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Abstract

Catastrophe theory is a mathematical formalism for modeling nonlinear systems whose discontinuous behavior is determined
by smooth changes in a small number of driving parameters. Fitting a catastrophe model to noisy data constitutes a serious
challenge, however, because catastrophe theory was formulated specifically for deterministic systems. Loren Cobb addressed
this challenge by developing a stochastic counterpart of catastrophe theory (SCT) based on Itô stochastic differential equations.
In SCT, the stable and unstable equilibrium states of the system correspond to the modes and the antimodes of the empirical
probability density function, respectively. Unfortunately, SCT is not invariant under smooth and invertible transformations
of variables—this is an important limitation, since invariance to diffeomorphic transformations is essential in deterministic
catastrophe theory. From the Itô transformation rules we derive a generalized version of SCT that does remain invariant under
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transformation and can include Cobb’s SCT as a special case. We show that an invariant function is obtained by multiply
probability density function with the diffusion function of the stochastic process. This invariant function can be estimat
a straightforward time series analysis based on level crossings. We illustrate the invariance problem and its solution w
applications.
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1. Introduction

Ever since its creation by Thom[1] and its sub-
sequent popularization by Zeeman[2,3], catastrophe
theory (CT) has been applied to a wide range o
different systems from physics, engineering, biolog
psychology, and sociology. A small subset of specifi
phenomena that were analyzed and modeled using
includes quantum morphogenesis, the formation
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caustics in ray optics, the stability of ships, the stability
of black holes, the surface changes in interatomic
potential, Euler struts, the size of bee societies,
morphogenesis or cell differentiation in embryology,
bistability of perception, binocular vision, motor learn-
ing, sudden transitions in attitudes, and the cognitive
development of children (for details see[4–15]). In all
these applications, the behavior of the system under
study shows sudden, discontinuous changes or phase
transitions as a result of small, continuous changes
in variables that influence the system (cf. the freezing
of water when temperature is gradually decreased,
or the collapse of a bridge under slowly mounting
pressure).

In general, CT applies to systems that may respond
to continuous changes in control variables by a discon-
tinuous change from one equilibrium state to another.
For clarity of exposition we first discuss the case of a
single state variablex (see[5] for higher-order catas-
trophes that can have more than one state variable).
CT implies that the behavior of the system under study
follows

dx = −dV (x)

dx
dt, (1)

meaning that the state of the system will change
as a result of a change inV (x). V (x) is a poten-
tial function, and incorporates the control variables
c1, c2, . . . , cn. The system is in equilibrium when
dV (x; c1, c2, . . . , cn)/dx = 0. Thus, CT is concerned
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(p. 59 in[5]):

V1(x; c) = V2(ϕ(x; c); η(c)) + γ(c). (2)

Geometrically,(2) entails that a transformation that
smoothly bends or stretches an object preserves its
topological features (cf. pp. 90–92 in[5]).

The invariance property is inherent to CT and allows
it to classify systems as belonging to a small set of
qualitatively different models, the so-called elementary
catastrophes (under the constraint that there be at most
two state variables and four control variables; see[5]
for details). The major theme of this article is to develop
a stochastic variant of deterministic catastrophe theory
that is consistent with the invariance property.

As CT was developed as an abstract topological the-
ory for deterministic systems, it may not be immedi-
ately obvious how to extend the theory to stochastic
systems. Loren Cobb was the first to address this prob-
lem and propose a stochastic version of catastrophe
theory (SCT;[18–21]). In Cobb’s method of maxi-
mum likelihood estimation (MLE), stable and unsta-
ble equilibria are associated with the modes and anti-
modes, respectively, of the system’s stationary proba-
bility density function (pdf). In contrast to deterministic
catastrophes, however, Cobb’s stochastic catastrophes
are not invariant under nonlinear diffeomorphic trans-
formations. This highlights an important discrepancy
between deterministic CT and its stochastic counter-
part, as Cobb duly acknowledged: “However, MLE’s
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inimum “energy” (i.e., gradient dynamical system

or a detailed treatment see[5,6,16,17]).
CT offers a mathematical basis for the classifi

ion of gradient dynamical systems with respect to
umber and type of critical points. This configurat
f critical points is invariant under diffeomorphic c
rdinate transformations, that is, transformations
re smooth (i.e., differentiable up to arbitrary ord
nd invertible (i.e., one-to-one). This means that
ystems are equivalent when their potential funct
an be transformed into one another. Specifically
ume two equivalent potential functionsV1(x; c) and
2(y; d), consisting here of one state variable and
ontrol variable. Equivalence means that there exis
eomorphic transformationsy = ϕ(x; c) andd = η(c),
nd a smooth, real functionγ(c) such that the potenti

unctions can be locally transformed into one ano
re not invariant under general diffeomorphisms o
easured variables. Therefore, much of the topo

al generality of catastrophe theory may have been
n the statistical portion of our theory” (p. 317 in[22];
ee also[23]).

