errors as a function of bias, and the fact that the right-skew increases with 

difficulty. Because the model parameters are associated with specific cognitive processes, 

fitting the diffusion model to data allows for an informative decomposition of performance 

(e.g., Dutilh, Krypotos, & Wagenmakers, 2011; Leite & Ratcliff, 2011; Mulder, 

Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Ravenzwaaij, Dutilh, & Wagenmakers, 

2012). In sum, a diffusion model decomposition allows for a more detailed and informative 

summary of performance than can be achieved by most standard statistical analysis 

techniques for AATs. Of importance, variants of the diffusion model have recently led to 

increases in understanding regarding emotion effects (e.g., see Pe, Vandekerckhove, & 

Kuppens, 2013) and psychopathology (e.g., see Ho et al., 2014; Strauss et al., 2011; White, 

Ratcliff, Vasey, & McKoon, 2010b, 2010a). 

	
  
Bayesian hierarchical modeling 
	
  
	
  

As mentioned before, a common approach in the analysis of AATs is to collapse data 

across trials and participants, and to estimate the grand means for each combination of 

stimulus and response assignment. This nomothetic approach (Kristjansson, Kircher, & 
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Webb, 2007) assumes that the mean responses are valid representations of individuals’ 

scores, with any within-group differences treated as statistical noise. Consequently, 

individual differences are not taken sufficiently into account (Heathcote, Brown, & 

Mewhort, 2000; Ratcliff, 1979) even though these differences may be pronounced. On the 

other hand, the idiographic approach (Kristjansson et al., 2007) considers individual 

differences as systematic and reliable. In the idiographic approach, each participant is 

considered in isolation. With sparse data, however, this approach is prone to error (Efron 

& Morris, 1977). 

In between the “complete pooling” approach implicit in the averaging method and 

the “complete independence” approach implicit in per–participant analyses, lies a 

compromise solution known as hierarchical modeling (Rouder & Lu, 2005; Shiffrin, Lee, 

Kim, & Wagenmakers, 2008). This solution takes within-subject variability into account, 

while at the same time assuming that participants are similar to one another, with the 

degree of similarity estimated from the data (e.g., Shiffrin et al., 2008). Specifically, in 

hierarchical models, there are two kinds of parameters: (a) group-level parameters 

(monothetic patterns); and (b) individual-level parameters (idiographic patterns) that are 

constrained by the group-level parameters (Morey, Pratte, & Rouder, 2008; Nilsson, 

Rieskamp, & Wagenmakers, 2011). The group-level parameters capture the extent to which 

the participants are similar and strength can be borrowed across participants. For 

instance, assume that each participant i has a drift rate vi. Each individual drift rate may be 

assumed to be constrained by a group-level normal distribution with mean µv and variance 

σ2
v, that is, vi ~ N (µv , σ2

v). Note here, that in a hierarchical framework, the within–subject 

variability is taken into account, in contrast to common averaging techniques (see above). 

When participants are very similar to each other, σ2 è 0, and the hierarchical approach 

reduces to the nomothetic approach. When participants are highly dissimilar, σ2 >> 0, and the 
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hierarchical approach reduces to the idiographic approach. Thus, the hierarchical method 

tunes itself to the degree of similarity between participants and adjusts the parameter 

estimates accordingly. When participants are very similar, precise estimates can be 

obtained even with few trials per participant. This is of great benefit in situations where 

one has many participants but few trials per participant, as is the case in many 

applications in clinical psychology. 

In the following, we estimated the model parameters in a Bayesian manner. This 

means that parameters are given prior distributions that are then updated to posterior 

distributions. These distributions reflect the degree of belief or degree of certainty 

associated with their possible values. The Bayesian framework has several theoretical 

advantages over classical frequentist statistics (Dienes, 2011; Lee, 2011). In addition, 

hierarchical models (and possible extensions) are naturally accommodated within the 

Bayesian framework (Dyjas, Grasman, Wetzels, Maas, & Wagenmakers, 2012; Lee, 2011; 

Lee & Wagenmakers, 2013; Rouder & Lu, 2005; Wiecki, Sofer, & Frank, 2013). Nowadays, 

Bayesian estimation is relatively straightforward using numerical methods such as Markov 

chain Monte Carlo (MCMC; Lynch, 2007). 

