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Abstract

Catastrophe theory is a mathematical formalism for modeling nonlinear systems whose discontinuous behavior is determined
by smooth changes in a small number of driving parameters. Fitting a catastrophe model to noisy data constitutes a serious
challenge, however, because catastrophe theory was formulated specifically for deterministic systems. Loren Cobb addressed
this challenge by developing a stochastic counterpart of catastrophe theory (SCT) basestarhkstic differential equations.

In SCT, the stable and unstable equilibrium states of the system correspond to the modes and the antimodes of the empirical
probability density function, respectively. Unfortunately, SCT is not invariant under smooth and invertible transformations
of variables—this is an important limitation, since invariance to diffeomorphic transformations is essential in deterministic
catastrophe theory. From thé ltransformation rules we derive a generalized version of SCT that does remain invariant under
transformation and can include Cobb'’s SCT as a special case. We show that an invariant function is obtained by multiplying the
probability density function with the diffusion function of the stochastic process. This invariant function can be estimated by

a straightforward time series analysis based on level crossings. We illustrate the invariance problem and its solution with two
applications.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction
* This article is based in part on Pascal Hartelman'’s thesis, which
is available upon request from Han van der Maas. R code for ~ Ever since its creation by Thofd] and its sub-
the functions discussed here is available onlinbta://users.fmg. sequent popularization by Zeem§h?3], catastrophe
wa.nlfewagenmakers/SCT theory (CT) has been applied to a wide range of
Corresponding author. Tel.: +31 20 5256908. different systems from physics, engineering, biology,
E-mail addresses: ewagenmakers@fmg.uva.nl hol d iol A I bset of if
(E.-J. Wagenmakers), pmolenaar@fmg.uva.nl (P.C.M. Molenaar), psychology, and sociology. A small subset o Sp?CI IC
grasman@psy.uva.nl (R.P.P.P. Grasman), hvdmaas@fmg.uva.nl phenomena that were analyzed a_nd modeled using CcT
H.L.J. van der Maas). includes quantum morphogenesis, the formation of
q phog
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caustics in ray optics, the stability of ships, the stability (p. 59 in[5]):

of black holes, the surface changes in interatomic

potential, Euler struts, the size of bee societies, Vi(x;c) = Va(p(x;c);n(c)) + v(c). )
morphogenesis or cell differentiation in embryology,

bistability of perception, binocular vision, motor learn-

ing, sudden transitions in attitudes, and the cognitive

devel t of child for detail 15)). In all 4 : Do
evelopment of children (for details sge-15). In & The invariance property isinherentto CT and allows

these applications, the behavior of the system under it to classi : belonaing t Il set of
study shows sudden, discontinuous changes or phasé 0¢C a_ssﬁy Systems as belonging to a smafl set o
transitions as a result of small, continuous changes qualitatively different models, the so-called elementary

in variables that influence the system (cf. the freezing ;:atas:r?phes_(li)Tder th; fc onstral?t tlhat t.h%rle l:?e at most
of water when temperature is gradually decreased, wo state variables and four control variables; Esde

or the collapse of a bridge under slowly mounting fordetauls)_. The_majorthemeo_ft_h|_sart|cle|stodevelop
pressure). a stochastic variant of deterministic catastrophe theory

In general, CT applies to systems that may respond tha;\|scc_?n5|st3nt V\:'th tr(;e mvane;)nie ptrct)per':y. icalth
to continuous changes in control variables by a discon- s &1 was developed as an abstract topological the-

tinuous change from one equilibrium state to another. ory for dgtermlnlstlc systems, it may not be |mmed|.-
For clarity of exposition we first discuss the case of a ately obvious how to extend the theory to stoqhastlc
single state variable (see[5] for higher-order catas- systems. Loren Cobb was the_flrst to_address this prob-
trophes that can have more than one state vari::xble).l(:"m and propose a stochastic version of catastrophe

L - theory (SCT;[18-21). In Cobb’s method of maxi-
CT implies that the behavior of the system under stud S L
follclwsl v y . Hay mum likelihood estimation (MLE), stable and unsta-

ble equilibria are associated with the modes and anti-

—dV(x) d B modes, respectively, of the system’s stationary proba-

’ bility density function (pdf). In contrast to deterministic
catastrophes, however, Cobb’s stochastic catastrophes
are not invariant under nonlinear diffeomorphic trans-
formations. This highlights an important discrepancy
between deterministic CT and its stochastic counter-
part, as Cobb duly acknowledged: “However, MLE’s
are not invariant under general diffeomorphisms of the
measured variables. Therefore, much of the topologi-
cal generality of catastrophe theory may have been lost
in the statistical portion of our theory” (p. 317 [22];
see alsg23)).

