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Abstract Cognitive modeling can provide important insights into the underlying
causes of behavior, but the validity of those insights rests on careful model devel-
opment and checking. We provide guidelines on five important aspects of the prac-
tice of cognitive modeling: parameter recovery, testing selective influence of exper-
imental manipulations on model parameters, quantifying uncertainty in parameter
estimates, testing and displaying model fit, and selecting among different model
parameterizations and types of models. Each aspect is illustrated with examples.

1 Introduction

One of the central challenges for the study of the human mind is that cognitive
processes cannot be directly observed. For example, most cognitive scientists feel
confident that people can shift their attention, retrieve episodes from memory, and
accumulate sensory information over time; unfortunately, these processes are latent
and can only be measured indirectly, through their impact on overt behavior, such
as task performance.

Another challenge, one that exacerbates the first, is that task performance is often
the end result of an unknown combination of several different cognitive processes.
Consider the task of deciding quickly whether an almost vertical line tilts slightly
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to the right or to the left. Even in this rather elementary task it is likely that at
least four different factors interact to determine performance: (1) the speed with
which perceptual processes encode the relevant attributes of the stimulus; (2) the
efficiency with which the perceptual evidence is accumulated; (3) the threshold level
of perceptual evidence that an individual deems sufficient for making a decision;
and (4) the speed with which a motor response can be executed after a decision has
been made. Hence, observed behavior (i.e., response speed and percentage correct)
cannot be used blindly to draw conclusions about one specific process of interest,
such as the efficiency of perceptual information accumulation. Instead, one needs to
untangle the different cognitive processes and estimate both the process of interest
and the nuisance processes. In other words, observed task performance needs to be
decomposed in terms of the separate contributions of relevant cognitive processes.
Such decomposition almost always requires the use of a cognitive process model.

Cognitive process models describe how particular combinations of cognitive pro-
cesses and mechanisms give rise to observed behavior. For example, the linear bal-
listic accumulator model (LBA; [1]) assumes that in the line-tilt task there exist two
accumulators –one for each response– that each race towards an evidence thresh-
old. The psychological processes in the LBA model are quantified by parameters;
for instance, the threshold parameter reflects response caution. Given the model as-
sumptions, the observed data can be used to estimate model parameters, and so draw
conclusions about the latent psychological processes that drive task performance.
This procedure is called cognitive modeling (see Chapter 1 for details).

Cognitive modeling is perhaps the only way to isolate and identify the contri-
bution of specific cognitive processes. Nevertheless, the validity of the conclusions
hinges on the plausibility of the model. If the model does not provide an adequate
account of the data, or if the model parameters do not correspond to the psycholog-
ical processes of interest, then conclusions can be meaningless or even misleading.
There are several guidelines and sanity checks that can guard against these prob-
lems. These guidelines are often implicit, unspoken, and passed on privately from
advisor to student. The purpose of this chapter is to be explicit about the kinds of
checks that are required before one can trust the conclusions from the model param-
eters. In each of five sections we provide a specific guideline and demonstrate its
use with a concrete application.

2 Conduct Parameter Recovery Simulations

One of the most common goals when fitting a cognitive model to data is to estimate
the parameters so that they can be compared across conditions, or across groups of
people, illuminating the underlying causes of differences in behavior. For example,
when Ratcliff and colleagues compared diffusion-model parameter estimates from
older and younger participants, they found that the elderly were slower mainly due to
greater caution rather than reduced information processing speed as had previously
been assumed [2].
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A basic assumption of investigations like these is adequate parameter recovery –
that a given cognitive model and associated estimation procedure produces accurate
and consistent parameter estimates given the available number of data points. For
standard statistical models there is a wealth of information about how accurately pa-
rameters can be recovered from data. This information lets researchers know when
parameters estimated from data can, and cannot, be trusted. Models of this sort in-
clude standard statistical models (such as general linear models) and some of the
simplest cognitive models (e.g., multinomial processing trees [3]).

However, many interesting cognitive models do not have well-understood esti-
mation properties. Often the models are newly developed, or are new modifications
of existing models, or sometimes they are just existing models whose parameter es-
timation properties have not been studied. In these cases it can be useful to conduct
a parameter recovery simulation study. An extra advantage of running one’s own
parameter recovery simulation study is that the settings of the study (sample sizes,
effect sizes, etc.) can be matched to the data set at hand, eliminating the need to
extrapolate from past investigations. When implementing estimation of a model for
the first time, parameter recovery with a large simulated sample size also provides
an essential bug check.

The basic approach of a parameter recovery simulation study is to generate syn-
thetic data from the model, which of course means that the true model parameters
are known. The synthetic data can then be analysed using the same techniques ap-
plied to real data, and the recovered parameter estimates can be compared against the
true values. This gives a sense of both the bias in the parameter estimation methods
(accuracy), and the uncertainty that might be present in the estimates (reliability). If
the researcher’s goal is not just to estimate parameters, but in addition to discrim-
inate between two or more competing theoretical accounts, a similar approach can
be used to determine the accuracy of discrimination, called a “model recovery sim-
ulation”. Synthetic data are generated from each model, fit using both models, and
the results of the fits used to decide which model generated each synthetic data set.
The accuracy of these decisions shows the reliability with which the models can be
discriminated.

When conducting a parameter recovery simulation, it is important that the anal-
ysis methods (the model fitting or parameter estimation methods) are the same as
those used in the analysis of real data. For example, both synthetic data and real data
analyses should use the same settings for optimisation algorithms, sample sizes, and
so on. Even the model parameters used to generate synthetic data should mirror
those estimated from real data, to ensure effect sizes etc. are realistic. An exception
to this rule is when parameter recovery simulations are used to investigate method-
ological questions, such as what sample size might be necessary in order to identify
an effect of interest. If the researcher has in mind an effect of interest, parame-
ter recovery simulations can be conducted with varying sizes of synthetic samples
(both varying numbers of participants, and of data points per participant) to identify
settings that will lead to reliable identification of the effect.
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2.1 Examples of Parameter Recovery Simulations

Evidence accumulation models are frequently used to understand simple decisions,
in paradigms from perception to reading, and short term memory to alcohol intoxi-
cation [4, 5, 6, 7, 8, 9]. The most frequently-used evidence accumulation models for
analyses such as these are the diffusion model, the EZ-diffusion model, and the lin-
ear ballistic accumulator (LBA) model [10, 11, 1]. As the models have become more
widely used in parameter estimation analyses, the need for parameter recovery sim-
ulations has grown. As part of addressing this problem, in previous work, Donkin
and colleagues ran extensive parameter recovery simulations for the diffusion and
LBA models [12]. A similar exercise was carried out just for the EZ diffusion model
when it was proposed, showing how parameter estimates from that model vary when
estimated from known data of varying sample sizes [11].