In this article we generalize the method of Co
y taking into account the Itô transformation rule

hereby arriving at the non-normalized stationary d
ity function of a Stratonovich stochastic differen
quation. In contrast to the method of Cobb, this g
ralized SCT is unaffected by smooth and invert

ransformations.1 We show that an invariant functio

1 These transformations may involve the control variables as
s the behavioral variables (i.e., the measurement scales). Alt
ur conceptual focus is on transformations of measurement s

he results reported here hold regardless of what type of varia
ransformed.
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may be obtained by multiplying the probability den-
sity function by the diffusion function of the stochastic
process. This invariant function preserves the configu-
ration of critical points under diffeomorphic transfor-
mation. Thus, the generalized SCT outlined here offers
a methodology to test transition hypotheses in stochas-
tic systems that is fully consistent with deterministic
catastrophe theory.

The outline of this paper is as follows. Section2
outlines stochastic catastrophe theory. We describe the
pioneering work by Cobb, and point out the invari-
ance problem. Next, we extend Cobb’s work to derive
a generalized SCT that is invariant under diffeomorphic
transformations. This is the core of the paper. Section3
outlines a time series method based on level crossings
to estimate the invariant function. Section4 illustrates
the use of the invariant function with two applications.
Section5 concludes.

2. Stochastic catastrophe theory

Most practical scientific investigations are subject
to some sort of noise, originating either from imperfect
measurement or from the inherent stochastic nature of
the system under study. What happens to catastrophe
models when the underlying dynamics is contaminated
by a non-negligible amount of noise? Is it still possible
to apply CT to such cases? And how should this be
accomplished?2
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The method of Cobb will be discussed by consider-
ing a system of one state variable and several control
variables, whose dynamics obey(1). For ease of presen-
tation the explicit dependence of the potential function
on the control variables is omitted. The deterministic
behavior of the system described by(1) can be made
stochastic and put in the form of a stochastic differ-
ential equation (SDE) by simply adding a stochastic
Gaussian white noise driving term dW(t):

dx = −dV (x)

dx
dt + σ(x)dW(t). (3)

The deterministic term on the right-hand side,
−dV (x)/dx, is thedrift function µ(x), while σ(x) is
the diffusion function, andW(t) is a Wiener process
(i.e., idealized Brownian motion). The diffusion func-
tionσ(x) is the square root of the infinitesimal variance
function and determines the relative influence of the
noise process. The reader is referred to the extensive
literature on SDEs (e.g.,[26–29]) for details.

Before proceeding, it is important to mention that
when the diffusion functionσ(x) depends onx, (3)
can be interpreted in various ways. Mathematically
most convenient is the Itô interpretation[30], in which
the value ofx during an infinitesimal timestep dt is
taken to be the value at the beginning of the timestep,
that is, x = x(t). Another interpretation is due to
Stratonovich[31], who used the value ofx at the
middle of the timestep, that is,x = x(t + (1/2)dt) =
x(t) + (1/2)dx(t) (cf. [32]). We will later see that this
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.1. Cobb’s stochastic catastrophe theory

In an effort to address the questions mentio
bove, Cobb combined deterministic CT with stoch

ic systems theory (e.g.,[18,19,22,20,21]). The use o
tô stochastic differential equations (e.g.,[26]) allowed
obb to establish a link between the potential func
f a deterministic catastrophe system and the statio
robability density function (pdf) of the correspon

ng stochastic process. This leads to definitions
tochastic equilibrium state and stochastic bifurca
hat are compatible with their deterministic coun
arts.

2 In this article we study stochastic bifurcations in terms of the
avior of distributions. An alternative approach is to focus on sa
ath behavior (i.e., Random Dynamical Systems[24,25]).
ifference in interpretation is in fact crucial for a tra
ormation invariant stochastic catastrophe theory.

Cobb interpreted(3) in the Itô sense, and calculat
he stationary pdff (x) by solving the correspondin
okker–Planck equation, yielding

(x) = Na exp[−Vsto(x)], (4)

hereNa is a normalizing constant (cf. p. 270 in[27])
nd the stochastic potential functionVsto(x) is given by

sto(x) = −2
∫ x

a

dz{µ(z) − (1/2)[σ2(z)]′}
[σ2(z)]

, (5)

here µ(z) is the drift function,σ(z) is the diffu-
ion function (cf.(3)), a is an arbitrary interior poin
f the state space, and the prime denotes differ
tion with respect toz. When the diffusion functio

s constant,σ(x) = c, the stochastic potential fun
ion is proportional to the deterministic potential fu
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Fig. 1. Correspondence between the deterministic potential function
V (x) and the probability density functionf (x) for constant diffusion
function σ(x). Stable states correspond to minima of the potential
function and modes of the pdf, whereas unstable states correspond
to maxima of the potential function and antimodes of the pdf.

tion:Vsto(x) = 2V (x)/c2. From(4), it then follows that
f ′(x) = 0 wheneverV ′(x) = 0. To illustrate,Fig. 1
shows the cusp potential functionV (x) = (1/6)x4 − x2

and the pdfs for the corresponding Itô SDE with
σ2(x) = 1/2, 1, and 3/2. The stable and unstable equi-
libria of the potential function are associated with the
modes and antimodes, respectively, of the stationary
pdfs (cf. p. 273 in[27]). A decrease in the diffusion
variance is associated with a pdf that is more sharply
peaked in the neighborhood of the minima of the po-
tential function.