In this article we generalize the method of Cobb
by taking into account the 8t transformation rule,
thereby arriving at the non-normalized stationary den-
sity function of a Stratonovich stochastic differential
equation. In contrast to the method of Cobb, this gen-
eralized SCT is unaffected by smooth and invertible
transformationg. We show that an invariant function

Geometrically,(2) entails that a transformation that
smoothly bends or stretches an object preserves its
topological features (cf. pp. 90-92 [iB]).

dx =

meaning that the state of the system will change
as a result of a change iH(x). V(x) is a poten-
tial function, and incorporates the control variables
c1,¢2,...,cy. The system is in equilibrium when
dV(x;c1,c2,...,cy)/dx = 0. Thus, CT is concerned
with systems that move toward an equilibrium state of
minimum “energy” (i.e., gradient dynamical systems;
for a detailed treatment s¢&,6,16,17).

CT offers a mathematical basis for the classifica-
tion of gradient dynamical systems with respect to the
number and type of critical points. This configuration
of critical points is invariant under diffeomorphic co-
ordinate transformations, that is, transformations that
are smooth (i.e., differentiable up to arbitrary order)
and invertible (i.e., one-to-one). This means that two
systems are equivalent when their potential functions
can be transformed into one another. Specifically, as-
sume two equivalent potential functio®g(x; ¢) and
Va(y; d), consisting here of one state variable and one
control variable. Equivalence means that there exist dif- ) _ ,
feomorphic transformations = ¢(x; ¢) andd = n(c), as the behavioral varlqbles (i.e., the measurement scales). Although

our conceptual focus is on transformations of measurement scales,

and a smooth, real functigr(c) such tha_-t the potential  the results reported here hold regardless of what type of variable is
functions can be locally transformed into one another transformed.

1 These transformations may involve the control variables as well
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may be obtained by multiplying the probability den- The method of Cobb will be discussed by consider-
sity function by the diffusion function of the stochastic ing a system of one state variable and several control
process. This invariant function preserves the configu- variables, whose dynamics ob@y. For ease of presen-
ration of critical points under diffeomorphic transfor- tation the explicit dependence of the potential function
mation. Thus, the generalized SCT outlined here offers on the control variables is omitted. The deterministic
a methodology to test transition hypotheses in stochas-behavior of the system described (&) can be made

tic systems that is fully consistent with deterministic stochastic and put in the form of a stochastic differ-

catastrophe theory. ential equation (SDE) by simply adding a stochastic
The outline of this paper is as follows. Secti@n Gaussian white noise driving ternir):
outlines stochastic catastrophe theory. We describe the —dV(x)

pioneering work by Cobb, and point out the invari- dx =
ance problem. Next, we extend Cobb’s work to derive
ageneralized SCT thatis invariantunder diffeomorphic The deterministic term on the right-hand side,
transformations. This is the core of the paper. Se@ion —dV(x)/dx, is thedrift function u(x), while o(x) is
outlines a time series method based on level crossingsthe diffusion function, and W(z) is a Wiener process
to estimate the invariant function. Sectiiilustrates  (i-€., idealized Brownian motion). The diffusion func-

the use of the invariant function with two applications. tiono(x) is the square root of the infinitesimal variance
Section5 concludes. function and determines the relative influence of the

noise process. The reader is referred to the extensive
literature on SDEs (e.g[26—29) for details.
2. Stochastic catastrophe theory Before proceeding, it is important to mention that
when the diffusion functions(x) depends orx, (3)
Most practical scientific investigations are subject can be interpreted in various ways. Mathematically
to some sort of noise, originating either from imperfect Most convenient is thedtinterpretatiof30], in which
measurement or from the inherent stochastic nature ofthe value ofx during an infinitesimal timestepr ds
the system under study. What happens to catastrophetaken to be the value at the beginning of the timestep,
models when the underlying dynamics is contaminated that is, x = x(r). Another interpretation is due to
by a non-negligible amount of noise? Is it still possible Stratonovich[31], who used the value of at the
to apply CT to such cases? And how should this be Middle of the timestep, that is, = x(r + (1/2)d) =

dt + o(x)dW (7). 3)

accomplished® x(r) + (1/2)dx(z) (cf. [32]). We will later see that this
difference in interpretation is in fact crucial for a trans-
2.1. Cobb’s stochastic catastrophe theory formation invariant stochastic catastrophe theory.