Donkin and colleagues also went one step further, and examined the nature of pa-
rameters estimated from wrongly-specified models [12]. They generated synthetic
data from the diffusion model and the LBA model, and examined parameter esti-
mates resulting from fitting those data with the other model (i.e., the wrong model).
This showed that most of the core parameters of the two models were compara-
ble – for example, if the non-decision parameter was changed in the data-generating
model, the estimated non-decision parameter in the other model faithfully recovered
that effect. There were, however, parameters for which such relationships did not
hold, primarily the response-caution parameters. These results can help researchers
understand when the results they conclude from analysing parameters of one model
might translate to the parameters of the other model. They can also indicate when
model-based inferences are and are not dependent on assumptions not shared by all
models.

To appreciate the importance of parameter recovery studies, consider the work by
van Ravenzwaaij and colleagues on the Balloon Analogue Risk Task (BART, [13]).
On every trial of the BART, the participant is presented with a balloon that repre-
sents a specific monetary value. The participant has to decide whether to transfer
the money to a virtual bank account or to pump the balloon, an action that increases
the balloon’s size and value. After the balloon has been pumped the participant is
faced with the same choice again: transfer the money or pump the balloon. There is
some probability, however, that pumping the balloon will make it burst and all the
money associated with that balloon is lost. A trial finishes whenever the participant
has transferred the money or the balloon has burst. The BART task was designed
to measure propensity for risk-taking. However, as pointed out by Wallsten and col-
leagues, performance on the BART task can be influenced by multiple psychological
processes [14]. To decompose observed behavior into psychological processes and
obtain a separate estimate for the propensity to take risk, Wallsten and colleagues
proposed a series of process models.

One of the Wallsten models for the BART task (i.e., “Model 3” from [14], their
Table 2) has four parameters: α , β , γ+, and µ . For the present purposes, the precise
specification of the model and the meaning of the parameters is irrelevant (for a
detailed description see [15, 14]). What is important here is that van Ravenzwaaij
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and colleagues conducted a series of studies to examine the parameter recovery
for this model [15].1 The results of one of those recovery studies are presented in
Figure 1. This figure shows the results of 1000 simulations of a single synthetic
participant completing 300 BART trials2, for each of six sets of data-generating
parameter values. For each of the 1000 simulations, van Ravenzwaaij et al. obtained
a point estimate for each parameter. In Figure 1, the dots represent the median of
the 1000 point estimates, and the “violins” that surround the dots represent density
estimates that represent the entire distribution of point estimates, with the extreme
5% truncated. The horizontal lines show the true parameter values that were used to
generate the synthetic data (also indicated on top of each panel).
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Fig. 1 The 4-parameter BART model recovers parameters γ+ and β , but fails to recover param-
eters α and µ (results based on a 300-trial BART). The dots represent the median of 1000 point
estimates from 1000 different BARTs performed by a single synthetic agent. The violin shapes
around the dots are density estimates for the entire distribution of point estimates, with the extreme
5% truncated [16]. The horizontal lines represent the true parameter values.

Figure 1 shows good parameter recovery for γ+ and β , with only a slight over-
estimation of γ+. The α and µ parameters are systematically overestimated. The
overestimation of α increases when the true value of µ becomes smaller (in the bot-
tom left panel, compare the fourth, second, and fifth violin from the left or compare
the leftmost and rightmost violins). The overestimation of µ increases when the true

1 Extensive details are reported here: http://www.donvanravenzwaaij.com/Papers_
files/BART_Appendix.pdf
2 With only 90 trials –the standard number– parameter recovery was very poor.



6 Andrew Heathcote, Scott D. Brown and Eric-Jan Wagenmakers

value of α becomes larger (in the bottom right panel, compare the first and the fourth
violin from the left). Both phenomena suggest that parameter recovery suffers when
the true value of α is close to the true value of µ . For the six sets of data-generating
parameter values shown on the x-axis from Figure 1, the correlations between the
point estimates of α and µ were all high: .97, .95, .93, .99, .83, .89, respectively.

The important lesson here is that, even though a model may have parameters
that are conceptually distinct, the way in which they interact given the mathemat-
ical form of a model may mean that they are not distinct in practice. In such cir-
cumstances it is best to study the nature of the interaction and either modify the
model or develop new paradigms that produce data capable of discriminating these
parameters. The complete set of model recovery studies led van Ravenzwaaij and
colleagues to propose a two-parameter BART model ([15]; but see [17]).

3 Carry Out Tests of Selective Influence

Cognitive models can be useful tools for understanding and predicting behavior, and
for reasoning about psychological processes, but –as with all theories– utility hinges
on validity. Establishing the validity of a model is a difficult problem. One method
is to demonstrate that the model predicts data that are both previously unobserved,
and ecologically valid. For example, a model of decision making, developed for lab-
oratory tasks, might be validated by comparison against the decisions of consumers
in real shopping situations. External data of this sort are not always available; even
when they are, their ecological validity is not always clear. For example, it is in-
creasingly common to collect neural data such as electroencephalography (EEG) or
functional magnetic resonance imaging (fMRI) measurements simultaneously with
behavioral data. Although it is easy to agree that the neural data should have some
relationship to the cognitive model, it is not often clear what that relationship should
be – which aspects of the neural data should be compared with which elements of
the cognitive model.

