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a b s t r a c t

The hot hand phenomenon refers to the popular notion that the performance of sports players is
punctuated by streaks of exceptional performance. During these streaks, the player is said to be ‘hot’, or
even ‘on fire’. Unfortunately, when it comes to assessing evidence for the hot hand phenomenon, human
intuition is inadequate—people are known to perceive streaks even in sequences that are purely random.
Here we develop a new statistical test for the presence of the hot hand phenomenon for binary sequences
of successes and failures. The test compares a constant performance model to a hidden Markov model
with two states (one representing hot performance, and one representing cold performance) and one
probability of switching from one state to the other. We assume appropriately restricted uniform priors
on the model parameters and compute the Bayes factor by integrating the likelihood over the prior. The
test is assessed in a simulation study and applied to real data sets from basketball and from psychology.
Our analysis suggests that it is difficult to find compelling evidence for and against streakiness except for
very long data sequences and extreme forms of streakiness.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

For more than 25 years, the existence of the hot hand phe-
nomenon has been the topic of intense debate in the academic lit-
erature on sports, statistics, and psychology. A player is called ‘hot’
or is said to have ahot hand if ‘‘(. . . ) the performance of a player dur-
ing a particular period is significantly better than expected on the
basis of the player’s overall record’’ (Gilovich, Vallone, & Tversky,
1985, p. 295–296). Sports fans, players, and coaches often express
belief in the hot hand phenomenon; however, several researchers
have argued that the hot hand is nothing but a cognitive illusion.
For instance, Tversky and Kahneman (1974) claimed that people
rely on heuristics when judging the probability of an event and
that these heuristics lead to systematic biases in people’s percep-
tion. Specifically, Gilovich et al. (1985) analyzed shooting records
of basketball players, failed to reject the null hypothesis of constant
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performance, and concluded that the belief in the hot hand rests on
‘‘a general misconception of chance according to which even short
random sequences are thought to be highly representative of their
generating process’’ (p. 295; but see Wardrop, 1995).

Over time, initial academic skepticism towards the existence of
the hot hand phenomenon has givenway to amore balanced view.
Psychologists Gilden andWilson (1995b) explained the occurrence
of streaks in skilled performance by the concept of flow (Csik-
szentmihalyi, 1990). Statisticians applied a series of different tests
to sports such as baseball (Albert, 2008; Albright, 1993; Barry &
Hartigan, 1993), basketball (Albert & Williamson, 2001; Gilovich
et al., 1985; Shea, 2014; Wardrop, 1999), golf (Clark, 2005), bowl-
ing (Dorsey-Palmateer & Smith, 2004), volleyball (Raab, Gula, &
Gigerenzer, 2012), and others, finding mixed support for the hot
hand phenomenon. In a review paper, Bar-Eli, Avugos, and Raab
(2006) listed 11 studies that found support for the hot hand phe-
nomenon and 13 studies that did not.

The importance of the hot hand phenomenon transcends the
domain of sports. As notedbyBar-Eli et al. (2006), ‘‘the hot handde-
bate in sportmaywell influence other domains andprovide bound-
aries for theories that attempt to explain beliefs and behavior in
real environments other than sport’’ (p. 526). One example of this
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general relevance is the studybyGilden andWilson (1995a),whose
work concerned the occurrence of streaky performance in a simple
perceptual task.

The current status of the hot hand phenomenon is not entirely
clear. Part of the problem is that different sports and tasks may
elicit streakiness more than others; an additional complication is
that different researchers use different tests to assess streakiness.
Moreover, classical tests for streakiness such as tests of serial
correlation and the popular Wald–Wolfowitz runs test generally
have low power (Albert & Williamson, 2001; Wardrop, 1999).
With low power to detect deviations from the null model of
constant performance, the absence of evidence for the hot hand
phenomenon does not equal evidence for its absence.

A related issue is that classical tests focus exclusively on the
null hypothesis of constant performance, and do not consider the
plausibility of the data under a specific alternative hypothesis.
Ideally, a test for the hot hand phenomenon compares the null
hypothesis against a concrete alternative model for streakiness, as
this allows one to compute the extent to which the data support
one model over the other (for a brief summary of these and
other Bayesian advantages, see Mulder & Wagenmakers, 2016).
One simple model for streakiness, proposed by Albert (1993) in
the context of baseball batting, is a hidden Markov model with
two states and one transition probability (for a different model
see Albert, 2008). In each baseball game i, the number of successful
at-bats follows a binomial distribution with success probability
pi; when the player is in the hot state, pi = ph, and when the
player is in the cold state, pi = pc , with ph > pc . Following
each game, the player switches states with a fixed probability α =

0.1. Similar models have been proposed, applied, and evaluated in
other work (Albert & Williamson, 2001; Lopes & Oden, 1987; Sun,
2004; Sun &Wang, 2012).