Cobb interprete@3) in the It sense, and calculated

In an effort to address the questions mentioned the stationary pdff(x) by solving the corresponding
above, Cobb combined deterministic CT with stochas- Fokker—Planck equation, yielding
tic systems theory (e.d18,19,22,20,28] The use of /1y _ N expl Varo(t)], (4)
Ito stochastic differential equations (e[@6]) allowed _ o
Cobb to establish a link between the potential function whereN,, is a normalizing constant (cf. p. 270[@7])
of a deterministic catastrophe system and the stationaryand the stochastic potential functi®go(x) is given by
probability density function (pdf) of the correspond- x g (1262
ing stochastic process. This leads to definitions of a Vsio(x) = —2/ Hn () (2/ "] },
stochastic equilibrium state and stochastic bifurcation a [o(2)]
that are compatible with their deterministic counter- where u(z) is the drift function,o(z) is the diffu-
parts. sion function (cf.(3)), a is an arbitrary interior point

of the state space, and the prime denotes differenti-

" 2 Inthis article we study stochastic bifurcations in terms of the be- ation with respect ta. When the diffusion function

havior of distributions. An alternative approach is to focus on sample i_s cqnstant,a(_x) =c, the StOCha.St_iC. potentia_l func-
path behavior (i.e., Random Dynamical Systd@#25)). tion is proportional to the deterministic potential func-

(5)
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Probability Density Functions y=(x—A)/o, anda and 8 are linear functions of
the two control variableg and d as follows: o« =
- 6¥(x)=05 ko + k1c + kod and 8 = lg + l1¢ + I2d. The parame-
— f(x)=1 y tersa, o, ko, k1, k2, lg, 1, andl» can be estimated using
\ / \ maximum likelihood procedurg@2].
R The procedure introduced by Cobb clearly hinges on
the fact that the deterministic potential functi®ix)
and the stationary pdf(x) convey the same informa-
tion about the configuration of critical points (i.e., equi-
librium points, for which the first derivative of the po-
Potential Function tential function is zero). Under the assumptions that the
diffusion functiono(x) is constant, and that the cur-
® rent measurement scale is not to be nonlinearly trans-
formed, Cobb’s definition of a stochastic stable equi-
_ /‘\ librium state as a mode of the pdf is perfectly reason-
Lo T . . 1 T ) able. A qualitative change in the potential function, as
-3 2 -1 0 1 2 3 a result of parameter variation, corresponds to a simi-
x lar qualitative change in the stationary pdf. In this way,
Fig. 1. Correspondence between the deterministic potential function stochastic bifurcations gre character_l_ze(_j byachangein
V(x) and the probability density functiof(x) for constant diffusion  the number of stochastic stable equilibrium states, that

function o(x). Stable states correspond to minima of the potential iS, @ change in the number of modes of the stationary
function and modes of the pdf, whereas unstable states correspondpdf_
to maxima of the potential function and antimodes of the pdf.

08

Density
00 04

V(x)

2.2. The invariance problem
tion: Vsio(x) = 2V (x)/c2. From(4), it then follows that
f'(x) = 0 wheneverV’(x) = 0. To illustrate,Fig. 1 As mentioned in the introduction, deterministic CT
shows the cusp potential functioffx) = (1/6)x* —x*  features a classification scheme that allows even anill-
and the pdfs for the correspondingd ISDE with  gefined system to be categorized as one of several el-
o%(x) = 1/2,1, and 32. The stable and unstable equi- ementary catastrophes. The only requirement is that
libria of the pote_zntial function are associated wit_h the ihe system’s underlying dynamics is described by
modes and antimodes, respectively, of the stationary yith no more than two state variables and four control
pdfs (cf. p. 273 in27]). A decrease in the diffusion  yariaples. To apply the classification scheme, however,
variance is associated with a pdf that is more sharply the system under consideration must be transformed
peaked in the neighborhood of the minima of the po- g jts canonical form using diffeomorphic transforma-

tential fU'”CtiO”- N tions. For this reason, the invariance under diffeomor-
~ Cobb’s catastrophe fitting procedure (e[¢8,21) phic transformation [cf(2)] is a crucial property of
inserts a specific catastrophe potential functiof deterministic CT. The main limitation of SCT as de-

sets o(x) to a constant and then determines parameter ye|oped by Cobb is that it isot invariant under nonlin-
values using maximum likelihood estimation. To illus- g4y diffeomorphic transformation of the measurement
trate, consider the cusp catastrophe model that is char-gcg1e. As noted earlier. Cobb himself was well aware

acterized by the potential function(x) = (1/4)x* — of the discrepancy between deterministic CT and his

(1/2)ex? — dr. The method of Cobb proceeds by fitting  SCT that uses maximum likelihood estimation.

the pdf: To see why Cobb’s method is not invariant un-
1 1 der nonlinear diffeomorphic transformations, recall

POl ) = Nexp| =2y + Spy> +ay| . 6)