An alternative way to establish model validity is via tests of selective influence.
Rather than using external data as the benchmark of validity, this method uses exper-
imental manipulations. Selective influence testing is based on the idea that a valid
model can titrate complex effects in raw data into separate and simpler accounts in
terms of latent variables. From this perspective, a model is valid to the extent that
it make sense of otherwise confusing data. For example, signal detection models
can explain simultaneous changes in false alarms and hit rates –and maybe confi-
dence too– as simpler effects on underlying parameters (i.e., sensitivity and bias).
Similarly, models of speeded decision-making can convert complex changes in the
mean, variance, and accuracy of response time data into a single effect of just one
latent variable.

Testing for selective influence begins with a priori hypotheses about experimen-
tal manipulations that ought to influence particular latent variables. For instance,
from the structure of signal detection theory, one expects payoff manipulations to
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influence bias, but not sensitivity. Empirically testing this prediction of selective
influence becomes a test of the model structure itself.

3.1 Examples of Selective Influence Tests

Signal detection theory has a long history of checking selective influence. Nearly
half a century ago, Parks [18] demonstrated that participants tended to match the
probability of their responses to the relative frequency of the different stimulus
classes. This behavior is called probability matching, and it is statistically optimal
in some situations. Probability matching requires decision makers to adjust their
decision threshold (in SDT terms: bias) in response to changes in relative stimulus
frequencies. Parks –and many since– have demonstrated that decision-makers, from
people to pigeons and rats, do indeed change their bias parameters appropriately
(for a review, see [19]). This demonstrates selective influence, because the predicted
manipulation influences the predicted model parameter, and only that parameter.
Similar demonstrations have been made for changes in signal detection bias due to
other manipulations (e.g., the strength of memories: [20])

Models of simple perceptual decision making, particularly Ratcliff’s diffusion
model ([5, 21, 10]), have around six basic parameters. Their apparent complexity
can be justified, however, through tests of selective influence. In seminal work, Rat-
cliff and Rouder orthogonally manipulated the difficulty of decisions and instruc-
tions about cautious vs. speedy decision-making, and demonstrated that manipula-
tions of difficulty selectively influenced a stimulus-related model parameter (drift
rate) while changes to instructions influenced a caution-related model parameter
(decision boundaries). Voss, Rothermund and Voss [22] took this approach further
and separately tested selective influences on the diffusion model’s most fundamental
parameters. For example, one experiment manipulated relative payoffs for different
kinds of responses, and found selective influence on the model parameter represent-
ing bias (the “start point” parameter). These kinds of tests can alleviate concerns
about model complexity by supporting the idea that particular model parameters
are necessary, and by establishing direct relationships between the parameters and
particular objective changes or manipulations.

Deciding whether one parameter is or is not influenced by some experimental
manipulation is an exercise in model selection (i.e., selection between models that
do and do not impose the selective influence assumption). Both Voss et al. and Rat-
cliff and Rouder approached this problem by estimating parameters freely and ex-
amining changes in the estimates between conditions; a significant effect on one
parameter and non-significant effects on other parameters was taken as evidence of
selective influence. Ho, Brown and Serences [23] used model selection based on
BIC [24] and confirmed that changes in the response production procedure –from
eye movements to button presses– influenced only a “non-decision time” parameter
which captures the response-execution process. However, a number of recent stud-
ies have rejected the selective influence of cautious vs. speedy decision-making on
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decision boundaries [25, 26, 27]. In a later section we show how model-selection
was used in this context.

4 Quantify Uncertainty in Parameter Estimates

In many modeling approaches, the focus is on model prediction and model fit for a
single “best” set of parameter estimates. For example, suppose we wish to estimate
the probability θ that Don correctly discriminates regular beer from alcohol-free
beer. Don is repeatedly presented with two cups (one with regular beer, the other
with non-alcoholic beer) and has to indicate which cup holds the regular beer. Now
assume that Don answers correctly in 3 out of 10 cases. The maximum likelihood
estimate θ̂ equals 3/10 = .3, but it is evident that this estimate is not very precise.
Focusing on only a single point estimate brings with it the danger of overconfidence:
predictions will be less variable than they should be.

In general, when we wish to use a model to learn about the cognitive processes
that drive task performance, it is appropriate to present the precision with which
these processes have been estimated. The precision of the estimates can be obtained
in several ways. Classical or frequentist modelers can use the bootstrap [28], a con-
venient procedure that samples with replacement from the original data and then
estimates parameters based on the newly acquired bootstrap data set; the distribu-
tion of point estimates across the bootstrap data sets provides a close approximation
to the classical measures of uncertainty such as the standard error and the confidence
interval. Bayesian modelers can represent uncertainty in the parameter estimates by
plotting the posterior distribution or a summary measure such as a credible interval.

4.1 Example of Quantifying Uncertainty in Parameter Estimates

In an elegant experiment, Wagenaar and Boer assessed the impact of misleading
information on earlier memories [29]. They showed 562 participants a sequence
of events in the form of a pictorial story involving a pedestrian-car collision at an
intersection with a traffic light. In some conditions of the experiment, participants
were later asked whether they remembered a pedestrian crossing the road when
the car approached the “stop sign”. This question is misleading (the intersection
featured a traffic light, not a stop sign), and the key question centers on the impact
that the misleading information about the stop sign has on the earlier memory for
the traffic light.3

Wagenaar and Boer constructed several models to formalize their predictions.
One of these models is the “destructive updating model”, and its critical parame-
ter d indicates the probability that the misleading information about the stop sign

3 The memory for the traffic light was later assessed by reminding participants that there was a
traffic light at the intersection, and asking them to indicate its color.
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(when properly encoded) destroys the earlier memory about the traffic light. When
d = 0, the misleading information does not affect the earlier memory and the de-
structive updating model reduces to the “no-conflict model”. Wagenaar and Boer fit
the destructive updating model to the data and found that the single best parameter
estimate was d̂ = 0.