Cobb’s catastrophe fitting procedure (e.g.,[18,21])
inserts a specific catastrophe potential function in(4),
sets σ(x) to a constant and then determines parameter
values using maximum likelihood estimation. To illus-
trate, consider the cusp catastrophe model that is char-
acterized by the potential functionV (x) = (1/4)x4 −
(1/2)cx2 − dx. The method of Cobb proceeds by fitting
the pdf:

p(y|α, β) = N exp

[
−1

4
y4 + 1

2
βy2 + αy

]
, (6)

where N is a normalizing constant. In(6), the ob-
served dependent variablex has been rescaled by

y = (x − λ)/σ, and α and β are linear functions of
the two control variablesc and d as follows: α =
k0 + k1c + k2d andβ = l0 + l1c + l2d. The parame-
tersλ, σ, k0, k1, k2, l0, l1, andl2 can be estimated using
maximum likelihood procedures[22].3

The procedure introduced by Cobb clearly hinges on
the fact that the deterministic potential functionV (x)
and the stationary pdff (x) convey the same informa-
tion about the configuration of critical points (i.e., equi-
librium points, for which the first derivative of the po-
tential function is zero). Under the assumptions that the
diffusion functionσ(x) is constant, and that the cur-
rent measurement scale is not to be nonlinearly trans-
formed, Cobb’s definition of a stochastic stable equi-
librium state as a mode of the pdf is perfectly reason-
able. A qualitative change in the potential function, as
a result of parameter variation, corresponds to a simi-
lar qualitative change in the stationary pdf. In this way,
stochastic bifurcations are characterized by a change in
the number of stochastic stable equilibrium states, that
is, a change in the number of modes of the stationary
pdf.

2.2. The invariance problem

As mentioned in the introduction, deterministic CT
features a classification scheme that allows even an ill-
defined system to be categorized as one of several el-
ementary catastrophes. The only requirement is that
the system’s underlying dynamics is described by(1)
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ith no more than two state variables and four con
ariables. To apply the classification scheme, howe
he system under consideration must be transfor
o its canonical form using diffeomorphic transform
ions. For this reason, the invariance under diffeom
hic transformation [cf.(2)] is a crucial property o
eterministic CT. The main limitation of SCT as d
eloped by Cobb is that it isnot invariant under nonlin
ar diffeomorphic transformation of the measurem
cale. As noted earlier, Cobb himself was well aw
f the discrepancy between deterministic CT and
CT that uses maximum likelihood estimation.
To see why Cobb’s method is not invariant

er nonlinear diffeomorphic transformations, re

3 Hartelman[33,34]developed a robust and flexible computer p
ram,Cuspfit, that implements the method of Cobb.Cuspfit is freely
vailable athttp://users.fmg.uva.nl/hvandermaas/.

http://users.fmg.uva.nl/hvandermaas/
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Fig. 2. Probability density functions are not invariant under transformations I. The left panel shows a variablex that has a standard normal pdf.
The middle panel shows the transformation to a new variabley according toy = ln [x + √

x2 + 0.1]. The right panel shows the pdf fory. The
transformation changes the configuration of critical points, as the left panel is unimodal and the right panel is bimodal.

that the method is based entirely on the shape of
the pdf, and note that a change of variables will in-
voke the chain rule that leads to an additional Ja-
cobian term. Specifically, if the pdf of a continuous
random variablex is f (x), then the pdf of the trans-
formed variabley = ϕ(x) is {f [ϕ−1(y)]}/ϕ′[ϕ−1(y)],
whereϕ−1 is the inverse ofϕ (e.g., pp. 28–30 in[35]).
For instance, a variablex having a standard normal
density,x ∼ N(0, 1),f (x) = (1/

√
2π) exp(−(1/2)x2),

may be transformed to a new variabley by means
of y = ϕ(x) = exp(x). Thenϕ′(·) = exp(·), ϕ−1(·) =
ln(·), and consequentlyϕ′[ϕ−1(y)] = y. Hence, the
density ofy is given by (1/y

√
2π) exp[−(1/2)(lny)2].

The additional Jacobian term 1/ϕ′[ϕ−1(y)] that is in-
volved in the transformation may dramatically al-
ter the shape of the density, changing the con-
figuration of critical points. Therefore, no invari-
ant characteristics can be extracted from the pdf
alone.