. . 3 Hartelmar{33,34]developed a robust and flexible computer pro-
whereN is a norma“Z'.ng constant. 1(6), the ob- gram,Cuspfit, that implements the method of Colhuspfit is freely
served dependent variable has been rescaled by available ahttp:/users.fmg.uva.nl/hvandermaas/
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Fig. 2. Probability density functions are not invariant under transformations I. The left panel shows a watiableas a standard normal pdf.
The middle panel shows the transformation to a new varighlecording toy = In [x + +/x2 + 0.1]. The right panel shows the pdf for The
transformation changes the configuration of critical points, as the left panel is unimodal and the right panel is bimodal.

that the method is based entirely on the shape of |n(1+ ./T=4) and In(1- +/1— a), and a minimum

the pdf, and note that a change of variables will in-
voke the chain rule that leads to an additional Ja-
cobian term. Specifically, if the pdf of a continuous
random variabler is f(x), then the pdf of the trans-
formed variabley = ¢(x) is { fle™ ()]}/¢'Te ()],
wherep 1 is the inverse ob (e.g., pp. 28-30 ifi35]).

For instance, a variable having a standard normal
densityx ~ N(0, 1), f(x) = (1/+/2r) exp(—(1/2)x?),
may be transformed to a new variableby means

of y = ¢(x) = exp(x). Theny'()) = exp(), ¢ () =
In(-), and consequently/[¢~1(y)] = y. Hence, the
density ofy is given by (¥ y«/27) exp[—(1/2)(In y)?].

The additional Jacobian terny/@[¢~1(y)] that is in-
volved in the transformation may dramatically al-
ter the shape of the density, changing the con-
figuration of critical points. Therefore, no invari-
ant characteristics can be extracted from the pdf
alone.

Fig. 2 illustrates the above point. The left panel
shows aunimodal, standard normal density for a
variable x. The middle panel shows the diffeomor-
phic transformation y = ¢(x) = In[x + v/x2 + d]
for a = 0.1. Note that whem: = 1, y = arcsinhg).
The slope atc = 0 for ¢(x) is given by ¥./a. The
right panel shows the density for which is given by
(exp(y) + a exp(—y)/~/8r) exp(—(1/2)[(1/2)(exply) —
aexp(y))]?}. ForO< a < 1, the density for the trans-
formed variabley is now bimodal, having maxima at

at In(/a).

For processes that obey a stochastic differential
equation, the correspondence between the potential
function and the pdf in terms of the configuration of
critical points only holds when the diffusion func-
tion o(x) is constant, meaning that the noise is ad-
ditive rather than multiplicative. Nonlinear diffeo-
morphic transformations of the measurements gener-
ally result in a diffusion function that is no longer
constant. In such a case, the pdf no longer pro-
vides reliable information with respect to the exis-
tence of stable and unstable states. We underscore
this important observation by considering two concrete
examples.

As a first exampleFig. 3A plots a representative
simulated time series obtained from the cusp catastro-
phe SDE @ = (2x — x3)dr + o(x) dW (¢) with o(x)=1
[cf. (3)], for which the deterministic potential func-
tion has two stable equilibrium staté&ig. 3C shows
that the corresponding pdf is indeed clearly bimodal,
correctly indicating the presence of the two stable
states.Fig. 3B plots the very same data transformed
according to y = (1/2)[exp(3x) — (1/2) exp(3x)].

4 To avoid clutter, we show results for only a single simulated time
series. The results for other randomly generated time series are qual-
itatively similar, as the reader may ascertain by using the R program
freely available ahttp://users.fmg.uva.nl/ewagenmakers/SCT
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Fig. 3. Probability density functions are not invariant under transformations Il. Panel (A): A sample times series of 1000 observations from
the cusp catastrophe system=d (2x — x3)dr + dW(r), simulated with discrete time steps of length 0.1. Panel (B): The same times series as

in panel (A), transformed according o= (1/2)[exp (3x) — (1/2) exp (3x)]. Panel (C): The solid black line gives the analytical pdf, and the
dashed black line gives a kernel density estimate for the sample data from panel (A). Panel (D): The solid black line gives the analytical pdf, and
the dashed black line gives a kernel density estimate for the transformed data from panel (B). Panel (E): The solid black line gives the analytical
invariant function, and the dashed black line gives the level crossing function for the sample data from panel (A). Panel (F): The solid black line
gives the analytical invariant function, and the dashed black line gives the level crossing function for the transformed data from panel (B).