In sum, the Bayesian hierarchical model produces posterior distributions for model 

parameters both on the individual level and on the group level. In general, sparse data 

procedures, typical in psychopathology research, suggest wide posterior distributions, 

reflecting high uncertainty in the parameter values. However, with many somewhat similar 

participants the group variance may be estimated to be low, and this encourages the 

borrowing of strength across participants, sharpening and shrinking the individual 

estimates towards the group mean (for a frequentist discussion of the advantages of 

shrinkage, see Efron & Morris, 1977). 
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All in all, the Bayesian hierarchical diffusion model decomposition: (a) does not assume 

normal RT distributions; (b) accounts for error trials and the speed-accuracy tradeoff; (c) 

allows for fine-grained assessment of approach-avoidance tendencies; (d) respects individual 

differences; and (e) estimates latent psychological processes involved in the AAT. Next, we 

fit our model to two experimental data sets.  

	
  
Model Application to Experimental Data 

	
  
	
  

We applied the Bayesian hierarchical diffusion model to the data of Experiment 1 of 

Krypotos et al. (2014) and Experiment 1 of Van Gucht et al. (2008). We have selected 

these data sets because they both have a limited number of trials and participants, typical 

for the experimental psychopathology literature. Furthermore, conditioned avoidance 

responses, tested in the first data set, are particularly relevant for the anxiety disorders 

literature, whereas approach responses, tested in the second data set, are of prime interest 

in addiction research. Both data sets are available on request. 

	
  
	
  
Experimental data set 1 (Krypotos et al., 2014) 
	
  

Description of experiment – Data set 1. Our participants (N= 32) first underwent a 

fear conditioning procedure during which a picture of a neutral stimulus (i.e., the Conditioned 

Stimulus or CS+; for instance a cube) was paired with an electric shock, whereas another 

neutral stimulus (CS−; for instance a cylinder), was never followed by an electric shock. Each 

CS was presented 8 times (16 times in total). Each trial lasted 8 s, with inter-trial intervals of 

15, 20, or 25 s, with a 20-s mean. In case of a CS+ trial, electric stimulation of 2 ms was 

delivered to the participant’s non-preferred hand, 7.5 s after stimulus onset.  
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Following the conditioning procedure, participants were instructed to move a virtual 

manikin quickly and accurately towards and away from the presented CSs. In each trial the 

manikin was presented on the top or bottom half of a black screen. After 1500 ms, a CS 

picture was presented on the other half of the screen. Then, participants could move 

the manikin up or down by pressing the ‘B’ or the ‘Y’ button, respectively.2    Each 

participant contributed 32 reaction times (RTs), divided equally across four categories: (a) 

Approach CS+ (incongruent); (b) Approach CS− (congruent); (c) Avoid CS+ (congruent); and 

(d) Avoid CS− (incongruent). We expected participants to be faster in the congruent trials 

(i.e., avoid the CS+ and approach the CS−) than in the incongruent trials (i.e., approach the 

CS+ and avoid the CS−). Our hypothesis stems from the observation that the CS+ stimulus 

evokes negative evaluations, since during the fear conditioning procedure it was paired with 

shock, and the CS− positive evaluations, since during the fear conditioning procedure it 

signaled safety (i.e., absence of shock). CS evaluations were also in line with this 

hypothesis (see Krypotos et al. 2014). 

Initial analyses – Data set 1. Repeating the original analyses for the sake of 

completeness, we computed median RTs for each individual and for each condition. The means 

of the individual medians are depicted in the top panel of Figure 2. We then performed a 2 

(Stimulus Type: CS+ vs. CS−) ×  2 (Required Response: approach vs. avoidance) repeated 

measures frequentist ANOVA with Stimulus Type and Required Response as within-subjects 

factors. 

Results showed a non-significant main effect of Stimulus Type, F (1, 31) = 1.34, p = .26, 

η2
p = .04, and a significant main effect of Required Response, F (1, 31) = 9.33, p = .01, η2

p = .23. 

Of importance, the Stimulus Type × Required Response interaction was significant, F (1, 31) = 

7.56, p = .01, η2
p = .20, indicating that participants were faster in approaching the CS− and 
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avoiding the CS+ than the reverse. 