Inspired by the work of Albert, our test for the hot hand
phenomenon uses the Bayes factor to quantify the adequacy of a
constant performancemodel against that of a streaky performance
model. The streaky performance model is a hidden Markov model
with two states and one transition probability. In contrast to Albert
(1993) we do not assign the transition probability α a fixed value,
but rather treat it as a free parameter. Furthermore, Albert (1993)
assumed that a player is in a particular state during an entire game
i (or sometimes an epoch i of arbitrary length), whereaswe assume
that a player can switch states at any time point t . Hence the binary
random variable that indicates success or failure at time t follows
a Bernoulli distribution with a success probability that depends
on the hidden state at time t . The underlying process is assumed
to follow a stationary first-order Markov chain, meaning that the
probability of being in a certain state at time t depends only on the
state occupied at time t − 1.

The outline of this paper is as follows. The first section pro-
vides the mathematical details of the hidden Markov model and
the proposed Bayesian test. The second section reports a simula-
tion study to assess the performance of the Bayesian test. The third
and fourth sections provide application examples with data from
basketball free-throw shooting and perceptual identification, re-
spectively. The final section summarizes our findings and discusses
their ramifications.

2. A two-state Bernoulli hidden Markov model

Consider a first-order hidden Markov model (HMM) with two
possible states at each discrete time point t: St ∈ {0, 1}, where
St = 0 represents the cold state and St = 1 represents the
hot state. We use upper-case letters to denote random variables
and lower-case letters to denote the realization of these random
variables. Switches between the states are governed by so-called
transition probabilities. The one-step transition probability matrix
Γ = (γij)i,j∈{1,2} contains the probability of switching from the hot
to the cold state and vice versa: γij = p(St+1 = 0 | St = 1) =

p(St+1 = 1 | St = 0) = α for i ≠ j and the probability of staying
in a state γij = p(St = 1 | St−1 = 1) = p(St = 0 | St−1 = 0) =

1 − α for i = j. Thus, when α < .5 the states are ‘‘sticky’’ and
when α > .5 the states are ‘‘repelling’’. Only sticky states produce
performance that is consistent with streakiness and the hot hand
phenomenon, and hence the remainder of this paper focuses on
switching probabilities lower than .5.

The state-dependent sequence of random variables {Yt : t ∈ N}

produces the sequence of observations yt , t ∈ {1, . . . , T }. Since we
are concerned only with binary data, Yt is distributed according
to a Bernoulli distribution for all t . Here Yt = 0 indicates failure
(e.g., a miss) and Yt = 1 indicates success (e.g., a hit). A player
can have success both in the hot and in the cold state. However,
the probability of success is by definition higher in the hot than
in the cold state. The random variable Yt therefore has a different
Bernoulli distribution Yt ∼ Bern(pSt ) depending on the current
state St . We denote the probability of success in the hot state by
θh = p(Yt = 1 | St = 1), and the probability of success in
the cold state by θc = p(Yt = 1 | St = 0). For compactness
we define two diagonal matrices p(yt) with t = 1, . . . , T and
yt ∈ {0, 1} which contain the success and failure probabilities for
both states (Zucchini & MacDonald, 2009):

p(yt = 1) =


θh 0
0 θc


and

p(yt = 0) =


1 − θh 0

0 1 − θc


.

The likelihood LHMM of the two-state Bernoulli hidden Markov
model is:

LHMM = δp(y1)Γ p(y2) · · · Γ p(yT )1′ (1)

(Zucchini & MacDonald, 2009, p. 37), where 1′ is a 2-dimensional
rowvector and δ is the initial distribution of theMarkov chain. Here
we assume that a player is equally likely to start in one or the other
state whichmeans δ = (1/2, 1/2). Hence, our two-state HMMhas
three free parameters: the probability θh of success in the hot state,
the probability θc of success in the cold state, and the probability α

of switching between states.
To illustrate the typical shape of the HMM likelihood function

we generated a synthetic data set with 1000 observations from
a HMM with parameters θh = .7, θc = .4, and α = .1. Fig. 1
shows the corresponding likelihood function as a series of con-
tour plots. These plots reveal two kinds of non-identifiability (All-
man, Matias, & Rhodes, 2009; Petrie, 1969). First, for every value of
α the likelihood is symmetric around the main diagonal, indicat-
ing label-switching between θh and θc . This problem can be over-
come by enforcing the constraint θh > θc . Second, when α = .5
there are infinitely many combinations of θh and θc that yield the
same likelihood. Although important for parameter point estima-
tion, these HMM concerns about identifiability are irrelevant for
Bayesian model selection using the Bayes factor.