Fig. 3D shows that the associated pdf is now unimodal, Fig. 4A illustrates the second example. In this
falsely suggesting that there is only one stable state. In case, transformation of the measurement scale makes
Fig. 3C and D, the solid line is the analytical (‘true’) a single-state system masquerade as a two-state sys-
pdf calculated from the data-generating SDE (using tem. A representative simulated time series was
(3), (4), and the pdf transformation rule mentioned obtained from the Ornstein—~Uhlenbeck SDE -4
above), and the dashed line is a standard kernel den-—xdt + dW(z), for which the deterministic potential
sity estimate based on the simulated data sets shownfunction has a single stable equilibrium stéfey. 4C
in Fig. 3A and B® Fig. 3 and F will be discussed shows that the corresponding pdf is indeed unimodal.
later.

rule of thumbi = 0.94n~Y5 (Eq. 3.31 in[36]), where A = min

5 For all kernel density estimation reported here, we used a Gaus- (standard deviation, interquartile rangel1.34), andu is the number
sian kernel and determined the window widttlusing Silverman’s of observations.
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Fig. 4. Probability density functions are not invariant under transformations Ill. Panel (A): A sample times series of 1000 observations from
the SDE d = —x dr + dW(r), simulated with discrete time steps of length 0.1. Panel (B): The same times series as in panel (A), transformed
according toy = In[x + +/x2 4+ 0.01]. Panel (C): The solid black line gives the analytical pdf, and the dashed black line gives a kernel density
estimate for the sample data from panel (A). Panel (D): The solid black line gives the analytical pdf, and the dashed black line gives a kernel
density estimate for the transformed data from panel (B). Panel (E): The solid black line gives the analytical invariant function, and the dashed
black line gives the level crossing function for the sample data from panel (A). Panel (F): The solid black line gives the analytical invariant
function, and the dashed black line gives the level crossing function for the transformed data from panel (B).

Fig. 4B plots the same data transformed according to straightforward theoretical solution to the problem of

y = In[x + v/x2 + a] with a = 0.01. Fig. 4D shows invariance under nonlinear diffeomorphic transforma-

that the associated pdf is now bimodal, incorrectly sug- tions of the measurement scale.

gesting the existence of two stable states. ABith 3,

the solid line inFig. 4C and D corresponds to the an-  2.3. Toward an invariant stochastic catastrophe

alytical pdf calculated from the data-generating SDE, rheory

and the dashed line is a standard kernel density estimate

based on the simulated data sets showfidn 4A and The invariance problem outlined above can be

B. Fig. 4E and F will be discussed later. solved once we consider thedltransformation rule
In sum, the shape of the pdf does not convey for stochastic differential equations (SDEs) more care-

transformation-invariant information as regards the fully (see alsd33]). Assume a generaldtSDE of the

configuration of equilibrium points of the stochastic form dv = u(x) dr + o(x) dW(r) [cf. (3)], and a dif-

system under study. The following section presents a feomorphic transformation = ¢(x). According to the
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Itd transformation rule (p. 95 if29]; [27]), the trans-
formed SDE is given by

dy = iu(y) dr 4 5 (y) dW (1), ()

where atilde indicates “transformed”. The transformed
drift function is given by

i(y) = wle )¢’ (0 ()
+o(e )30  (0710)). (8)

and the transformed diffusion function is given by

ORI RO A )} 9)

As an example, consider the SDEx & axd:+
bx dW(r), and the transformation= ¢(x) = In x. The
diffusion functionag(y) of the transformed SDE is then
given bya(y) = bexp(y)¢’(exp(y)) = b. Note that the
original SDE has multiplicative noise, whereas the
transformed system has additive noise.

Now recall that the pdf, or the stationary density
functionfis not invariant under transformation because

it is given by
fle™ ()

X~ f@)] -
} 0= Gt 16)

y = ¢(x)
which introduces the extra Jacobian terfglo~1(y)].
Combining(9) and (10)yields

M) = Fle Mole™0)),

showing that the pdf (x) is not invariant under trans-
formation, butf (x)o(x) is. The diffusion functiormr(x)

(10)

(11)
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Note that the multiplicative diffusion function makes
the invariant function differ from the pdf given i@)

and (5)only in a seemingly minute detail: the numerator
in the integral contains the factoy4 instead of 12.
This minute difference is quite fundamental, however,
since the factor A2 corresponds to the stationary pdf
from an 16 SDE, whereas the factoy4 results from

a Stratonovich SDE. This can be seen more easily by
rewriting f(x) as

' M(Z)dz]
o%(z) ]’
where v = —1 for the 1D interpretation, and =
—(1/2) for the Stratonovich interpretation (cf. pp. 269—
272 in[27]). Multiplication of an 16 pdf by o(x) will
effectively transform it to a Stratonovich pdf, save for
the value of the normalizing constant. Thus, another
way to state the above result is to say that the in-
variance property of deterministic catastrophe theory
is preserved under the Stratonovich interpretation of
a stochastic differential equation, but is destroyed un-
der the 16 interpretation. This result is quite consis-
tent with other studies that also favor the Stratonovich
interpretation over the &t interpretation for the de-
scription of dynamical systems in physi¢37-40]
Of particular relevance for the present discussion is
the work by van Kamperi41l], who showed that
the “Langevin approach” of adding external néise
to a deterministic system in the manner @) is
only physically meaningful under the Stratonovich
interpretation.

