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Abstract

We compared Bayes factors to normalized maximum likelihood for the simple

case of selecting between an order-constrained versus a full binomial model.

This comparison revealed two qualitative differences in testing order con-

straints regarding data dependence and model preference.
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1. Model Selection with Bayes Factors and Normalized Maximum

Likelihood

Although all model selection methods address the inevitable trade-off be-

tween goodness-of-fit and complexity, the manner in which they measure

and penalize model complexity can differ substantially. In popular informa-

tion criteria such as AIC or BIC, model complexity is measured solely by

the number of free parameters. Alternative approaches reflect a more subtle

view on model complexity and consider –explicitly or implicitly– not only

the dimensionality of a model, but also order constraints on parameters and

their functional form. Here we compare two model comparison methods that

are based on very different statistical philosophies: Bayes factors for belief

revision and normalized maximum likelihood for data compression.

The first method under consideration, the Bayes factor, is defined as the

ratio of two marginal likelihoods (Kass and Raftery, 1995):

B01 =
p(y | M0)

p(y | M1)
, (1)

where the marginalization occurs over the prior distribution, p(y | Mi) =∫
Θ
p(y | θ,Mi)p(θ | Mi) dθ. Complex models make many predictions; by av-

eraging the adequacy of these predictions for the observed data over the prior,

the Bayes factor automatically and implicitly penalizes for model complex-

ity. An order constraint results in a larger marginal probability if it reduces

the parameter space to areas of high likelihood. From the perspective of

belief revision, Bayes factors measure the extent to which the data mandate
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a change from prior to posterior model odds. As such, Bayes factors rep-

resent “the standard Bayesian solution to the hypothesis testing and model

selection problems” (Lewis and Raftery, 1997, p. 648).

The second method under consideration, normalized maximum likelihood,

is an instantiation of the minimum description length (MDL) principle (Ris-

sanen, 1978; Grünwald, 2007). According to MDL, a statistical model may

be interpreted as a method to compress data. If a model captures structural

patterns in a data set, it can be used for compressing that data set, resulting

in a shorter code length. However, the model itself also has to be encoded,

thereby inducing a premium on parsimony. The solution to the problem of

finding the optimal encoding is to select the model with the largest normal-

ized maximum likelihood (NML; Rissanen, 2001),

NMLi =
p(y | θ̂y,i)∫

X p(x | θ̂x,i) dx
, (2)

where θ̂y,i is the maximum likelihood (ML) estimator for data y and model

Mi. The normalizing integral in (2) ranges over the entire sample space X ;

hence, NML measures complexity explicitly, by integrating over the sample

space, and models are punished to the extent that they are able to provide a

good fit to a wide range of possible observations. Adding order constraints

to a model reduces the fit in some areas of the data space and thereby results

in a smaller penalty term.

Often, the normalizing integral in (2) is not defined. As a solution, the

more general luckiness NML (LNML; Grünwald, 2007, p. 309) was devel-

oped, in which the likelihood function p(y | θ) in (2) is replaced by the
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weighted likelihood

pL(y | θ) = p(y | θ)e−a(θ), (3)

where a(θ) is a continuous luckiness function. This function specifies sub-

spaces of the parameter space where model selection by means of LNML will

be more efficient (i.e., one might ‘get lucky’ in compressing the data). Note

that LNML reduces to the standard NML if a constant, nonzero luckiness

function a(θ) = c is used.

Model selection by NML is asymptotically indistinguishable from model

selection by Bayes factors with Jeffreys’ prior (Rissanen, 1996). Moreover,

with the introduction of LNML, it is possible to define luckiness functions

for LNML that match the priors of Bayes factors and will yield identical

asymptotic results (Grünwald, 2007, p. 313). For some statistical models

such as one-dimensional Gamma or Gaussian models, multiple regression,

and Gaussian process models, the two methods yield identical results for all

sample sizes (Bartlett et al., 2013; Kakade et al., 2006).

However, the philosophy that underlies the two approaches is markedly

different. Whereas MDL aims at data compression, the Bayes factor is con-

cerned with belief revision. Moreover, in LNML, the complexity of a model is

defined as an explicit value (as an integral over the sample space), indepen-

dent of the data set under consideration. In contrast, Bayes factors consider

complexity implicitly by integrating the adequacy of a model’s predictions

for the observed data across the parameter space, weighted by the prior.

Here, we show how these general differences between Bayes factors and

NML are reflected in two specific qualitative differences when testing order

constraints. Insights about the way how both methods account for order
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constraints are important because many information criteria cannot be used

for this kind of problem. Specifically, we provide an existence proof by con-

sidering a simple test for an order constraint on a binomial rate parameter.

2. Example: Evaluating an Order Constraint for a Binomial Rate

Parameter

Under the full model M1, N binary observations are assumed to be bi-

nomially distributed with rate parameter θ, that is, y ∼ Bin(N, θ). The

competing model M0 has the additional order constraint θ ≤ z for a fixed

value z ∈ (0, 1). Note that both models feature a single free parameter, ne-

cessitating the use of a model comparison approach that measures complexity

by more than just the number of free parameters.