Superficial consideration may suggest that the result of Wagenaar and Boer re-
futes the destructive updating model, or at least makes this model highly implausi-
ble. However, a more balanced perspective arises once the uncertainty in the esti-
mate of d̂ is considered. Figure 2 shows the prior and posterior distributions for the
d parameter (for details see [30]). The prior distribution is uninformative, reflecting
the belief that all values of d are equally likely before seeing the data. The observed
data then update this prior distribution to a posterior distribution; this posterior dis-
tribution quantifies our knowledge about d [31]. It is clear from Figure 2 that the
most plausible posterior value is d = 0, in line with the point estimate from Wa-
genaar and Boer, but it is also clear that this point estimate is a poor summary of
the posterior distribution. The posterior distribution is quite wide and has changed
relatively little compared to the prior, despite the fact that 562 people participated
in the experiment. Values of d < 0.4 are more likely under the posterior than under
the prior, but not by much; in addition, the posterior ordinate at d = 0 is only 2.8
times higher than the prior ordinate at value d = 0. This constitutes evidence against
the destructive updating model that is is merely anecdotal or “not worth more than
a bare mention” [32].4

In sum, a proper assessment of parameter uncertainty avoids conclusions that are
overconfident. In the example of Wagenaar and Boer, even 562 participants were
not sufficient to yield strong support for or against the models under consideration.

5 Show Model Fit

When a model is unable to provide an adequate account of the observed data, con-
clusions based on the model’s parameters are questionable. It is, therefore, impor-
tant to always show the fit of the model to the data. A compelling demonstration of
this general recommendation is known as Anscombe’s quartet [33] replotted here
as Figure 3. The figure shows four data sets that have been equated on a number of
measures: the Pearson correlation between the x and y values, the mean of the x and
y values, and the variance of the x and y values. From the graphical display of the
data, however, it is immediately obvious that the data sets are very different in terms
of the relation between the x values and the y values. Only for the data set shown in
the top left panel does it make sense to report the Pearson correlation (a linear mea-
sure of association). In general, we do not recommend relying on a test of whether
a single global measure of model misfit is “significant”. The latter practice is not
even suitable for linear models [34], let alone non-linear cognitive process models,

4 Wagenaar and Boer put forward a similar conclusion, albeit not formalized within a Bayesian
framework.
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Fig. 2 Prior and posterior distributions for the d parameter in the destructive updating model from
Wagenaar and Boer (1987), based on data from 562 participants. When d = 0, the destructive
updating model reduces to the no-conflict model in which earlier memory is unaffected by mis-
leading information presented at a later stage. The posterior distribution was approximated using
60,000 Markov chain Monte Carlo samples. Figure downloaded from Flickr, courtesy of Eric-Jan
Wagenmakers.

and is subject to the problem that with sufficient power rejection is guaranteed, and
therefore meaningless [35]. Rather we recommend that a variety of graphical checks
be made and a graphical summary of the relevant aspects of model fit be reported.

Displaying and checking model fit can be difficult when data come from many
participants in a complicated multiple-factor design. When the model is nonlinear,
as is almost always the case with cognitive process models, fitting to data aver-
aged over participants should be avoided, as even a mild nonlinearity can introduce
systematic distortions (e.g., forgetting and practice curves [36, 37, 38]). For the pur-
pose of displaying overall model fit it is fine to overlay a plot of the average data
with the average of each participant’s model fit, as both averages are subject to the
same distortions. However, analogous plots should also be checked for each indi-
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Fig. 3 Anscombe’s quartet highlights the importance of plotting data to confirm the validity of the
model fit. In each panel, the Pearson correlation between the x and y values is the same, r = .816.
In fact, the four different data sets are also equal in terms of the mean and variance of the x and y
values. Despite the equivalence of the four data patterns in terms of popular summary measures,
the graphical displays reveal that the patterns are very different from one another, and that the
Pearson correlation (a linear measure of association) is only valid for the data set from the top left
panel. Figure downloaded from Flickr, courtesy of Eric-Jan Wagenmakers.

vidual, both to detect atypical participants, and because it is common for initial fit
attempts to fail with some participants. In some cases individual plots can reveal
that an apparently good fit in an average plot is due to “cancelling out” of under-
and over-estimation for different groups of participants. Similarly, it is important to
check plots of fit broken down by all of the influential factors in the experimental
design. Even when interest focuses on the effects of a subset of factors, and so it
is appropriate to average over other (effectively “nuisance”) factors when reporting
results, such averages can hide tradeoffs that mask systematic misfit. Hence, in the
first instance it is important to carry out a thorough check graphical check of fit
broken down by all factors that produce non-negligible effects on data.
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In the case of continuous data it is practically difficult to display large numbers of
data points from many participants in complex designs. An approach often used with
evidence accumulation model fit to continuous response time (RT) data is to summa-
rize the distribution of RT using quantiles (e.g., the median and other percentiles). A
common choice is the 10th, 30th, 50th, 70th and 90th percentiles (also called the 0.1,
0.3, 0.5, 0.7 and 0.9 quantiles). This five-quantile summary may omit some infor-
mation, but it can compactly capture that are usually considered key features of the
data. Of particular importance are the 10th percentile, which summarises the fastest
RTs, the 50th percentile or median, which summarises the central tendency, and the
90th percentile, which summaries the slowest RTs. The spread between the 90th and
10th percentiles summarises variability in RT and a larger difference between the
90th and 50th percentiles compared to the 50th to 10th percentile summarises the
typically positive skew in RT distribution.

Further complication arises when data are multivariate. For example, cognitive
process models are usually fit to data from choice tasks. Where one of two choices
is classified as correct, the rate of accurate responding provides a sufficient sum-
mary. However, participants can trade accuracy for speed [39], so in many cases it
is important to also take RT into account. That is, the data are bivariate, consisting
of an RT distribution for correct responses, an RT distribution for error responses,
and an accuracy value specifying the rate at which correct and error responses oc-
cur. Latency-probability (LP) plots [40, 41] deal with the bivariate nature of choice
data by plotting mean RT on the y-axis against response probability on the x-axis.
As error responses commonly occur with low probability, error data appear on the
left of the plot and correct response data on the right of the plot. In the two-choice
case the x-values occur in pairs. For example, if the error rate is 0.1 then the cor-
responding correct-response data must be located at 0.9. Quantile-probability (QP)
plots [42] generalize this idea to also display a summary of RT distribution by plot-
ting quantiles on the y-axis (usually the five-quantile summary) instead of the mean.
Although the QP plot provides a very compact representation of choice RT data that
can be appropriate in some circumstances, we do not recommend it as a general
method of investigating model fit for reasons we illustrate in the following example.
Rather, we recommend looking at separate plots of accuracy and correct and error
RT distributions (or in the n>2 alternative case, RT distributions for each type of
choice).