Given that conventional significance tests overstate the evidence against the null 

hypothesis (Edwards, Lindman, & Savage, 1963; Sellke, Bayarri, & Berger, 2001; 

Wagenmakers, 2007), we also performed a Bayesian repeated measures ANOVA (Rouder, 

Morey, Speckman, & Province, 2012; Wetzels, Grasman, & Wagenmakers, 2012). The key 

outcome of this analysis is the Bayes factor (BF), a quantity that grades the decisiveness of 

the evidence that the data provide for one model versus another (Jeffreys, 1961). A BF of 10, 

for example, indicates that the data are 10 times more likely under one model than under 

the other. Here we compared a model that takes both the main effects and their interaction 

into account (i.e., the full model) to a model that includes only the main effects (i.e., the 

restricted model). The results showed that the data are almost 17 times (BF= 16.92) more 

likely under the full model than under the restricted model. This result is consistent with 

the frequentist ANOVA. 

General method – Data set 1. The major challenge in fitting the model to the 

data is that there are only eight observations per participant per condition. Confronted 

with such a sparse data set, traditional methods are simply unable to estimate the model 

parameters in any meaningful way. The Bayesian hierarchical implementation, however, 

borrows strength across participants through group-level structures, uses prior knowledge 

about plausible parameter values to restrict the parameter space, and produces posterior 

distributions to indicate the uncertainty about the parameters at hand. Nevertheless, 

there are limits on the degree to which a sparse data set can support the estimation of 

parameters in a relatively complex model. Hence we restricted the model in several ways. 

First, we assumed that performance differences across the four conditions were due to drift 

rate only. This assumption is based in part on the typical AAT trial structure in which 

participants have no advanced knowledge about the nature of the stimulus and the required 
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response approach versus avoidance). Second, we assumed a symmetric starting point, z = 

a/2, so that avoid and approach responses were equally attractive a priori. Finally, we did 

not allow parameters a, z, and Ter to vary across trials (e.g., Wagenmakers et al., 2007). 

Hence, our model is a measurement model in which we assumed a priori which 

parameters are allowed to differ across conditions. The goal of this measurement model is to 

offer a comprehensive and principled alternative to the less sophisticated measurement 

models that are currently in use. This approach is an example of “cognitive psychometrics” 

(Batchelder, 1998).  

We estimated, for each participant i, the posterior distributions of six different parameters: 

four drift rates (i.e., one per condition), boundary separation, and non-decision time. Since all 

participants contributed to all stimulus-response categories, we used a within-subjects model 

in which one arbitrary drift rate –here the one corresponding to the “Avoid CS−” condition in 

which the longest RTs were observed– was designated as the baseline and the other three drift 

rates were estimated as differences from that baseline. Choosing any other drift rate as 

baseline yields identical results. We used informative priors which reflect parameter values 

from a meta-analysis by Matzke and Wagenmakers (2009).3  

All observations for every participant were entered in our analysis. When using 

MCMC, it is important to ensure that the sampled values have converged from the random 

starting value to the posterior distribution. To assess convergence we ran three chains, each 

one of them consisting of 10,000 samples.3 Next, we assessed convergence by computing the 

R-hat (Gelman-Rubin) statistic, with values below 1.1 indicating successful convergence, 

and by visually inspecting the chains in order to see whether they resembled a “fat hairy 

caterpillar”. 

Following that, we assessed the quality of the model fit by first simulating data, based 
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on the model’s parameter estimations, and by then plotting the real data against the 

simulated data for the .1, .3, .5, and .9 RT quantiles for each stimulus by response 

condition.3  

We then defined a group-level “drift rate” AAT index as the difference in drift rate 

between the incongruent and congruent conditions. That is, we obtained a posterior 

distribution for the drift rate AAT index by using the group posterior distributions for the 

drift rate of each condition and by computing the final AAT index as follows: AATv = 

mean(Approach CS-
v, Avoid CS+

v) - mean(Approach CS+
v, Avoid CS-

v).4By defining the AAT 

index on the level of the latent drift rate process, we avoid ambiguity about how to average 

over RT distributions, we take both RT and accuracy into account, and we avoid 

contamination from external processes such as response caution and non–decision time. 

Posterior distributions – Data set 1. All R-hat values were below 1.1, indicating 

successful convergence for all chains. Furthermore, we visually inspected the chains and 

confirmed that they resembled a “fat hairy caterpillar”.5    The simulated data fit the real data 

quite well (See online Supplementary Material). 