Fig. 2 illustrates the above point. The left panel
shows aunimodal, standard normal density for a
variable x. The middle panel shows the diffeomor-
phic transformation y = ϕ(x) = ln[x + √

x2 + a]
for a = 0.1. Note that whena = 1, y = arcsinh(x).
The slope atx = 0 for ϕ(x) is given by 1/

√
a. The

right panel shows the density fory, which is given by
(exp(y) + a exp(−y)/

√
8π) exp{−(1/2)[(1/2)(exp(y) −

a exp(−y))]2}. For 0< a < 1, the density for the trans-
formed variabley is now bimodal, having maxima at

ln(1 + √
1 − a) and ln(1− √

1 − a), and a minimum
at ln(

√
a).

For processes that obey a stochastic differential
equation, the correspondence between the potential
function and the pdf in terms of the configuration of
critical points only holds when the diffusion func-
tion σ(x) is constant, meaning that the noise is ad-
ditive rather than multiplicative. Nonlinear diffeo-
morphic transformations of the measurements gener-
ally result in a diffusion function that is no longer
constant. In such a case, the pdf no longer pro-
vides reliable information with respect to the exis-
tence of stable and unstable states. We underscore
this important observation by considering two concrete
examples.

As a first example,Fig. 3A plots a representative
simulated time series obtained from the cusp catastro-
phe SDE dx = (2x − x3)dt + σ(x) dW(t) with σ(x)=1
[cf. (3)], for which the deterministic potential func-
tion has two stable equilibrium states.4 Fig. 3C shows
that the corresponding pdf is indeed clearly bimodal,
correctly indicating the presence of the two stable
states.Fig. 3B plots the very same data transformed
according to y = (1/2)[exp(3x) − (1/2) exp(−3x)].

4 To avoid clutter, we show results for only a single simulated time
series. The results for other randomly generated time series are qual-
itatively similar, as the reader may ascertain by using the R program
freely available athttp://users.fmg.uva.nl/ewagenmakers/SCT.

http://users.fmg.uva.nl/ewagenmakers/SCT
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Fig. 3. Probability density functions are not invariant under transformations II. Panel (A): A sample times series of 1000 observations from
the cusp catastrophe system dx = (2x − x3)dt + dW(t), simulated with discrete time steps of length 0.1. Panel (B): The same times series as
in panel (A), transformed according toy = (1/2)[exp (3x) − (1/2) exp (−3x)]. Panel (C): The solid black line gives the analytical pdf, and the
dashed black line gives a kernel density estimate for the sample data from panel (A). Panel (D): The solid black line gives the analytical pdf, and
the dashed black line gives a kernel density estimate for the transformed data from panel (B). Panel (E): The solid black line gives the analytical
invariant function, and the dashed black line gives the level crossing function for the sample data from panel (A). Panel (F): The solid black line
gives the analytical invariant function, and the dashed black line gives the level crossing function for the transformed data from panel (B).

Fig. 3D shows that the associated pdf is now unimodal,
falsely suggesting that there is only one stable state. In
Fig. 3C and D, the solid line is the analytical (‘true’)
pdf calculated from the data-generating SDE (using
(3), (4), and the pdf transformation rule mentioned
above), and the dashed line is a standard kernel den-
sity estimate based on the simulated data sets shown
in Fig. 3A and B.5 Fig. 3E and F will be discussed
later.

5 For all kernel density estimation reported here, we used a Gaus-
sian kernel and determined the window widthh using Silverman’s

Fig. 4A illustrates the second example. In this
case, transformation of the measurement scale makes
a single-state system masquerade as a two-state sys-
tem. A representative simulated time series was
obtained from the Ornstein–Uhlenbeck SDE dx =
−xdt + dW(t), for which the deterministic potential
function has a single stable equilibrium state.Fig. 4C
shows that the corresponding pdf is indeed unimodal.

rule of thumbh = 0.9An−1/5 (Eq. 3.31 in[36]), whereA = min
(standard deviation, interquartile range/1.34), andn is the number
of observations.
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Fig. 4. Probability density functions are not invariant under transformations III. Panel (A): A sample times series of 1000 observations from
the SDE dx = −x dt + dW(t), simulated with discrete time steps of length 0.1. Panel (B): The same times series as in panel (A), transformed
according toy = ln[x + √

x2 + 0.01]. Panel (C): The solid black line gives the analytical pdf, and the dashed black line gives a kernel density
estimate for the sample data from panel (A). Panel (D): The solid black line gives the analytical pdf, and the dashed black line gives a kernel
density estimate for the transformed data from panel (B). Panel (E): The solid black line gives the analytical invariant function, and the dashed
black line gives the level crossing function for the sample data from panel (A). Panel (F): The solid black line gives the analytical invariant
function, and the dashed black line gives the level crossing function for the transformed data from panel (B).