5.1 Examples of Showing Model Fit

Wagenmakers and colleagues [43] had participants perform a lexical decision task
– deciding if a letter string constituted a word or nonword, using high, low and
very-low frequency word stimuli and nonword stimuli. In their first experiment par-
ticipants were given instructions that emphasised either the accuracy or speed of
responding. They fit a relatively simple 12-parameter diffusion model to these data,
assuming that instructions selectively influenced response caution and bias, whereas
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stimulus type selectively influenced the mean drift rate. Rae and colleagues [44] re-
fit these data, including two extra participants not included in the originally reported
data set (17 in total), in order to investigate the selective influence assumption about
emphasis. They fit a more flexible 19-parameter model allowing (1) emphasis to
affect the trial-to-trial standard deviation of bias as well as the mean and standard
deviation of non-decision time; (2) stimulus type to affect the trial-to-trial standard
deviation of the drift rate; and (3) allowing for response contamination. Their inter-
est was in whether instruction emphasis could affect drift rate parameters, so they
contrasted this 19 parameter “selective influence” model with a 27-parameter (“least
constrained”) model allowing speed emphasis to affect the mean and standard devi-
ation of drift rates. We discuss this contrast in a following section but for now we
focus on the fit of the selective-influence model.
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Fig. 4 Quantile-probability plot of the average over 17 participants from Wagenmakers and col-
leagues’ [43] Experiment 1 and fits of the “selective influence” model. In both emphasis con-
ditions accuracy was ordered from greatest to least: high-frequency (hf) words, nonwords (nw),
low-frequency words (lf) and very-low-frequency (vlf) words. Each data point is accompanied by
a 95% confidence interval assuming a Student t distribution and based between-subject standard
errors calculated as SD(x)/

√
n, where SD(x) is the standard deviation over participants and n is

the number of participants.
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Figure 4 is a quantile-probability plot of the selective-influence model. Data
points are plotted with 95% confidence intervals based on conventional standard
errors assuming a normal distribution in order to convey an idea of the likely mea-
surement error, and model fit is indicated by points joined by lines. Uncertainty can
also be conveyed by other means, such as bootstrap methods [28] applied to the data
[43] or model fits [45]. In any case, it is important to plot points for the model as
well as the data; plotting only lines for either can hide mis-fit because the eye can
be fooled by intersections that do not reflect an accurate fit. The figure demonstrates
the utility of QP plots in illustrating an important regularity in choice RT data [46];
the overall decreasing lines from left to right in the accuracy condition show that er-
rors are slower than corresponding correct responses, whereas the symmetric lines
around accuracy = 50% in the speed condition indicate approximately equal correct
and error speed.

Overall, Figure 4 demonstrates that the model captures the majority of trends in
the data, with many of the fitted points falling within 95% data confidence intervals.
However there is also some evidence of misfit, especially in regard to accuracy in
the speed condition. Rae and colleagues [44] focused on this failure of the selective-
influence model to account for the effect of emphasis instructions, motivated by
similar findings for the LBA model [48], and the same pattern of under-estimation
in experiments they reported using perceptual stimuli and in recognition memory
(see also [49]). Figure 5 more clearly illustrates the speed-accuracy tradeoff induced
by emphasis instructions –with accuracy displayed in the upper panels and speed
of correct responses in the lower panels– and the under-estimation of the accuracy
effect in the lexical decision data. For clarity, data from each stimulus type is plotted
in a separate panel with emphasis condition plotted on the x-axis and joined by
lines in order to emphasise the difference of interest. Each row of panels is tailored
to examine a different aspect of the data. The upper panels show accuracy and the
middle panels the distribution of correct RT. The lower panels plot both the central
tendency (median) of correct RT (circle symbols) and error RT (triangle symbols)
in order to highlight the relative speed of incorrect responses.

Figure 5 also uses within-subject standard errors appropriate to the focus on the
(within-subject) difference between speed and accuracy emphasis. These standard
errors reflect the reliability of the difference between speed and accuracy condi-
tions, making it clear that the selective-influence model is unable to account for the
effect of emphasis, particularly for very-low frequency and low-frequency words.
The middle panels make it clear that, in contrast, this model provides a highly ac-
curate account of its effect on RT distributions for correct responses, even for the
90th percentile, which has much greater measurement error than other quantiles.
Finally, the lower panel clearly shows that the model predicts slow errors in the
accuracy condition for all stimuli, whereas slow errors occur in the data only for
the least word-like (very-low frequency and nonword) stimuli. In general, we rec-
ommend that a variety of multi-panel plots such as those in Figure 5 be examined,
each tailored to particular aspects of the data, with standard errors appropriate to the
questions of interest. We also highly recommend plotting versions of these plots for
individual participants, which is made easy using trellis graphics [50].
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6 Engage in Model Selection

Cognitive models typically have several parameters that can sometimes interact in
complex ways. How does a modeler decide which experimental design factors af-
fect each parameter? Initial guidance is provided by conventions based on a priori
assumptions and past research. In the realm of evidence accumulation models, for
example, it has been widely assumed that stimulus-related factors selectively affect
parameters related to the evidence flowing into accumulators (e.g., evidence accu-
mulation rates) whereas instruction-related factors (e.g., an emphasis on speed vs.
accuracy) affect accumulator-related parameters (e.g., bias and the amount of evi-
dence required to make a decision) [46]. However, such conventional settings may
not always hold, and in new paradigms they may not be available. Hence, it is pru-
dent, and sometimes necessary, to engage in model selection: comparing a variety
of different model parameterisations (variants) so that one or more can be selected
and differences in parameter estimates among experimental conditions interpreted.

