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Using Standard NML and the Bayes Factor with Jeffreys’ Prior

In the following, we show that the two qualitative differences also emerge in

a comparison of standard NML with the Bayes factor using Jeffreys’ prior,

which are known to result in asymptotically similar results. Note that Jef-

freys’ prior should in general not be used for model selection (Jeffreys, 1961,

p. 251). However, in order to enable a comparison to standard NML, we will

use it for the purpose of illustration.

For the Bayes factor, the uniform prior on the binomial rate θ is replaced

by Jeffreys’ prior,

p(θ | M) ∝ |I(θ) |−1= θ−1/2(1− θ)−1/2, (1)

which gives the beta distribution with parameters a = 1/2 and b = 1/2 for

the full model M1. For the order-constrained model M0 with θ ≤ z, the
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density has to be normalized accordingly,

p(θ | M0) =
θ−1/2(1− θ)−1/2∫ z

0
θ−1/2(1− θ)−1/2 dθ

. (2)

Since the prior distributions are proportional on the interval θ ≤ z, the Bayes

factor can be computed as the ratio of posterior-to-prior mass as shown in

the main text.

The luckiness NML, defined for a model Mi as

LNMLi =
p(y | θ̂Ly,i) exp(−a(θ̂Ly,i))∫

X p(x | θ̂
L
x,i) exp(−a(θ̂Lx,i)) dx

, (3)

simplifies to the standard NML by using a constant luckiness function a(θ) =

1 (Grünwald, 2007, p. 313). Similarly as in the main text, the normalizing

integral of the NML distribution can simply be computed by summing the

maximum likelihoods across the whole data space. The following figures

show that both of the two qualitative differences also emerge in a comparison

between standard NML and the Bayes factor based on Jeffreys’ prior.
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Figure 1: In contrast to the Bayes factor, NML model selection is independent
of the observed data if the order constraint is satisfied, as shown by constant
model weights w0 in the range of θ̂y,1 ≤ z. The boundary z is shown as a
vertical, dashed line. For N = 20, dots for discrete observations are omitted.
Weights that exceed the horizontal line (w0 = 0.5) indicate a preference for
the constrained model.
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Figure 2: Convergence of standard NML and the Bayes factor with Jeffreys’
prior to the maximum model weight in favor of the order constraint (i.e.,
max(BF)). The depicted Bayes factors are based on data resulting in different
ML estimates (e.g., θ̂y,1 = 0.9z for all N).
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Figure 3: Black dots represent possible data for which NML prefers the order-
constrained model, whereas the matching Bayes factor with Jeffreys’ prior
favors the full binomial model. The gray area shows divergence in model
preference and is bounded to the left and the right by data for which the
Bayes factor and NML agree which model to prefer.
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