3. A bayes factor test for streakiness

In order to assess the evidence for and against streaky
performance we compare twomodels. The first model is the HMM
from the previous section, which represents streaky performance.
The second model is a baseline model that assumes a single,
constant success probability θ = p(Yt = 1) for all time points t ∈

N: the constant performance model (CPM). In the case of the CPM
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Fig. 1. Contour plots of the likelihood function for a HMM. Each panel represents a different value of the switching parameter α. The associated synthetic data set featured
1000 observations and was generated under a HMMwith parameters θh = .7, θc = .4, and α = .1.
the observed data yt are the outcome of a sequence of independent
random variables Y1, Y2, Yt , . . . , YT with Yt ∼ Bern(θ) for all
t ∈ N. It follows that the likelihood LCPM of the CPM is:

LCPM = θ k(1 − θ)T−k, (2)

with k the number of successes in the observed sequence of length
T . When α = .5 the HMM reduces to the CPM with parameter
θ = (θh + θc)/2 (see Appendix A for a proof).

In order to assess the evidence that the data provide for the
HMM versus the CPMwe compute the Bayes factor (Jeffreys, 1961;
Kass & Raftery, 1995), that is, the ratio of marginal likelihoods:

BFHC =
p(Y(T )

= y(T )
| HMM)

p(Y(T ) = y(T ) | CPM)
, (3)

whereY(T ) and y(T ) denote the time-ordered vector of randomvari-
ables Y1, Y2, . . . , YT and observations y1, y2, . . . , yT , respectively.
The Bayes factor indicates the change from prior to posterior odds
brought about by the data. When BFHC = .20, for instance, this
indicates that the observed data are 5 times more likely to occur
under the CPM than under the HMM.

The marginal likelihoods are obtained by integrating out the
model parameters over the prior distribution:

p(Y(T )
= y(T )

| HMM)

p(Y(T ) = y(T ) | CPM)

=

 1
0

 1
0

 1
0 p(Y(T )

= y(T )
| θc, θh, α)p(θc)p(θh)p(α) dθcdθhdα 1

0 p(Y(T ) = y(T ) | θ)p(θ) dθ
. (4)

Here we pursue a default, reference-style analysis with indepen-
dent uniform prior distributions for all parameters in both mod-
els. For the HMM, the resulting joint prior specification assigns
equal mass to all parameter values in the unit cube. However, as
priors in Bayesian theory can be used to represent theory (Van-
paemel, 2010; Vanpaemel & Lee, 2012), we restrict the uniform in-
tegration space in two ways. First, sticky-state values for α range
from 0 to .5, halving the integration space. Second, we eliminate
label-switching and consider only those parameter values where
θh > θc , halving the integration space once more—hence, the final
integration space covers only a quarter of the unit cube. Hence we
obtain:

p(Y(T )
= y(T )

| HMM)

p(Y(T ) = y(T ) | CPM)

=
4
 .5
0

 1
0

 θh
0 p(Y(T )

= y(T )
| θc, θh, α) dθcdθhdα 1

0 p(Y(T ) = y(T ) | θ) dθ

=
4
 .5
0

 1
0

 θh
0 δp(y1)Γ p(y2) · · · Γ p(yT )1′ dθcdθhdα 1

0 θ k(1 − θ)T−k dθ

=
4(T + 1)!
k!(T − k)!

 .5

0

 1

0

 θh

0
δp(y1)Γ p(y2) · · ·

× Γ p(yT )1′ dθcdθhdα, (5)

where the last step follows from Euler’s beta integral.
Even though the Bayes factor has an unambiguous and

continuous scale of evidential strength, the upcoming presentation
of results is made easier by using Jeffreys (1961, Appendix B)
discrete classification scheme shown in Table 1. Jeffreys’ labels
facilitate communication but should be considered only as an
approximate descriptive articulation of different standards of
evidence. Note that, in contrast to classical tests, the Bayes factor
allows one to quantify evidence in favor of the CPM. In addition,
the Bayes factor BFHC can also indicate that the data provide
only anecdotal evidence that is ‘‘not worth more than a bare
mention’’.