Even in relatively simple designs the number of model variants can rapidly be-
come unmanageable. Suppose there are two experimental design factors, A and B.
Each parameter might have a single estimated value (i.e., an intercept only model,
often denoted ˜1), a main effect of or A or B (˜A or ˜B), or both main effects and their
interaction (denoted ˜A*B = A + B + A:B, where “+” indicates an additive effect
and “:” an interaction effect). If only parameterisations of this sort are considered
there are 2 f models to select amongst, where f is the number of factors. If each of m
types of model parameter are allowed this freedom then the total number of variants
is 2 f×m. One might also consider additive models (e.g., ˜A + B), in which case it
is important to note that fit of an additive model depends on parameter scale (e.g.,
the model˜A + B can fit differently for a linear vs. log-scaled parameter, whereas
A*B will fit identically). Further, so far we have only considered hierarchical mod-
els, where the higher terms can only occur accompanied by their constituents. If
all possible non-hierarchical models are allowed (e.g., ˜A + A:B and ˜B + A:B) the
increase in the number of variants with f is much faster.

Once an appropriate set of model variants is selected its members must be com-
pared in some way. Ideally misfit is quantified by a function of the likelihood of the
data under each model variant, such as in Bayesian or maximum likelihood estima-
tion methods, or some approximation, such as in quantile-based methods like max-
imum probability [51, 52, 53] or minimum likelihood-ratio χ2 (i.e., G2) estimation
[49]. As the number of estimated parameters increases a model becomes more flex-
ible and so is able to better fit data. In particular, a nested model –a model variant
that is a special case obtained by fixing one or more parameters of a more com-
plex model– necessarily has greater misfit than models that nest it. The best model
variant cannot be selected based on goodness-of-fit alone, as the least-constrained
model would always be selected, and over-fitting (i.e., capturing unsystematic vari-
ation specific to a particular data set) would be rife.

One approach –similar to sequential regression methods such as stepwise selection–
is to choose a model based on the significance of changes in fit as parameters are
added or deleted. The maximised log-likelihood (L) is convenient for this purpose
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as the deviance misfit measure (D = -2×L) has a χ2 distribution.5 However, this
approach is limited to selection amongst nested models. Preferable approaches use
a model selection criterion that includes a penalty for model complexity; the model
with the lowest criterion (i.e., least penalised misfit) is selected. Such criteria can be
used not only to compare non-nested variants of the same model but also to compare
different cognitive process models. In a Bayesian framework the Bayes factor is the
ideal criterion [54], but this is rarely easy to directly compute for cognitive process
models (although see [55, 56]). When estimation is achieved by posterior sampling,
DIC [57], or its bias-corrected variant BPIC [58], are easy-to-compute alternatives.
With maximum likelihood estimation it is convenient to use BIC = D + k× log(n), a
Bayes factor approximation, or AIC = D + 2×k (n is the number of data points and
k is the number of parameters) [59]. As is evident from these formulae, BIC applies
a harsher penalty for complexity for typical sample sizes (n≥8).

Although we recommend using penalised-misfit criteria to guide model selection
we do not recommend rigid adherence. Different criteria are optimal under different
assumptions and they are often based on approximations that can be sensitive to
the size of effects and samples (see, for example, the comparison of BIC and AIC
in [60]). Further, it is seldom possible to check all possible models, and when the
data-generating model is omitted model selection may err. Suppose, for example,
the data were generated by an additive model, A + B but only the A, B, and A*B
models are fit. Depending on the size of the A, B, and A:B effects relative to the size
of the complexity penalty any of these three models may be selected. Even if the A +
B model is fit, things can still go wrong if the data-generating model is additive on,
for example, a logarithmic scale. Given the appropriate scale is usually not known,
it is apparent that it is difficult to be absolutely sure that data-generating model is
included even in quite exhaustive sets of variants (although clearly the chance of
problems reduces when selection is among a large set of variants!).

In short, some judgement –albeit aided by a number of sources of evidence–
must be used in model selection. For example, in smaller samples BIC can often
select a model that is so simple that plots of fit reveal that the model is unable to
account for practically or theoretically important trends in the data. On the other
end of the spectrum over-fitting is indicated when model parameters are unstable
(i.e., take on implausibly large or small values and/or values that can vary widely
with little effect on fit) or take on patterns that appear nonsensical in relation to
the way the parameter is interpreted psychologically. In both cases it is prudent to
consider alternative model selection methods or possibly to seek further evidence.
It is also worth reconsidering whether selection of a single model is required for the
purpose at hand. For example, predictions averaged over models weighted by the
evidence for each model are often better than predictions made by a single model
[35]. Similarly, different criteria may select models that differ in some ways but are
consistent with respect to the theoretical issue under investigation. We illustrate the
process in the next section.

5 The absolute value of the deviance depends on the measurement units for time and so only relative
values of deviance are meaningful. Deviance is on an exponential scale, and as a rule of thumb a
difference less than 3 is negligible and and difference greater than 10 indicates a strong difference.
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6.1 Examples of Model Selection

Our examples again use the lexical decision data from Wagenmakers and colleagues
[43], focusing on variant selection assuming a diffusion model [44]. The example
is based on maximum-likelihood fits to individual participant data, with 29=512
diffusion variants fit with the methods described in [61]. Diffusion fits were based on
quantile data, so the likelihood is only approximate [52, 53]. The least-constrained
variant allowed rate parameters to vary with emphasis, that is, it did not make the
conventional assumption that accumulation rate cannot be affected by instructions.