When the noise term(x) is constant, the pdf is a
proper measure of the equilibrium points of a stochas-

£(9) = Nlo2W)]" exp [z / (13)

needs to be included because it cancels the Jacobiarjc catastrophe system, as the pdf is then proportional

term that is problematic for transformation-invariant
inference when the pdf is considered in isolation. We
willcall f(x)o(x)thetransformation invariant function

to the invariant function/(x). The invariant function
may thus be considered a generalization of Cobb’s
method, because for additive noise Cobb’s method is

1(x), and we believe statistical inference for stochastic identical to the method proposed here. When the noise

catastrophe models should be performed on this func-

tion.
From(11), (4), and (5)some calculation leads to

I(x) = f(x)o(x)
= N, expl— Vsto(x)]o(x)

x exp {2 /ax dz {,u(z) - i[az(z)]’} /[62(1)]] )
(12)

term is not constant but rather depends on the state
of the system, differences between the pdf and the
invariance function arise. The invariant functidfx)
takes account of the “metric” of the measurement scale
by an adjustment in terms of the diffusion function

o(x).

6 “External” indicates that the source of the noise is unaffected by
the system itself, and that this noise could in principle be turned off
by manipulating a parameter.
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2.4. Invariant stochastic catastrophe theory for Ff(X)|o(¥)| = K(%) is a multivariate analogue of the in-
multivariate SDEs variant function/(x) of the univariate case.

This section generalizes the result of the previous ) o ) .
section to the case of multi-dimensional SDEs. Con- 3. Implementation: estimating the invariant
sider the time homogeneous system function via level crossings

dx = ji(X) dr + o(X) dW (1), (14) The previous sections presented a theoretical anal-

ysis as to why statistical procedures for stochastic

catastrophe models should ultimately be based on

the transformation invariant functidifx) = f(x)o(x).

This section discusses how the invariant function can

be estimated from actual data. Obviously, in order to

estimater(x) as defined ir{3), the data has to be avail-

Zj[A, B, %] =2 Z[QQt]i;l@) able in the form_ of a time series, that_is, the data must

; have been obtained through successive measurements.

The method proposed here is to estimidig in a single

(matrices are underlined) and assume @) is non-
singular for allx. Also assume that the stationary pdf
associated witt{14) has a vanishing probability cur-
rent. Leto’ denote the transpose @f Define the func-
tion Z[ji, o, ] componentwise by

< @) - 1 Z o o] jk(X) computation via the so-calldevel crossing function.
2 p Xk ’ A different approach to the one advocated here
would be to separately estimajéx) ando(x), and
and assume tha can be written Z[ji, o, X] = then multiply 7(x) by \/62(x). The estimate forf(x)

—Vdgio(X), that is,Z is the gradient of some stochastic could be based on a standard kernel density estima-
potential functiondsto. Then the stationary pdf ¢ii4) tion routine (e.g.[42,36), and the estimate far?(x)
for which probability current vanishes for alis given could be based on any of the available nonparamet-

by (p. 147 in[29]) ric diffusion variance estimators. We considered this
approach and implemented the nonparametric diffu-

F(X) = exp [@sto(X)], sion variance estimators developed by Floreng48
45]), and Jiang and Knight6,47]. For the SDEs un-

where der consideration in this article, we found that these

two estimators behaved very similarly. Both estimators
were systematically biased in their estimation of a non-
constant diffusion variance. As a result of this bias, the
simple level crossing function provided a much more
The multivariate b transformation rules for the system  accurate estimate of the invariant function than did ei-
under consideration are given by (p. 9§29]) ther of the composite methods. For this reason, we will
9T disregard the composite methods, and instead focus en-
tirely on the simple level crossing function.
Consider the level crossing probabilipy (x), that
(15) is, the probability that two successive observatidfs,
and X,y 4, lie on opposite sides of a level(i.e., one
56(0) = J@)oE) (16) :C/;Iue being higher than one value being lower than

Here J(x) = d¢/0x! is the Jacobian matrix af. The

X
PaioF) = — / 71, 0,71 5.