4. Implementation

In order to approximate the integral for the HMM in Eq. (5),
we used a simple midpoint rule with a subdivision into 100
intervals. If overflow occurred, fewer subdivisions were used.
The numerical integration routine was programmed using the
R system for statistical computing (R Development Core Team,
2012). In addition, since the likelihood is a product ofmatriceswith
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Fig. 2. Distribution of log BFHC for data generated under the CPM as a function of sample size. Each panel is associated with a different value of the success probability θ .
The Bayes factors generally indicate support for the correct data generating model, and this support increases with sample size.
Table 1
Evidence categories for the Bayes factor BFHC (Jeffreys, 1961).

BFHC Strength of evidence

0–1 Negative (supports CPM)
1–3 Not worth more than a bare mention
3–10 Substantial
10–30 Strong
30–100 Very strong
>100 Decisive

elements ranging between 0 and 1 (see Eq. (1)) a scaling algorithm
had to be applied to prevent underflow before sampling from the
likelihood (Zucchini &MacDonald, 2009). The likelihood – or more
precisely the logarithm of the likelihood – was evaluated using the
HiddenMarkovpackage (Harte, 2011). TheR codeused to calculate
the Bayes factor BFHC can be found in Appendix B.

5. Simulation study

5.1. Methods

In order to confirm the correctness of the algorithm and
evaluate the informativeness of data for discriminating be-
tween the HMM and the CPM we conducted a model re-
covery simulation study. In this study we generated synthetic
data from both models and then applied our Bayes factor test
procedure. We considered nine different sample sizes, T =

(50, 100, 200, 400, 800, 1600, 3200, 6400, 12800). For each sam-
ple size category, we simulated data from the CPM for nine differ-
ent values of the success rate parameter, θ = (.1, .2, .3, .4, .5, .6,
.7, .8, .9). We also simulated data from the HMM; here we first
fixed θh to .7, as earlier simulation studies showed that BFHC is
mostly affected by the difference d = θh − θc and is relatively in-
sensitive to the absolute values of θh and θc . We then examined
the factorial parameter combinations involving three levels of the
switching parameter, α = (.1, .25, .40), and three levels of the
parameter that quantifies the success probability in the cold state,
pc = (.4, .5, .6) (i.e., d = (.1, .2, .3)), for a total of 9 cells in the de-
sign. For bothmodels, each of the 9×9 cells in the design contained
100 repetitions.
5.2. Results

We use violin plots (Hintze & Nelson, 1998) to represent the
distribution of log BFHC for each cell in the design. For ease of
interpretation we employ Jeffreys’ classification scheme (Table 1).

5.2.1. Data generated under the CPM
Fig. 2 shows the distribution of log BFHC for nine different data-

generating values of the CPM success probability θ . Because the
data were generated with the CPM, we expect to see support in
favor of the CPM over the HMM (i.e., negative values of log BFHC),
and we expect this support to increase with sample size. Both
expectations are confirmed. Overall, 6690 out of 8100 data sets
(83%) show support for the CPM, and 1922 out of 6690 data sets
(29%) show support for the CPM that is worth more than a bare
mention. Also, evidence in favor of the correct data-generating
CPM grows with the available information: the log BFHC values in
each panel decreasewith sample size. Finally, the evidence in favor
of the CPM is larger when the success probability θ takes on more
extreme values (e.g., θ = (.1, .9)).

5.2.2. Data generated under the HMM
Fig. 3 shows the distribution of log BFHC for different data-

generating values of the HMM parameters. Each row corresponds
to a particular value of the switching probability α, and each
column corresponds to a particular value of the success differential
d (i.e., θh − θc with θh = .7). Because the data were generated
with the HMM, we expect to see support in favor of the HMM
over the CPM (i.e., positive values of log BFHC), and we expect
this support to increase with sample size. Both expectations are
confirmed, albeit with important qualifications. Specifically, the
expected pattern occurs when the states are sufficiently sticky
(i.e., α is relatively low) and the success differential is sufficiently
large (i.e., d is relatively high).

In general, it appears that even for medium sample sizes
the support in favor of the (correct, data-generating) HMM
often fails to exceed the threshold for anecdotal evidence. This
underscores the fact that Bernoulli time series contains relatively
little information, and this tentatively suggests an explanation
as to why the evidence for streakiness in sports is so mixed: in
real-life applications, the data may not be informative enough to
distinguish between a streaky and a non-streaky model.
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Fig. 3. Distribution of log BFHC for data generated under the HMM as a function of sample size. Each panel row is associated with a different switching probability α, and
each column is associated with a different success differential d.
6. Example application 1: basketball free-throw shooting