Before examining the model selection process in these examples it is important to
address issues that can arise due to individual differences. When each participant’s
data are fit separately, different models are often selected for each participant. Con-
sidering participants as random effects provides a useful perspective on this issue.
Even if there is no effect of a factor on the population mean of a parameter, when
the population standard deviation is sufficiently large individual participants will
display reliable effects of the factor. That is, selecting models that include the effect
of a factor for some individuals does not imply that factor affects the corresponding
population mean. Hierarchical models –which make assumptions about the form of
population distributions– enable simultaneous fitting of all participants and direct
estimation of population means. Even in this approach, however, individual partic-
ipant estimates must be examined to check assumptions made by the hierarchical
model about the form of the population distribution. For example, it is possible that
some individual variation results from participants being drawn from different pop-
ulations (e.g., a mixture model where in one population a factor has an effect and in
another it does not), in which case assuming a single unimodal population distribu-
tion is problematic. Caution must also be exercised in case the random effects model
is incorrectly specified and the shrinkage (i.e., the averaging effect exerted by the
assumed population distribution) masks or distorts genuine individual differences.
Hierarchical modeling is best applied to relatively large samples of participants and
usually requires Bayesian methods. These methods can sometimes be difficult in
practice with cognitive process models where strong interactions among parameter
make posterior sampling very inefficient, as was the case for the LBA model until
recent advances in Markov chain Monte Carlo methods [62].

With maximum-likelihood fits to individuals it is possible to select an overall
model based on and aggregate BIC or AIC.6 The selected model, which can be
thought of as treating participants as fixed effects, is usually sufficiently complex to
accommodate every individual. However, it is important to be clear that selecting a
model that contains a particular factor does not necessarily imply an effect of that
factor on the random effect population mean. In the individual-fitting approach such
questions can be addressed by testing for differences over a factor in the means of in-
dividual participant parameter estimates. These approaches to individual-participant

6 Note that deviance can be summed over participants, as can AIC, but BIC cannot, due to the
nonlinear log(n) term in its complexity penalty. Instead the aggregate BIC is calculated from the
deviance, number of parameters and sample size summed over participants
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fitting were taken by Rae and colleagues [44], with results summarised in Table 1.
The table reports aggregate misfit measures minus the minimum deviance. Hence
the best-fitting model (necessarily the least-constrained model with the largest num-
ber of parameters, k) has a zero entry in the deviance column.

Table 1 Diffusion model variants specified by design factors that effect each parameter, number of
parameters per participant for each variant (k), and misfit measures (D = deviance, AIC = Akaike
Information Criterion and BIC = Bayesian Information Criterion) minus the minimum value in
each column. Factors are emphasis (E: speed vs. accuracy) and stimulus (S: high/low/very-low
frequency words and non words). Diffusion parameters: a = response caution parameter, distance
between response boundaries; accumulation rate parameters, v = mean, sv = standard deviation;
start-point (bias) parameters, z = mean relative to lower boundary, sz = uniform distribution width;
non-decision time parameters: t0 = minimum time for stimulus encoding and response production,
st = width of uniform distribution of non-decision time. Note that, for example, the notation v ˜ E*S
means that the v parameter can be affected by the main effects of the E and S factors as well as
their interaction.

Model Type Model Definition k D AIC BIC
Least Constrained a ˜ E, v ˜ E*S, sv ˜ E*S, z ˜ E, sz ˜ E, t0 ˜ E, st ˜ E 27 0 70 984
AIC Selected a ˜ E, v ˜ E*S, sv ˜ S, z ˜ E, sz ˜ E, t0 ˜ E, st ˜ E 23 66 0 552
BIC Selected a ˜ E, v ˜ S, sv ˜ 1, z ˜ 1, sz ˜ E, t0 ˜ E, st ˜ 1 14 635 263 0
Selective Influence a ˜ E, v ˜ S, sv ˜ S, z ˜ E, sz ˜ E, t0 ˜ E, st ˜ E 19 237 35 225
AIC Selected a ˜ E, v ˜ S, sv ˜ S, z ˜ E, sz ˜ 1, t0 ˜ E, st ˜ E 19 237 35 225
BIC Selected a ˜ E, v ˜ S, sv ˜ 1, z ˜ E, sz ˜ 1, t0 ˜ E, st ˜ 1 14 635 263 0

The top three rows in Table 1 report results for the least constrained diffusion
model and the models selected from the full set of 512 by aggregate AIC and BIC.
The bottom three rows report results for the variant within the full set that imposes a
minimal selective effect assumption –that the emphasis manipulation cannot affect
rate parameters (v and sv)– and the AIC and BIC selected models among the subset
of 27 = 128 variants nested by the selective influence variant. Among the full set of
512 variants, AIC selected a variant where emphasis did affect the mean rate (i.e.,
violating selective influence), whereas BIC selected a variant that had no influence
of emphasis on rate parameters. This pattern of results nicely exemplifies that fact
that selection criteria can lead to theoretically important differences in conclusions,
requiring researchers to seek other sources of evidence.

Rae and colleagues pointed out that the penalty for complexity imposed by BIC
was likely too harsh. As shown in the upper panels of the Figure 5 even the full 25-
parameter selective influence LBA variant (which necessarily fits better than the 17
parameter variant selected from the overall set by BIC) fails to accommodate the ef-
fect of emphasis on accuracy. In agreement, there is a highly significant decrease in
fit from the least-constrained to the BIC model as illustrated by the difference of de-
viances in Table 1 (i.e., df = 17×(27-19) = 136, χ2(136) = 237, p<.001). In contrast,
the 19-parameter variant selected from the overall set by AIC that allows emphasis
to affect mean rate does much better in accommodating the effect of emphasis on
accuracy. Further, the reduction in fit relative to the least constrained model does
not approach significance (i.e., df = 17×(27-23) = 68, χ2(68) = 66, p=.55). Finally,
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parameter estimates for the least constrained model were stable and there was a sig-
nificant effect of emphasis on mean rate. This overall pattern of results confirmed a
failure of traditional selective influence assumption and was consistent with findings
from perceptual an mnemonic paradigms reported by Rae and colleagues and others
[26].