2.1. Bayes Factor

We assign θ a uniform prior under both modelsM0 andM1. Because the

priors for θ under both models are proportional for θ ≤ z, the Bayes factor

in favor of the constraint can be computed as the ratio of posterior to prior

mass of the full model M1 over the range θ ∈ [0, z] (Klugkist and Hoijtink,

2007):

B01 =

∫ z
0
p(θ | y,M1) dθ∫ z

0
p(θ | M1) dθ

(4)

=
1

zBe(y + 1, N − y + 1)

∫ z

0

θy(1− θ)N−y dθ, (5)

where Be(a,b) denotes the beta function. With equal prior odds, the posterior

model probability in favor of the constrained model is

wB
0 =

B01

1 + B01

. (6)
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2.2. Luckiness Normalized Maximum Likelihood

According to Grünwald (2007, p. 313), LNML with the luckiness function

a(θ) is asymptotically identical to the Bayes factor with prior p(θ | M) if

p(θ | M) ∝
√

det I(θ)e−a(θ), (7)

where I(θ) is the Fisher information. For the two binomial models under

scrutiny, I(θ) = θ−1(1− θ)−1 and hence the luckiness function

a(θ) = − ln θ1/2(1− θ)1/2 (8)

matches the uniform prior in (5) for both models.

For our simple scenario, the discrete sample space X can easily be enu-

merated to compute the LNML normalizing integral∫
X
p(x | θ̂Lx,i) exp(−a(θ̂Lx,i)) dx. (9)

Specifically, the LNML normalizing integral equals the sum of the weighted

likelihood values for all possible data sets in X . The estimator θ̂Ly,1 of the full

model maximizes the luckiness-weighted likelihood pL(y | θ),

θ̂Ly,1 = arg max
θ

[θy+1/2(1− θ)n−y+1/2]

=
y + 1/2

n+ 1
, (10)

and is identical to that of the constrained model if θ̂Ly,1 ≤ z. Otherwise, the

order constraint is violated and θ̂Ly,0 = z.

As a measure of the degree to which LNML prefers a model over its

competitors, the probability of model i being the best model at hand can be

computed using LNML model weights,

wL
i =

LNMLi∑
j LNMLj

. (11)
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The model weights wL
i are conditional on the data and are analogous to pos-

terior model probabilities. Therefore, they provide a way to directly compare

model preference between Bayes factors and LNML. Note that the two qual-

itative differences emerge for both LNML and standard NML.1

3. Results: Qualitative Differences Between Bayes Factors and

LNML

3.1. Data Dependence

If the estimator of the full modelM1 satisfies the order constraint ofM0

(i.e., θ̂Ly,1 ≤ z), the numerator pL(y | θ̂Ly,i) of LNML in (2) is identical for both

models. In this situation, LNML model selection no longer depends on the

observed data y, since

wL
0 =

∫
X p

L(x | θ̂Lx,1,M1) dx∫
X p

L(x | θ̂Lx,0,M0) dx+
∫
X p

L(x | θ̂Lx,1,M1) dx
. (12)

Note that this result holds for testing order constraints in general and is

not restricted to the binomial model. Figure 1 shows how the model weight

wL
0 changes depending on the observed data. The data independence of

LNML results in a constant model weight whenever θ̂Ly,1 ≤ z. In contrast,

model selection by the Bayes factor is always sensitive to the observed data,

including data with θ̂Ly,1 ≤ z. In such cases, the more the constraint is

satisfied, the larger the Bayes factor in favor of the restriction becomes.

The data dependence of the Bayes factor results in different convergence

rates to the maximum possible weight in favor of the order constraint. For

1The supplements show the comparison between standard NML and the asymptotically

identical Bayes factor based on Jeffreys’ prior.
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Figure 1: In contrast to the Bayes factor, LNML model selection is independent of the

observed data if the order constraint is satisfied, as shown by constant model weights

w0 in the range of θ̂y,1 ≤ z. The boundary z is shown as a vertical, dashed line. For

N = 20, dots for discrete observations are omitted. Weights that exceed the horizontal

line (w0 = 0.5) indicate a preference for the constrained model.

the Bayes factor, it follows from (4) that under uniform priors on θ,

zB01 =

∫ z

0

p(θ | y,M1) dθ < 1, (13)

and thus, that B01 < 1/z. Accordingly, the maximum posterior probability
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in favor of the order constraint is wB
0 = 1/(1 + z). Given that the constraint

holds, the Bayes factor will converge to this model weight. However, Figure

2 shows that the speed of convergence to this maximum depends on the

exact data. For instance, if θ̂y,1 = .9z, larger samples are required to obtain

evidence in favor of the order constraint compared to less ambiguous data

with θ̂y,1 = .6z. Because of the matching luckiness function a(θ) in (8),

LNML converges to the same maximum model weight. However, if the order

constraint is satisfied, the speed of convergence does not depend on the exact

data. For unambiguous data, LNML might therefore require larger samples

to support the order constraint than the Bayes factor.
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Figure 2: In contrast to LNML, the convergence rate of the Bayes factor to the maximum

model weight in favor of the order constraint depends on the exact data if θ̂y,1 ≤ z. The

two Bayes factors shown correspond to data resulting in ML estimates of θ̂y,1 = 0.6z and

θ̂y,1 = 0.9z for all N .
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In sum, whenever the estimator for the constrained model equals that of

the full model (i.e., the order constraint is satisfied), LNML no longer depends

on the observed data. In contrast, the Bayes factor remains sensitive to the

observed data.