The middle panel of Figure 2 provides density plots of the posterior distributions for 

the different drift rates.6    Note that the drift rates in the right panel (i.e., Approach CS−, 

Approach CS+ and Avoid CS+) are shown as differences with respect to the drift rate in 

the left panel (i.e., Approach CS−). Also note that larger v’s indicate faster information 

accumulation. The panel plots shows that the drift rate at the Approach CS− is much lower 

than the other three drift rates, which largely overlap with each other. 

We then computed the drift rate AAT index as AATv = mean(Approach CS−v, Avoid 

CS+v) - mean(Approach CS+v, Avoid CS−v) and plotted its posterior distribution (see bottom 

panel of Figure 2). Most of the posterior mass is positive, suggesting that participants 
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were indeed faster in avoiding the CS+ and approaching the CS− than the other way 

around.7 

Discussion – Data set 1 

The model fit results suggest that participants’ drift rate was the lowest in the Avoid CS− 

condition compared to the other three conditions, which were largely similar. In this 

particular data set the pattern of results echoes that of the initial and less sophisticated 

analyses, in which RTs were used as the dependent variable.  

 

Experimental data set 2 (Van Gucht et al., 2008) 

Description of experiment – Data set 2. In the previous data set, avoidance was 

the response of main interest. Here, we demonstrate that the model also performs well 

when approach is the chief reaction. Approach responses are of prime interest in the 

addiction literature (Eberl et al., 2013). For the present demonstration, we applied the 

model to the data of Experiment 1 in the study by Van Gucht et al. (2008). In that study, 

Van Gucht et al. (2008) induced an approach tendency towards initially neutral cues (i.e., 

serving trays) by pairing one tray with the consumption of a participant’s favorite chocolate 

(CS+) and another tray with no chocolate consumption (CS−). During the acquisition procedure, 

each CS+ or CS- tray was presented four times (8 times in total). At the center of each tray there 

was a piece of chocolate, wrapped in aluminum foil. On each trial participants were first asked 

to pay attention to the color of the tray (i.e., green or white) . Afterwards participants were 

asked to unwrap the piece of chocolate and smell it (for about 1 minute), and in case of a CS+ 

trial, to eat it. The inter-time intervals were fixed to 30 s. 

 In order to study whether craving tendencies persist after an extinction procedure 

(i.e., presentation of the CSs without any of them being followed by chocolate 
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consumption), Van Gucht et al. (2008) tested two groups. Group ABA (N = 16) performed 

the acquisition in context A (i.e., lights were turned on), extinction in context B (i.e., lights 

were turned off) and the test of approach tendencies in context A. The extinction phase 

entailed the unreinforced presentation (i.e., no chocolate consumption) of each CS for 8 

times (16 trials in total). Whether context A or B referred to lights on or off was 

counterbalanced across participants. Group AAA (N = 16) performed all phases of the 

experiment in the same context (i.e., lights were either on or off). As conditioned responses 

are context dependent (Bouton, 1993; Effting & Kindt, 2007; Vansteenwegen et al., 2005), 

Van Gucht et al. (2008) expected approach tendencies to be absent in the AAA group, as 

the AAT task was performed in the same context in which extinction took place, whereas 

in the ABA group, Van Gucht et al. (2008) expected action tendencies to be present as the 

AAT was performed in the same context in which acquisition took place, different from the 

extinction context. The sequence of events in the AAT was similar to that of the AAT used in 

the first experiment of Krypotos et al. (2014) with the exception that in the experiment of Van 

Gucht  et al. (2008), the CSs were presented 750 ms after the manikin’s onset. 

Initial analyses – Data set 2. Similar to the original analysis (Van Gucht et al., 

2008), trials with incorrect responses and response times longer than 3000 ms were excluded 

from consideration. Mean RTs were then computed for each stimulus-response assignment, 

for each participant. Of importance, Van Gucht et al. (2008) divided the trials into 

approach CS+ (including trials in which participants had to approach the CS+ and trials in 

which they had to avoid the CS−) and avoid CS+ (participants had to approach the CS− and 

avoid the CS+). A 2 (Group: AAA vs. ABA) × 2 (Response Assignment: Approach CS+ vs. 

Avoid CS+) frequentists repeated measures ANOVA with Group as a between-subjects 

factor and Response Assignment as a within-subjects factors showed a main effect of 

Response Assignment F (1, 30) = 21.21, p < 0.001, and a significant Group × Response 
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Assignment interaction, F (1, 30) = 7.77, p = 0.01, with participants in the ABA group 

approaching the CS+ faster than avoiding it, t(15) = −5.70, p < .001, and no statistically 

significant differences between the approach and avoidance of the CS+ for the AAA group, 

t(15) = −1.1, p = .28 (see top panel of Figure 3). 