Fig. 4B plots the same data transformed according to
y = ln[x + √

x2 + a] with a = 0.01. Fig. 4D shows
that the associated pdf is now bimodal, incorrectly sug-
gesting the existence of two stable states. As inFig. 3,
the solid line inFig. 4C and D corresponds to the an-
alytical pdf calculated from the data-generating SDE,
and the dashed line is a standard kernel density estimate
based on the simulated data sets shown inFig. 4A and
B. Fig. 4E and F will be discussed later.

In sum, the shape of the pdf does not convey
transformation-invariant information as regards the
configuration of equilibrium points of the stochastic
system under study. The following section presents a

straightforward theoretical solution to the problem of
invariance under nonlinear diffeomorphic transforma-
tions of the measurement scale.

2.3. Toward an invariant stochastic catastrophe
theory

The invariance problem outlined above can be
solved once we consider the Itô transformation rule
for stochastic differential equations (SDEs) more care-
fully (see also[33]). Assume a general Itô SDE of the
form dx = µ(x) dt + σ(x) dW(t) [cf. (3)], and a dif-
feomorphic transformationy = ϕ(x). According to the



270 E.-J. Wagenmakers et al. / Physica D 211 (2005) 263–276

Itô transformation rule (p. 95 in[29]; [27]), the trans-
formed SDE is given by

dy = µ̃(y) dt + σ̃(y) dW(t), (7)

where a tilde indicates “transformed”. The transformed
drift function is given by

µ̃(y) = µ(ϕ−1(y))ϕ′(ϕ−1(y))

+ σ(ϕ−1(y))2 1
2ϕ′′(ϕ−1(y)), (8)

and the transformed diffusion function is given by

σ̃(y) = σ(ϕ−1(y))ϕ′(ϕ−1(y)). (9)

As an example, consider the SDE dx = ax dt +
bx dW(t), and the transformationy = ϕ(x) = ln x. The
diffusion functionσ̃(y) of the transformed SDE is then
given byσ̃(y) = b exp(y)ϕ′(exp(y)) = b. Note that the
original SDE has multiplicative noise, whereas the
transformed system has additive noise.

Now recall that the pdf, or the stationary density
functionf is not invariant under transformation because
it is given by

x ∼ f (x)

y = ϕ(x)

}
f̃ (y) = f (ϕ−1(y))

ϕ′(ϕ−1(y))
, (10)

which introduces the extra Jacobian term 1/ϕ′[ϕ−1(y)].
Combining(9) and (10)yields

˜ −1 −1
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t
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Note that the multiplicative diffusion function makes
the invariant function differ from the pdf given in(4)
and (5)only in a seemingly minute detail: the numerator
in the integral contains the factor 1/4 instead of 1/2.
This minute difference is quite fundamental, however,
since the factor 1/2 corresponds to the stationary pdf
from an It̂o SDE, whereas the factor 1/4 results from
a Stratonovich SDE. This can be seen more easily by
rewritingf (x) as

f (x) = N[σ2(x)]v exp

[
2

∫ x

a

µ(z)

σ2(z)
dz

]
, (13)

where v = −1 for the It̂o interpretation, andv =
−(1/2) for the Stratonovich interpretation (cf. pp. 269–
272 in[27]). Multiplication of an It̂o pdf byσ(x) will
effectively transform it to a Stratonovich pdf, save for
the value of the normalizing constant. Thus, another
way to state the above result is to say that the in-
variance property of deterministic catastrophe theory
is preserved under the Stratonovich interpretation of
a stochastic differential equation, but is destroyed un-
der the It̂o interpretation. This result is quite consis-
tent with other studies that also favor the Stratonovich
interpretation over the Itô interpretation for the de-
scription of dynamical systems in physics[37–40].
Of particular relevance for the present discussion is
the work by van Kampen[41], who showed that
the “Langevin approach” of adding external noise6

to a deterministic system in the manner of(3) is
only physically meaningful under the Stratonovich

a
has-
ional
n
bb’s
d is
oise
state
the

cale
ion

d by
d off
f (y)σ̃(y) = f (ϕ (y))σ(ϕ (y)), (11)

showing that the pdff (x) is not invariant under trans-
formation, butf (x)σ(x) is. The diffusion functionσ(x)
needs to be included because it cancels the Jacob
term that is problematic for transformation-invarian
inference when the pdf is considered in isolation. W
will call f (x)σ(x) thetransformation invariant function
I(x), and we believe statistical inference for stochast
catastrophe models should be performed on this fun
tion.

From(11), (4), and (5), some calculation leads to

I(x) = f (x)σ(x)

= Na exp[−Vsto(x)]σ(x)

∝ exp

[
2

∫ x

a

dz

{
µ(z) − 1

4
[σ2(z)]′

}
/[σ2(z)]

]
.