BiGE) = 3 I @ + 5 oo ()
k k,m

00Xy,

general transformation rule for the probability density pal) = pPl(Xi = )(Xira = 2) < 0] (47
functions ofY = ¢(X), X ~ f(x), readsY ~ f(y) = To clarify the concept of level crossindgdg. 5shows an
@ *oN/17@ 1))+ (e.g.,[35]), where| - | de- example time series for which levet ‘= 6" is crossed

notes the absolute value of the determinant. From fourtimes, and level¥ = 2”is crossed two times. Note
this, and from(16), it follows that 7 (¢(x))|5(¢(x))| = that the occurrence of a level crossing, and h¢h@g
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Counting Level Crossings

Fig. 5. lllustration of the level crossing function. Level = 6” is

crossed four times, and level ‘= 2" is crossed two times. A level

is crossed when two successive observations Xsegnd X, 4, lie

on opposite sides of. This means that a crossing.obccurs when
(X; — x)(X;4+4 — x) is negative.

depends solely on the rank order of the observations.
This is important because a diffeomorphic transforma-
tion, which is by definition monotonically increasing
or decreasing, does not affect the rank order of the ob-
servations. Hencesx (x) is invariant under diffeomor-
phic transformations. In other words, under the diffeo-
morphic transformatiory = ¢(x) the eventX; > x is
equivalent to the everlf, > y.

Florens (lemma 1 ij43]) proved that under mild
regularity conditions for a stochastic system described
by (3) with constant diffusion functiow(x) = 1, the
probability of crossing a levalin the next time stept
is given by

palx) = f(x)\/24 /7 4 O(4),

where0 is Landau’s symbol.

The invariance of(18) in combination with the
Itd transformation rule allow a generalization of Flo-
rens’ result to non-constant diffusion functions. To see
this, consider an SDE with constant diffusion func-
tion o(x) = 1 (i.e., an SDE to which Florens’ lemma
may be applied), and a diffeomorphic transformation
y = ¢(x). The transformed SDE has a non-constant
diffusion functiona(y). From(9) and (10) it follows
that f(¢~1(y)) = F(»)5(y). The invariance of the level

(18)
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crossing function implies thapa(y) = pa(e~1(y)).
With (18), it follows that for SDEs with constant
and non-constant diffusion functions the probability of
crossing a levet in the next time step is given by

pa(x) = f(x)o(x)\/24 /7 + O(A). (19)
Thus, the level crossing function £(x) = pa(x)/

J/2A [ approximates the invariant functioi(x) =
f(x)o(x) up to ordery/A. For empirical data, an es-
timate of the level crossing probabilifyx (x) is easily
obtained by averaging the number of actual crossings.
Let C,(Xx, Xx+1) denote whether or not levelwas
crossed by successive observatidf)jsand X1, as
follows:

1 Xk —x)(Xik41—x) <0,

Ce(Xi: Xieyn) = {o otherwise

(20)

An estimate of the level crossing functid}qx), is then
given by

1

i(x) = Z Co(Xk» Xir1) (21)

1
J2A]mn —
wheren is the total number of observations. Hartel-
man[33] showed that (x) converges almost surely, and
converges in distribution, té(x). Furthermore, when
nvA — coasA — 0andn — oo, £(x) is asymptot-
ically unbiased and pointwise consistent (pp. 151-153
in [33]).

We now return to our earlier examples (i.Eigs. 3
and 4 and consider the theoretical invariant function
and the estimated level crossing functiéig. 3E and
F show the invariant functions for the example cusp
SDE time series shown ifig. 3A and B, respectively.
The ‘true’ analytical invariant functions for the origi-
nal SDE and the transformed SDE are shown as solid
black lines. The invariant functions for the simulated
time series, as estimated by the level crossing function
i(x), are shown as dashed black lines. The original and
transformed invariant functions are identical except for
a stretching along the-axis, and hence the invariant
functions are the same with respect to the configuration
of critical points. In this particular case, both functions
show clear bimodality. This is consistent with the fact
that the data-generating cusp SDE has two equilibrium
states.
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Fig. 4E and F show the invariant functions for the ful geyser in Yellowstone National Park, USAS8],
exemplary data from the Ornstein—~Uhlenbeck SDE and the X-ray flux measured from the galactic black
dx = —xdr + dW(¢). The Ornstein—~Uhlenbeck SDE hole Cygnus X-1[49,50] It is not our aim to dis-
has a single equilibrium state. The invariant functions cuss the data-generating mechanisms from the Old
for the original time series and for the transformed time Faithful geyser or the Cygnus X-1 black hole. Rather,
series convey the same information with respect to the we have included these applications in order to show
number of stable states: both functions are unimodal, that the inconsistency between the pdf and the in-
correctly indicating a single equilibrium statéigs. 3 variant function with respect to the number of sta-
and 4both illustrate how consideration of the invariant ble states is more than just a theoretical possibility.
function (panels E and F) may lead to conclusions that In addition, the applications may be helpful to bet-
differ dramatically from those reached based on a con- ter understand the situations in which inconsistencies
sideration of the pdf (panels C and D). In addition, there arise.
is good agreement between the estimated level crossing

function(x) and the theoretical invariant function. 4.1. Eruption durations from the Old Faithful
geyser
4. Application The first application concerns the eruption dura-

tions of the famous OId Faithful geyser, recorded
The applications discussed in this section con- continuously from August 1 to August 15, 1985
cern the duration of eruptions from the Old Faith- ([48], see also[36] for the analysis of a similar