We next performed a Bayesian ANOVA, comparing a model that includes both main 

effects and the interaction (i.e., the full model) to a model that contains only the main 

effects (i.e., the restricted model). This comparison yielded a Bayes factor of BF = 1.30. In 

Bayesian terms this is “anecdotal evidence” for the full model that includes the interaction 

– in other words, the data are almost as likely under the restricted model as they are under 

the full model (Wetzels, Ravenzwaaij, & Wagenmakers, in press). In light of this result, we 

investigated the nature of the interaction of interest using separate Bayesian t-tests (Rouder, 

Speckman, Sun, Morey, & Iverson, 2009; Wetzels, Raaijmakers, Jakab, & Wagenmakers, 

2009), comparing approach CS+ and avoid CS+ trials for each group separately. Results 

showed that although no effect of Response Assignment emerged for the AAA group (i.e., BF 

= .54), decisive evidence was obtained for the ABA group (i.e., BF = 501.82) indicating that 

participants were indeed faster to approach the CS+ than to avoid it. These results are in 

line with those obtained from the frequentist analysis. 

General method – Data set 2. For consistency with our previous model fit, we 

did not separate the trials into approach and avoid CS+ as in the analysis of Van Gucht et 

al. (2008). Instead, different drift rates (v) were computed for each stimulus (CS+ vs. CS−) 

by response (Approach vs. Avoidance) combination. Note that we fitted the model to the data 

of each group (i.e., AAA and ABA) separately. For applying the model to each group, we used 

as a baseline the approach CS+ condition, in which the largest difference in RTs was 

observed compared to the other three conditions; all other drift rates were computed in 
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reference to this baseline. Choosing any other drift rate as baseline yields identical results. 

Different Ter and a parameters were also computed for each group separately and the 

parameter z was again fixed to the middle of the two boundaries (i.e., a/2). Convergence 

and model fit were evaluated as they were for the analysis of the first data set.3  We also 

computed the AAT index, similarly to how the AAT index was computed for the 

previous data set,  which was defined as the difference between the drift rate for 

congruent and incongruent trials, i.e., A A T v  =  mean (Approach CS+
v, Avoid CS-

v) – 

mean(Approach CS-
v, Avoid CS+

v).  

Posterior distribution – Data set 2. All R-hat values were below 1.1, indicating 

successful convergence for all chains. Furthermore, all chains were visually inspected and 

they each resembled a “fat hairy caterpillar”.5    Lastly, after simulating data in a similar 

manner as was done for data set 1, we plotted the real data against the simulated data for 

each group separately. Figures 9 and 10 of the online Supplementary Material show that the 

model predictions match the real data quite well. 

The middle panels of Figure 3 provide density plots of the posterior distributions for 

the different drift rates for the AAA group; the top panel of Figure 4 does the same for the 

ABA group.5    Note that in both cases, the drift rates in the left panel (i.e., Approach CS−, 

Avoid CS− and Avoid CS+) are shown as differences with respect to the drift rate in the 

right panel (i.e., Approach CS+). Larger v’s indicate faster information accumulation. The 

panel plot shows that the drift rate for the Approach CS+ trials is much higher than the 

other three drift rates, which largely overlap with each other. However, those differences 

seem to be more pronounced for the ABA group than for the AAA group. Regarding the 

AAT indices, the AAT index for the ABA group (see bottom panel of Figure 4) is 

positioned more to the right, indicating stronger approach tendencies, compared to the AAT 
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index of the AAA group (see bottom panel of Figure 3). In order to quantify this 

difference, we obtained the posterior distribution for the differences in the AAT index 

between the ABA group and the AAA group, that is ΔAAT = AAT(ABA) – AAT(AAA). 

Then, we considered two order-estimated distinct hypotheses. The first hypothesis, H>0, 

holds that the ΔAAT is positive and the second hypothesis, H<0, holds that the ΔAAT is 

negative. In order to quantify the support that the data provide for H>0 versus H<0, we 

can calculate a Bayes factor based on the posterior mean of ΔAAT that is greater than 

zero. The resulting Bayes factor is equal to 31.79 and the credible interval ranged from  

-.012 to 0.83 (See bottom panel of Figure 4).  These results support the hypothesis  that 

indeed, the ABA group accumulated information faster than the AAA group. As before, 

we note that these results are suggestive only, with a stricter test requiring a Bayes factor 

hypothesis test that includes a point null hypothesis. The development of such test is the 

topic of current investigation. 