3.2. Model Preference

Figure 3 shows data for which the Bayes factor and LNML prefer a differ-

ent model. In these cases, LNML selects the constrained model, whereas the

Bayes factor based on uniform priors prefers the full model. For a boundary

of z = 0.8, for instance, the Bayes factor sometimes prefers the full model

even though the ML estimator satisfies the order constraint. This occurs

when the posterior for θ underM1 has less mass over the range θ ≤ .8 than

the prior for θ underM1 (cf. Eq. 5). Figure 4 illustrates this counterintuitive

result.

The proportion of possible data sets with diverging results increases with

z. For example, with N = 20 and z = 0.2, only 5% of possible data sets lead

to diverging model preferences, increasing to 10% for z = 0.5 and 15% for

z = 0.8. However, for larger sample sizes, the differences in model preference

between Bayes factors and LNML decrease; for example, when N = 1000,

the proportions of critical data sets fall to 1.2%, 1.8%, and 1.9%, respectively.

Note that in all of these critical cases, the model weights of both methods only

show weak preferences for or against the order constraint (i.e., all wL0 < 0.77

and all wB0 > 0.16). Therefore, this qualitative difference might only have

minor consequences for model selection in practice.

In sum, for most data sets both LNML and the Bayes factor will prefer

the same model even in small samples. However, for ambiguous data where
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Figure 3: Black dots represent possible data for which LNML prefers the order-constrained

model, whereas the Bayes factor favors the full binomial model. The gray area shows

divergence in model preference and is bounded to the left and the right by data for which

the Bayes factor and LNML agree which model to prefer.

the ML estimator is near the order constraint, LNML and the Bayes factor

may prefer different models.

4. Discussion

We identified two qualitative differences between Bayes factors and LNML

in testing order constraints, which also apply to standard NML as a special

case. First, if the order constraint is satisfied, LNML is independent of the

observed data, whereas the Bayes factor remains dependent on the observed

data. This implies that the speed of evidence accumulation in favor of an

order constraint is constant for LNML, but depends on how well the con-
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Figure 4: The Bayes factor can prefer the unconstrained model even though the order

constraint θ ≤ z is satisfied by the ML estimator (N = 25, y = 19). B01 is computed as

the ratio of posterior mass (dark gray) to prior mass (light gray) on the order-restricted

range [0, z].

straint is satisfied for the Bayes factor. Second, in some cases, the Bayes

factor may favor the full model while LNML prefers the constrained model.

Whereas the data independence of LNML holds for tests of order constraints

in general (cf. Eq. 12), differences in model preference might depend on the

exact model. However, we expect that preferences are more likely to differ

close to the boundary and decrease for larger samples, similarly as for the

binomial model.

One common advantage of Bayes factors and NML concerns their ability

to take order constraints into consideration, contrary to model selection tools

such as AIC or BIC. Although several authors have stressed the similarities

between Bayes factors and NML (e.g., Grünwald, 2007; Bartlett et al., 2013;

Kakade et al., 2006), a detailed study of order-constrained inference shows
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that what is good for belief revision (Bayes) is not necessarily good for data

compression (NML).

Bartlett, P., Grünwald, P., Harremoës, P., Hedayati, F., Kotlowski, W., 2013.

Horizon-independent optimal prediction with log-loss in exponential fam-

ilies. JMLR: Workshop and Conference Proceedings 30, 639–661.

Grünwald, P., 2007. The Minimum Description Length Principle. MIT Press,

Cambridge, MA.

Kakade, S. M., Seeger, M. W., Foster, D. P., 2006. Worst-case bounds for

Gaussian process models. In: Weiss, Y., Schölkopf, B., Platt, J. (Eds.),

Advances in Neural Information Processing Systems 18. MIT Press, Cam-

bridge, MA, pp. 619–626.

Kass, R. E., Raftery, A. E., 1995. Bayes factors. Journal of the American

Statistical Association 90, 773–795.

Klugkist, I., Hoijtink, H., 2007. The Bayes factor for inequality and about

equality constrained models. Computational Statistics & Data Analysis

51, 6367–6379.

Lewis, S. M., Raftery, A. E., 1997. Estimating Bayes factors via posterior

simulation with the Laplace–Metropolis estimator. Journal of the Ameri-

can Statistical Association 92, 648–655.

Rissanen, J., 1978. Modeling by shortest data description. Automatica 14,

465–471.

13



Rissanen, J., 1996. Fisher information and stochastic complexity. IEEE

Transactions on Information Theory 42, 40–47.

Rissanen, J., 2001. Strong optimality of the normalized ML models as uni-

versal codes and information in data. IEEE Transactions on Information

Theory 47, 1712–1717.

14