(12)
interpretation.
When the noise termσ(x) is constant, the pdf is

proper measure of the equilibrium points of a stoc
tic catastrophe system, as the pdf is then proport
to the invariant functionI(x). The invariant functio
may thus be considered a generalization of Co
method, because for additive noise Cobb’s metho
identical to the method proposed here. When the n
term is not constant but rather depends on the
of the system, differences between the pdf and
invariance function arise. The invariant functionI(x)
takes account of the “metric” of the measurement s
by an adjustment in terms of the diffusion funct
σ(x).

6 “External” indicates that the source of the noise is unaffecte
the system itself, and that this noise could in principle be turne
by manipulating a parameter.
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2.4. Invariant stochastic catastrophe theory for
multivariate SDEs

This section generalizes the result of the previous
section to the case of multi-dimensional SDEs. Con-
sider the time homogeneous system

d�x = �µ(�x) dt + σ(�x) d �W(t), (14)

(matrices are underlined) and assume thatσ(�x) is non-
singular for all�x. Also assume that the stationary pdf
associated with(14) has a vanishing probability cur-
rent. Letσt denote the transpose ofσ. Define the func-
tion �Z[ �µ, σ, �x] componentwise by

Zi[ �A, B, �x] = 2
∑

j

[σ σt ]−1
ij (�x)

×
[

�µ(�x) − 1

2

∑
k

∂[σ σt ]jk(�x)

xk

]
,

and assume that�Z can be written �Z[ �µ, σ, �x] =
−∇Φsto(�x), that is,�Z is the gradient of some stochastic
potential functionΦsto. Then the stationary pdf of(14)
for which probability current vanishes for all�x is given
by (p. 147 in[29])

f (�x) = exp [Φsto(�x)],

where

Φ

T m
u

µ

σ

H
g sity
f
f

n rom
t

f (�x)|σ(�x)| = K(�x) is a multivariate analogue of the in-
variant functionI(x) of the univariate case.

3. Implementation: estimating the invariant
function via level crossings

The previous sections presented a theoretical anal-
ysis as to why statistical procedures for stochastic
catastrophe models should ultimately be based on
the transformation invariant functionI(x) = f (x)σ(x).
This section discusses how the invariant function can
be estimated from actual data. Obviously, in order to
estimateσ(x) as defined in(3), the data has to be avail-
able in the form of a time series, that is, the data must
have been obtained through successive measurements.
The method proposed here is to estimateI(x) in a single
computation via the so-calledlevel crossing function.

A different approach to the one advocated here
would be to separately estimatef (x) andσ2(x), and
then multiplyf̂ (x) by

√
σ̂2(x). The estimate forf (x)

could be based on a standard kernel density estima-
tion routine (e.g.,[42,36]), and the estimate forσ2(x)
could be based on any of the available nonparamet-
ric diffusion variance estimators. We considered this
approach and implemented the nonparametric diffu-
sion variance estimators developed by Florens (cf.[43–
45]), and Jiang and Knight[46,47]. For the SDEs un-
der consideration in this article, we found that these
two estimators behaved very similarly. Both estimators
w on-
c , the
s ore
a ei-
t will
d s en-
t

i ,
a
v n
x

p

T
e
f te
t

sto(�x) = −
∫ �x

�Z[ �µ, σ, �z] d�z.

he multivariate It̂o transformation rules for the syste
nder consideration are given by (p. 96 in[29])

˜ i(�ϕ(�x)) =
∑

k

Jik(�x)µk(�x) + 1

2

∑
k,m

[σσt ]km(�x)
∂Jik

∂xm

(15)

˜ (�ϕ(�x)) = J(�x)σ(�x) (16)

ereJ(�x) = ∂�ϕ/∂�xt is the Jacobian matrix of�ϕ. The
eneral transformation rule for the probability den

unctions ofY = ϕ(X), X ∼ f (x), readsY ∼ f̃ (y) =
(�ϕ−1(y))/|J(�ϕ−1(�y))|+ (e.g., [35]), where| · |+ de-
otes the absolute value of the determinant. F

his, and from(16), it follows thatf (�ϕ(�x))|σ̃(ϕ(�x))| =
ere systematically biased in their estimation of a n
onstant diffusion variance. As a result of this bias
imple level crossing function provided a much m
ccurate estimate of the invariant function than did

her of the composite methods. For this reason, we
isregard the composite methods, and instead focu

irely on the simple level crossing function.
Consider the level crossing probabilityp∆(x), that

s, the probability that two successive observationsXt

ndXt+∆, lie on opposite sides of a levelx (i.e., one
alue being higher thanx, one value being lower tha
):