Discussion – Data set 2 

The results of the second data set show the expected patterns; participants exhibited higher 

speed of information accumulation in the approach CS+ condition than the other conditions. 

These differences were more pronounced in the ABA group, with larger differences between the 

different conditions, than in the AAA group. Nevertheless, the model was able to pick up 

differences between the various conditions for the AAA group, even when the main analyses 

did not seem to be able to detect any differences. 

 

Concluding Comments 
	
  

The goal of the present paper was to introduce a hierarchical Bayesian drift diffusion model 

decomposition of response time tasks. To illustrate the power of the approach, we have 
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applied our model to the data of two studies that used the AAT, a commonly used task 

across experimental psychopathology, emotion research and social psychology, in which 

either avoidance (data set 1) or approach (data set 2) was the response of main interest. The 

descriptive results of data set 1 indicate that participants accumulated information slower 

when they had to avoid the CS− compared to the other three, largely similar, conditions. 

For data set 2, results showed that participants accumulated information faster when they 

had to approach the CS+ than for any of the other conditions, which were largely similar as 

well. Furthermore, as was shown by the AAT drift rate indices, the between-conditions 

differences in data set 2 were more pronounced in the ABA than in the AAA group. 

 The presented model has a number of advantages over data analysis techniques 

commonly used for RT tasks (see above). First, the entire RT distributions for correct as 

well as incorrect responses are included within a single inferential framework. 

This can lead to more complete performance predictions than when considering merely the 

central tendencies of RTs for speed and the proportion of correct responses for accuracy. 

Second, the model accounts for the positive relationship between speed and accuracy 

(Schouten & Bekker, 1967), a relationship that although always present in RT tasks, is 

usually not considered in commonly applied analysis techniques. 

Furthermore, our approach inherits the advantages from hierarchical modeling 

(Rouder & Lu, 2005; Shiffrin et al., 2008) and from Bayesian inference (Lee, 2011). First, 

hierarchical modeling features parameter estimation at the group level and at the level of 

the individual; the group-level parameters constrain the individual-level parameters, and the 

individual-level parameters inform the group-level parameters. Such reciprocal relations 

between the group and the individual parameters result in more complete and accurate 

predictions that can be applied both to particular individuals and to the population 

(Rouder & Lu, 2005). In addition, in Bayesian inference, parameter estimation is based 
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both on the actual data as well as the parameter priors; consequently, meaningful results 

can be obtained even when only a limited number of trials per participant is available. 

These model features provide concrete advantages for psychologists, especially when dealing 

with clinical populations where the number of participants and the number of trials per 

individual are typically small and individual differences are at least as relevant as group-

level performance. 

Lastly, our model can shed light on the cognitive processes (e.g., response caution or 

speed of information accumulation) involved in RT decision making tasks (Wagenmakers, 

2009) and as such can give a detailed description of decision making performance. This 

model’s ability enables researchers to make more pluralistic and precise predictions as to 

which parameters will be affected by different experimental manipulations, enabling a deeper 

investigation of decision-making processes.  

Here, we fit our model to two experimental data sets in which either threatening 

(Experiment 1) or appetitive (Experiment 2) conditioned stimuli were used. Our model 

could just as well be applied to data sets in which non-conditioned stimuli are considered 

(e.g., data on individuals with substance abuse disorder, Wiers et al., 2011). An advantage 

of using stimuli with pre-existing hedonic charge is that more trials per participant can be 

collected, something that should allow tests of models in which multiple parameters per 

condition are allowed to vary (Lewandowsky & Farrell, 2010). 

Our measurement model was based on specific assumptions (i.e., any differences 

between conditions is captured by differences in drift rate rather than boundary separation, 

bias or non-decision time) that were based on specific characteristics of trial order and 

instructions provided in most AAT experiments. Modifications to the AAT procedure could 

warrant the use of alternative measurement models. For example, an experiment in which 
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participants first see the CSs and then another irrelevant stimulus (e.g., an arrow) which 

indicates whether they have to approach or avoid each stimulus, may call for  a model in which 

a-priori bias rather than information accumulation is allowed to differ per condition. 