In closing we return to what is perhaps one of the most difficult questions in cog-
nitive process modeling, absolute fit, which might be couched as a model-selection
question: “when should all model variants be rejected”? A model may provide a very
accurate account of some conditions or some aspects of data but systematically mis-
fit in other cases. For example, Rae and colleagues found even the least-constrained
diffusion model misfit error RT distribution in some conditions. Heathcote and Love
[48] showed the same was true in those data, although to a lesser degree, for the LBA
model. Should both the diffusion and LBA models be rejected? Clearly some judge-
ment is required to decide, since some misfit can be forgiven. A case in point for
evidence-accumulation models is sequential effects. Sequential effects can be quite
strong in the sorts of paradigms to which such models are fit [63, 64], but that fitting
almost invariably assumes data are independently distributed over trials.

On this issue we think Box’s [65] famous dictum that “all models are false but
some are useful” is salutary. That is, some misfit can be tolerated, especially when
no better alternatives are available, as long as the model captures theoretically im-
portant features of a data set. To the degree this happens, parameter estimates are
likely to provide an accurate distillation of the data and a more meaningful charac-
terisation than simple summary statistics (e.g., mean RT or accuracy alone can be
confided by speed-accuracy tradeoff). Further, if that distillation is sensible in terms
of the underlying rationale of the model, and consistent with conclusions based on
alternative analyses that do not reply on the model, then it is likely that the cognitive
process model has served a useful role.

7 Concluding Remarks

Good standards are important in all areas of science. In cognitive modeling, good
standards include not only careful model development and checking but also trans-
parency of method and, ideally, sharing of model code and data. Transparency is ob-
viously of key importance, as it allows interested colleagues to implement the model
at hand, whether for teaching, for testing, or for extending the approach to other
contexts. Even relatively simple models can sometimes be surprisingly difficult to
replicate because crucial information is missing. It is therefore common practice to
make available the model code, either on a personal website, archived together with
the journal publication as supplementary material, or in a public repository (e.g., the
OSU Cognitive modeling Repository, http://cmr.osu.edu/).

It is useful to make the model code available with several example data sets so
that the new user can confirm that the code works as it should. Ideally, the entire
data set that is modeled is made freely available online as well. This benefits the
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new user (who may be able to use the data set for a different purpose, or for a test of
alternative explanations), but it also benefits the author, as the online data set may
easily become a modeling benchmark.

In this introductory chapter we have discussed a suite of standard sanity checks
that every modeler should turn to on a regular basis. This holds especially true for
cognitive process models that are relatively new and untested. By applying the suite
of sanity checks the modeler can gain confidence in the validity of a model, and con-
sequently make a more compelling case that the model yields a reliable connection
from observed behavior to unobserved psychological process.

8 Exercises

1. You fit a model of task switching to some data. The model includes a pa-
rameter which reflects how often people actively prepare for the upcoming
task, and you find that the best estimate of this parameter is 50%. What
should you also consider, before concluding that task preparation occurs
half of the time?

2. If you fit a complex model and a simpler model to some data, and found
that the simple model had best BIC but the complex model had the best
AIC, which would you expect to give the closest fit to data? And how
could you resolve the tension between the two criteria?

3. You examine data plots with panels showing the probability of making
different choices and for each choice the median, 10th, and 90th percentiles
of the time to make each choice. What characteristics of which plot would
tell you about the the average time to make a response and the variability in
response times? What measurement derived from the plot tells you about
the skew of the response time distributions? What relationship between the
plots would be indicative of a speed-accuracy tradeoff?

4. An easy approach to model selection is to construct strong prior assump-
tions about which experimental effects will influence which parameters, ef-
fectively ruling out all other model variants. For example, one might make
the prior assumption that a manipulation of stimulus strength can influence
only sensitivity in a signal detection model, and not criterion placement.
Name one danger of this method.

5. If you conducted a parameter recovery simulation for your new cognitive
model, and found that there was unacceptably large variance in the recov-
ered parameters (i.e., large inaccuracies that vary randomly with each new
synthetic data set), what might you do?
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9 Solutions (These Go in a Separate Book of Answers)

1. Uncertainty in the parameter estimate. A point estimate of 50% could mean
that preparation occurs half of the time, but it does not mean this if a con-
fidence interval for the point estimate runs from 10% to 90%.

2. The complex model, because AIC penalizes less harshly for complexity
than BIC (also because, all else being equal, complex models tend to fit
better due to flexibility). To resolve the tension, consider other model prop-
erties, such as how interpretable the parameter estimates are.

3. One danger is the inability to observe violations of the assumptions. An-
other is the possibility of missing some effects that are present in the data,
but not the model, which can cause errors in parameter estimates.

4. Central tendency is indicated by the median (50th percentile). Variability
is indicated by the distance between the 90th and 10th percentile. Skew is
indicated by 90th minus 50th percentile subtracted from the 50th minus 10th

percentile (positive values indicated positive skew, i.e., with a longer slow
than fast tail). Speed-accuracy tradeoff is indicated by higher accuracy in
condition A vs. condition B but also by a slower RT in condition A than B
(or vice versa).

5. You could consider larger data samples – further parameter recovery simu-
lations with larger simulated sample sizes could inform this decision. You
might also consider adjusting your model to improve its estimation proper-
ties. For example, re-parameterization to reduce parameter correlation, or
simplifying the model by fixing or removing some parameters.

10 Further Reading

1. Here are four course books on cognitive modeling, take your pick: Lewandowsky
and Farrell [66], Busemeyer and Diederich [67], Hunt [68], and Polk and Seifert
[69].

2. A hands-on, Bayesian approach to cognitive modeling is presented in Lee &
Wagenmakers [31]; see also www.bayesmodels.com.

3. The series of tutorial articles in the Journal of Mathematical Psychology are a
good source of information that is relatively easy to digest.
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Fig. 5 Accuracy (upper panels), correct RT distribution (middle panels), median correct (circle
symbols) and error (triangle symbol) RT (lower panels) plots of the average over 17 participants
from Wagenmakers and colleagues’ [43] Experiment 1 for high-frequency (hf), low-frequency (lf)
and very-low-frequency (vlf) words and nonwords (nw). Each data point is accompanied by a 95%
confidence interval assuming a Student t distribution and based on within-subject standard errors
calculated as using the bias-corrected method described in [47].