(A) Eruption Duration of Old Faithful Geyser
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Fig. 6. Analysis of eruption durations from the Old Faithful geyser. Panel (A): Time series of eruption durations. Panel (B): Histogram and
kernel density estimate of the data from panel (A). Panel (C): Estimated level crossing function of the data from panel (A).
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(A) Flux from Cygnus X-1

Flux
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Fig. 7. Analysis of X-ray flux from the Cygnus X-1 galactic black hole. Panel (A): Time series of X-ray flux. Panel (B): Histogram and kernel
density estimate of the data from panel (A). Panel (C): Estimated level crossing function of the data from panel (A).

data set). Fig. 6A shows the duration of 299 erup- single frequency sine wave will yield a bimodal pdf.
tions. Nevertheless, such a system does not have two stable
As can be seen frorfrig. 6B, the frequency his-  states, and the level crossing function will be flat.
togram and the associated kernel density estimate are
bimodal. According to the method of Cobb, this bi- 42. X-ray flux from the Cygnus X-1 galactic black
modality suggests the existence of two stable states. ole
However, Fig. 6C shows that the estimated invariant
level crossing function has only a single mode, albeit ~ The second application concerns the flux from the
a very flat one. Thus, for this particular time series the Cygnus X-1 black hole, monitored from 1996 to 2003
invariant function does not provide any evidence for With the Rossi X-ray Timing Explorg#9,50} Fig. 7A
two stable states. shows the first = 10,000 observatiorfs.
The reason for the discrepancy between the pdfand A Visual inspection ofFig. 7A suggest that in the
the level crossing function lies in the oscillating nature interval betweerr = 1700 ands = 3700, the flux of
of the time series. An oscillating time series such as a Cygnus X-1 is both higher and more variable than at

8 The complete time series & 34,256) shows a similar pattern of
7 This time series comes with the statistical software package R results, albeit much less pronounced. By focusing on the first 10,000
[51]. In this data set, some nocturnal measurements of duration were observations, the relative contribution of the data component with
coded as 2, 3 or 4 min, having originally been described as “short”, high flux and high variability is increased. This more clearly brings
“medium”, or “long” [48]. out the difference between the pdf and the invariance function.
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the other measurement occasions. The pdf, plotted in
Fig. 7B, does not reflect the intuition that Cygnus X—
1 has more than one mode of operation, although the
right tail of the pdf is admittedly pronouncellig. 7C
shows that the invariant level crossing function does
provides clear evidence for bimodality.

The discrepancy between the pdf and the level cross-
ing function can be understood by noting that the level
crossing function provides an estimate of the invari-
ant quantity f (x)o(x). The diffusion functiorno(x) is
relatively high for the observations in the interval be-
tweent = 1700 and = 3700, thereby intensifying the
contribution of this component.

In sum, the applications to the eruptions from the
Old Faithful geyser and the flux from the Cygnus X—
1 galactic black hole highlight the practical ramifica-
tions of our theoretical analysis. The invariant function
I(x) = f(x)o(x) is a reliable indicator of the number
of equilibrium states. The probability density function,
however, can be misleading in this respect.

5. Concluding remarks

Deterministic catastrophe theory is concerned with
the configuration of a system’s equilibrium points.
The qualitative pattern of equilibrium points is robust
against diffeomorphic transformations of the measure-
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We have stressed throughout this article that consid-
eration of/(x) may lead to quite different conclusions
than does consideration gf(x) alone. We have pre-
sented this work in the context of catastrophe theory.
However, the issue of multimodality is also of interest
for several applications outside the realm of bifurca-
tion theory. Whenever data are available in the form of
a time series such as stock market fluctuations or fluc-
tuations in the weather, we strongly recommend the
use ofI(x) over the use off(x). When data are not
available in the form of a time series, the researcher
should realize that nonlinear diffeomorphic transfor-
mations change the shape fffx) at will. This is not a
concern when there are strong reasons to believe that
the underlying mechanism is linearly related to the be-
havioral variable. In many fields of research, however,
the choice of a measurement scale is to some extent
arbitrary[52]. In such cases, the shape of the pdf is not
informative with respect to the nature of the underlying
mechanism.
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theory, developed by Loren Cobb (e j@1]) is not in-
variant under nonlinear diffeomorphic transformations
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