We have used the AAT as an example task for which our model can be used. Similar 

analyses could easily be applied to any other response time task (e.g. emotional Stroop 

task, dot probe task, IAT). Of note, the application of Bayesian hierarchical models has 

increased our understanding of other types of emotion tasks as well (e.g., emotional flanker 

task, Pe et al., 2013; see also Vandekerckhove, Tuerlinckx, & Lee, 2011). We believe that 

the shift from commonly-used techniques (e.g., ANOVAs) to cognitive modeling will allow a 

richer and more accurate inference on experimental data sets (Lee, 2011; Wiecki, Poland & 

Frank, in press). 

The computation of parameters in a hierarchical manner also enables a fuller 

investigation of individual differences, even when dealing with sparse data sets. To date, 

individual differences in response time tasks are typically explored by either the computation 

of different response time indices for separate groups (e.g., Rinck & Becker, 2007; Wiers et 

al., 2009) or the use of correlations between some RT index and particular individual 

differences factors (Klein et al., 2011). Parameter extraction in terms of our model allows the 

testing of individual differences not only in terms of the RT index but also of the 

psychological parameters involved in decision-making. In the study by Rinck and Becker 

(2007), for example, the researchers could have fit a standard regression model to the 

relation between the AAT index and spider fear, rather than separating the participants into 

groups with high and low spider phobia.  

Despite its advantages, the presented analytic approach also has limitations. For 

example, our inference was based solely on the shape of the posterior distribution and did 
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not feature a statistical null hypothesis test (e.g., see Gelman & Hill, 2007 for a similar 

approach in Bayesian regression modeling). We present our paper as a first detailed 

demonstration of the presented analytic technique, worthy of further research and 

elaboration. We also acknowledge that interested researchers face a start-up cost in getting to 

master the tools for applying diffusion models and performing hierarchical Bayesian parameter 

estimation. However, the wealth of available resources on cognitive modeling modeling (e.g., 

Heathcote, Brown, & Wagenmakers, in press; and online Supplementary material) keeps such a 

cost to a minimum. Furthermore, we believe that the advantages of these novel analyses are well 

worth the effort. 

In sum, we presented a Bayesian hierarchical psychological process model for 

analyzing RT data that overcomes the pitfalls of previous analysis techniques. With the 

suggested model, researchers should be able to draw more robust and veridical conclusions from 

their data as the statistical results (1) take into account the uncertainty of each individual’s 

estimate and (2) respect the speed-accumulation trade off, and (3) are based on estimates of the 

underlying decision making processes. The practical applicability of the model was explored 

by accounting for findings from two real-life AAT data sets. As more and more studies use 

RT tasks, we hope that the present approach will help researchers in the study of decision 

making under conditions of speeded responding. 
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Footnotes 
	
  

	
  
1 As will be apparent later, the data sets under consideration are sparse, with no more than 8 trials in each of 

four conditions, and error rates are low. In such situations –representative of real-world data sets– adding more 

parameters to account for subtle effects is contraindicated. 

2 In the original experiment, participants were separated into two groups with half of the participants 

responding to a relevant stimulus feature (i.e., stimulus shape) and the other half to an irrelevant stimulus feature 

(i.e., the orientation of the surrounding frame). However, since no differences were found between the groups, 

we collapsed data across groups. 

3 See online Supplementary Material for more details on our modeling strategy and accompanying plots. 

4	
  We chose the specific formula over alternatives ones (e.g., see AAT computation strategies B and C) as comparing 

congruent to incongruent trials is closer to how performance is evaluated in other stimulus compatibility tasks, such as 

the Simon task (see De Houwer et al., 2001 and the supplementary material of Krypotos et al., 2013 for more details). 

5  See online Supplementary Material for the relevant plots of all group parameters. 

6 As we were mainly concerned with drift rates, we included the posterior distributions of the a and the 

Ter parameters in the online Supplementary Material. 

7 This result is suggestive only. A stricter test requires a Bayesian test using Bayes factors (Jeffreys, 1961; Lee & 

Wagenmakers, 2013; Rouder & Morey, 2012). The development of default Bayes factor hypothesis tests for hierarchical 

models is the topic of current statistical investigation. 
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Table 1 
	
  
Example mean RTs (in msec) for each stimulus (i.e., positive vs. negative) by response (i.e., 

approach vs. avoidance) combination of our hypothetical in-text experiment. 
	