∆(x) = p[(Xt − x)(Xt+∆ − x) < 0]. (17)

o clarify the concept of level crossings,Fig. 5shows an
xample time series for which level “x = 6” is crossed
our times, and level “x = 2” is crossed two times. No
hat the occurrence of a level crossing, and hence(17),
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Fig. 5. Illustration of the level crossing function. Level “x = 6” is
crossed four times, and level “x = 2” is crossed two times. A levelx
is crossed when two successive observations, sayXt andXt+∆, lie
on opposite sides ofx. This means that a crossing ofx occurs when
(Xt − x)(Xt+∆ − x) is negative.

depends solely on the rank order of the observations.
This is important because a diffeomorphic transforma-
tion, which is by definition monotonically increasing
or decreasing, does not affect the rank order of the ob-
servations. Hence,p∆(x) is invariant under diffeomor-
phic transformations. In other words, under the diffeo-
morphic transformationy = ϕ(x) the eventXt > x is
equivalent to the eventYt > y.

Florens (lemma 1 in[43]) proved that under mild
regularity conditions for a stochastic system described
by (3) with constant diffusion functionσ(x) = 1, the
probability of crossing a levelx in the next time step∆
is given by

p∆(x) = f (x)
√

2∆/π + O(∆), (18)

whereO is Landau’s symbol.
The invariance of(18) in combination with the

Itô transformation rule allow a generalization of Flo-
rens’ result to non-constant diffusion functions. To see
this, consider an SDE with constant diffusion func-
tion σ(x) = 1 (i.e., an SDE to which Florens’ lemma
may be applied), and a diffeomorphic transformation
y = ϕ(x). The transformed SDE has a non-constant
diffusion functionσ̃(y). From(9) and (10), it follows
thatf (ϕ−1(y)) = f̃ (y)σ̃(y). The invariance of the level

crossing function implies thatp∆(y) = p∆(ϕ−1(y)).
With (18), it follows that for SDEs with constant
and non-constant diffusion functions the probability of
crossing a levelx in the next time step∆ is given by

p∆(x) = f (x)σ(x)
√

2∆/π + O(∆). (19)

Thus, the level crossing function �(x) = p∆(x)/√
2∆/π approximates the invariant functionI(x) =

f (x)σ(x) up to order
√

∆. For empirical data, an es-
timate of the level crossing probabilityp∆(x) is easily
obtained by averaging the number of actual crossings.
Let Cx(Xk, Xk+1) denote whether or not levelx was
crossed by successive observationsXk andXk+1, as
follows:

Cx(Xk, Xk+1) =
{

1 (Xk − x)(Xk+1 − x) < 0,

0 otherwise.

(20)

An estimate of the level crossing function,�̂(x), is then
given by

�̂(x) = 1√
2∆/π

1

n − 1

n−1∑
i=1

Cx(Xk, Xk+1), (21)

wheren is the total number of observations. Hartel-
man[33] showed that̂�(x) converges almost surely, and
converges in distribution, to�(x). Furthermore, when
n
√

∆ → ∞ as∆ → 0 andn → ∞, �̂(x) is asymptot-
ically unbiased and pointwise consistent (pp. 151–153
i

a ion
a
F usp
S .
T i-
n solid
b ted
t ction
� l and
t t for
a nt
f tion
o ns
s act
t rium
s

n [33]).
We now return to our earlier examples (i.e.,Figs. 3

nd 4) and consider the theoretical invariant funct
nd the estimated level crossing function.Fig. 3E and
show the invariant functions for the example c

DE time series shown inFig. 3A and B, respectively
he ‘true’ analytical invariant functions for the orig
al SDE and the transformed SDE are shown as
lack lines. The invariant functions for the simula

ime series, as estimated by the level crossing fun
ˆ(x), are shown as dashed black lines. The origina
ransformed invariant functions are identical excep

stretching along thex-axis, and hence the invaria
unctions are the same with respect to the configura
f critical points. In this particular case, both functio
how clear bimodality. This is consistent with the f
hat the data-generating cusp SDE has two equilib
tates.
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Fig. 4E and F show the invariant functions for the
exemplary data from the Ornstein–Uhlenbeck SDE
dx = −x dt + dW(t). The Ornstein–Uhlenbeck SDE
has a single equilibrium state. The invariant functions
for the original time series and for the transformed time
series convey the same information with respect to the
number of stable states: both functions are unimodal,
correctly indicating a single equilibrium state.Figs. 3
and 4both illustrate how consideration of the invariant
function (panels E and F) may lead to conclusions that
differ dramatically from those reached based on a con-
sideration of the pdf (panels C and D). In addition, there
is good agreement between the estimated level crossing
function �̂(x) and the theoretical invariant function.

4. Application

The applications discussed in this section con-
cern the duration of eruptions from the Old Faith-

ful geyser in Yellowstone National Park, USA[48],
and the X-ray flux measured from the galactic black
hole Cygnus X–1[49,50]. It is not our aim to dis-
cuss the data-generating mechanisms from the Old
Faithful geyser or the Cygnus X–1 black hole. Rather,
we have included these applications in order to show
that the inconsistency between the pdf and the in-
variant function with respect to the number of sta-
ble states is more than just a theoretical possibility.
In addition, the applications may be helpful to bet-
ter understand the situations in which inconsistencies
arise.