  

	
  

Approach 

Positive 

Valence 

Picture 

Approach 

Negative 

Valence 

Picture 

Avoid 

Positive 

Valence 

Picture 

Avoid 

Negative 

Valence 

Picture 

	
  

747.20 1054.27 777.08 751.07
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Figure Captions 
 
 

Figure 1. Graphical representation of the diffusion model (Ratcliff & McKoon, 2008). 

Following stimulus presentation (not shown), noisy information is accumulated until 

reaching the upper boundary –associated with the correct response– or the lower boundary 

–associated with the incorrect response–, following which a response is initiated. Observed 

RTs are the sum result of decision time and non-decision time: Decision time reflects the 

duration of the information accumulation process, whereas non-decision time reflects the 

duration of nonspecific processes such as stimulus encoding and response execution. 

Figure 2. Top panel: Average mean RT in ms for Experiment 1 of Krypotos et al. (2014). 

Error percentages for each condition are shown on top of each bar. Error bars represent 

standard errors of the mean. Middle panel: Kernel density estimates of the posterior 

distributions for the drift rate parameters of the first data set (Krypotos et al., 2014). Note 

that the distributions refer to the group parameters. The left panel shows the drift rate 

distribution for the Avoid CS− condition. The right panel shows the drift rate distributions 

for the Approach CS−, Approach CS+ and Avoid CS+ conditions, all relative to the Avoid 

CS− condition. From the results it is apparent that (a) participants exhibited the lowest 

drift rate in the Avoid CS− condition, compared to the other three conditions and (b) that 

the Approach CS−, Approach CS+ and Avoid CS+ conditions highly overlap with each other. 

Bottom Panel: Kernel density estimate of the posterior distribution for the g r o u p  drift 

rate AAT index for data set 1. The posterior mass is mostly positive, suggesting that, as 

expected, participants accumulated information faster on congruent compared to 

incongruent trials. 

Figure 3. Top panel: Mean RTs in ms for the AAA (left panel) and ABA (right panel) 

group of the first experiment of Van Gucht et al. (2008). Error percentages for each 

condition are shown on top of each bar. Error bars represent standard errors of the means. 

Middle panel: Kernel density estimates of the posterior distributions for the drift rate 

parameters for the AAA group of the second data set (Van Gucht et al., 2008). All 
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distributions refer to the group parameters. The left panel shows the drift rate distribution 

for the Approach CS+ condition. The right panel shows the drift rate distributions for the 

Approach CS−, Avoid CS− and Avoid CS+ conditions, all relative to the Approach CS+ 

condition. From the results it is apparent that (a) participants exhibited higher drift rate 

in the Approach CS+compared to the other three conditions and (b) that the Approach 

CS−, Avoid CS− and Avoid CS+ conditions highly overlap with each other. Bottom panel: 

Kernel density estimate of the posterior distribution of the g r o u p  drift rate AAT index for 

the AAA group of data set 2. The posterior mass is mostly positive, suggesting that, as 

expected, participants accumulated information faster on congruent compared to 

incongruent trials. 

Figure 4. Top panel: Kernel density estimates of the posterior distributions for the drift 

rate parameters for the ABA group of the second data set (Van Gucht et al., 2008), with 

results resembling those of the AAA group. The left panel shows the drift rate distribution 

for the Approach CS+ condition. The right panel shows the drift rate distributions for the 

Approach CS−, Avoid CS− and Avoid CS+ conditions, all relative to the Approach CS+ 

condition. Note that all depicted distributions refer to the group variables. From the 

results it is apparent that (a) participants exhibited higher drift rate in the Approach CS+ 

compared to the other three conditions and (b) that the Approach CS−, Avoid CS− and 

Avoid CS+ conditions highly overlap with each other. Middle panel: The distribution of 

the group drift rate AAT index for the ABA group of data set 2. The posterior mass is 

mostly positive, suggesting that, as expected, participants accumulated information faster 

on congruent compared to incongruent trials. In comparison to the AAT index of group 

AAA, this density is positioned more to the right, indicating stronger relative approach 

tendencies. Bottom panel: The posterior kernel estimate of the posterior distribution 
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regarding the differences in AAT indices between the AAA and the ABA groups. The greyed 

area depicts the values above zero.  
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