4.1. Eruption durations from the Old Faithful
geyser

The first application concerns the eruption dura-
tions of the famous Old Faithful geyser, recorded
continuously from August 1 to August 15, 1985
([48], see also[36] for the analysis of a similar

F yser. P ram and
k stimat
ig. 6. Analysis of eruption durations from the Old Faithful ge
ernel density estimate of the data from panel (A). Panel (C): E
anel (A): Time series of eruption durations. Panel (B): Histog
ed level crossing function of the data from panel (A).
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Fig. 7. Analysis of X-ray flux from the Cygnus X–1 galactic black hole. Panel (A): Time series of X-ray flux. Panel (B): Histogram and kernel
density estimate of the data from panel (A). Panel (C): Estimated level crossing function of the data from panel (A).

data set).7 Fig. 6A shows the duration of 299 erup-
tions.

As can be seen fromFig. 6B, the frequency his-
togram and the associated kernel density estimate are
bimodal. According to the method of Cobb, this bi-
modality suggests the existence of two stable states.
However,Fig. 6C shows that the estimated invariant
level crossing function has only a single mode, albeit
a very flat one. Thus, for this particular time series the
invariant function does not provide any evidence for
two stable states.

The reason for the discrepancy between the pdf and
the level crossing function lies in the oscillating nature
of the time series. An oscillating time series such as a

7 This time series comes with the statistical software package R
[51]. In this data set, some nocturnal measurements of duration were
coded as 2, 3 or 4 min, having originally been described as “short”,
“medium”, or “long” [48].

single frequency sine wave will yield a bimodal pdf.
Nevertheless, such a system does not have two stable
states, and the level crossing function will be flat.

4.2. X-ray flux from the Cygnus X–1 galactic black
hole

The second application concerns the flux from the
Cygnus X–1 black hole, monitored from 1996 to 2003
with the Rossi X-ray Timing Explorer[49,50]. Fig. 7A
shows the firstn = 10,000 observations.8

A visual inspection ofFig. 7A suggest that in the
interval betweent = 1700 andt = 3700, the flux of
Cygnus X–1 is both higher and more variable than at

8 The complete time series (n = 34,256) shows a similar pattern of
results, albeit much less pronounced. By focusing on the first 10,000
observations, the relative contribution of the data component with
high flux and high variability is increased. This more clearly brings
out the difference between the pdf and the invariance function.
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the other measurement occasions. The pdf, plotted in
Fig. 7B, does not reflect the intuition that Cygnus X–
1 has more than one mode of operation, although the
right tail of the pdf is admittedly pronounced.Fig. 7C
shows that the invariant level crossing function does
provides clear evidence for bimodality.

The discrepancy between the pdf and the level cross-
ing function can be understood by noting that the level
crossing function provides an estimate of the invari-
ant quantityf (x)σ(x). The diffusion functionσ(x) is
relatively high for the observations in the interval be-
tweent = 1700 andt = 3700, thereby intensifying the
contribution of this component.

In sum, the applications to the eruptions from the
Old Faithful geyser and the flux from the Cygnus X–
1 galactic black hole highlight the practical ramifica-
tions of our theoretical analysis. The invariant function
I(x) = f (x)σ(x) is a reliable indicator of the number
of equilibrium states. The probability density function,
however, can be misleading in this respect.

5. Concluding remarks

Deterministic catastrophe theory is concerned with
the configuration of a system’s equilibrium points.
The qualitative pattern of equilibrium points is robust
against diffeomorphic transformations of the measure-
ment scale. The stochastic counterpart of catastrophe
theory, developed by Loren Cobb (e.g.,[21]) is not in-
v ons
o roba-
b n-
e por-
t astic
c

t n-
e -
p of a
S this
f lose
c ical
a od
b ined
h he-
s with
d

We have stressed throughout this article that consid-
eration ofI(x) may lead to quite different conclusions
than does consideration off (x) alone. We have pre-
sented this work in the context of catastrophe theory.
However, the issue of multimodality is also of interest
for several applications outside the realm of bifurca-
tion theory. Whenever data are available in the form of
a time series such as stock market fluctuations or fluc-
tuations in the weather, we strongly recommend the
use ofI(x) over the use off (x). When data are not
available in the form of a time series, the researcher
should realize that nonlinear diffeomorphic transfor-
mations change the shape off (x) at will. This is not a
concern when there are strong reasons to believe that
the underlying mechanism is linearly related to the be-
havioral variable. In many fields of research, however,
the choice of a measurement scale is to some extent
arbitrary[52]. In such cases, the shape of the pdf is not
informative with respect to the nature of the underlying
mechanism.
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