Here we analyze binary basketball free-throw shooting data
from six consecutive NBA seasons (Yaari & Eisenmann, 2011).
In particular, we illustrate the behavior of our test for free-
throw shooting performance of two iconic basketball players: Kobe
Bryant and Shaquille O’Neal. Kobe Bryant is among the best free-
throw shooters in the NBA.1 Each panel of Fig. 4 shows Bryant’s
performance for a specific season; in addition, each panel provides
the log Bayes factor in favor of the HMM over the CPM. For every
season, Bryant’s data aremore likely under the CPM than under the
HMM. The extent of the support in favor of the CPM ranges from
BFCH = 1/ exp(−0.26) = 1.3 in 2008 to BFCH = 1/ exp(−0.86) =

2.6 in 2006.
In contrast to Kobe Bryant, Shaquille O’Neal is known as an

erratic free-throw shooter at best.2 Each panel of Fig. 5 shows
O’Neal’s performance for a specific season. For every season,
O’Neal’s data are more likely under the HMM than under the CPM.
The extent of the support ranges from BFHC = exp(0.20) = 1.2 in
2010 to BFHC = exp(6.99) = 1085.7 in 2006.

In sum, our Bayes factor test reveals that the data consistently
suggest Kobe Bryant to be a non-streaky free-throw shooter and
Shaquille O’Neal to be a streaky free-throw shooter.

7. Example application 2: perceptual identification

As a second, more elaborate example we analyze data from
a visual discrimination task (Gilden & Wilson, 1995a). On each

1 Among all 197 players active during the 2005–2010 seasons, only 25 had a
higher success rate than Bryant.
2 Among all 197 players active during the 2005–2010 seasons, only 22 had a

lower success rate than O’Neal.
trial, a computer monitor showed two gray squares, one of
which brightened for 16 ms; this was the target square that
participants were instructed to identify. Brightness was adjusted
individually to achieve three different difficulty levels (60, 70, and
90% correct). Each participant completed three blocks in each
difficulty condition for a total of nine blocks. The experiment
featured four participants, yielding 4 × 3 × 3 = 36 time series
overall. Each time series contained 500 trials.

7.1. Methods

We will analyze the Gilden and Wilson time series using
our Bayes factor test and compare the results to those of the
popular Wald–Wolfowitz runs test (Bradley, 1968). Under the null
hypothesis of a constant hitting probability, the number of runs
R is asymptotically normally distributed, R ∼ N (E(R),Var(R)),
with E(R) = 1 + (2n1n2)/n and Var(R) = (2n1n2(2n1n2 −

n))/(n2(n − 1)), where n1 represents the number of runs of
successes, n2 represents the number of runs of failures, and n
represents the sequence length. The standardized test statistic
R′ is the runs z score which is asymptotically distributed as a
standard normal. Here we reject the null hypothesis of constant
performance (and prefer the alternative hypothesis of streaky
performance) whenever R′ < −1.65 (i.e., a one-side test with
significance level .05).

7.2. Results

Fig. 6 plots log BFHC values against runs z scores for each of the
36 time series from Gilden and Wilson. According to the Bayes
factor test, 15 time series (42%) show evidence for streakiness,
13 time series (36%) show evidence that is not worth more than
a bare mention for streakiness, and 8 time series (22%) show
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Fig. 4. Kobe Bryant’s free-throw shooting across six consecutive NBA seasons. For every season, the Bayes factor favors the constant performance model over the hidden
Markov model. For better visualization, all time series are smoothed using a moving window of width 20. The analysis is based on the raw binary results.
Fig. 5. Shaquille O’Neal’s free-throw shooting across six consecutive NBA seasons. For every season, the Bayes factor favors the HMM over the CPM. For better visualization,
all time series are smoothed using a moving window of width 20. The analysis is based on the raw binary results.
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Fig. 6. Results of the Bayes factor test against those of the runs test for 36 visual
discrimination time series from Gilden and Wilson. Values of log BFHC > log(3)
(right of the vertical dashed black line) indicate evidence in favor of the HMM,
whereas log BFHC < − log(3) (left of the vertical dashed black line) indicate
evidence in favor of the CPM. For the runs test, the null hypothesis of constant
performance is rejected when R′ < −1.65 (below the horizontal dashed gray line).

Fig. 7. The upper panel (A: Streaky) shows the Gilden andWilson time series with
the most evidence in favor of the HMM, whereas the lower panel (B: Non-Streaky)
shows the Gilden and Wilson time series with the most evidence in favor of the
CPM. The gray lines show the average performance. For better visualization, both
time series are smoothed using a moving window of width 20.

evidence (not worth more than a bare mention) for the constant
performance model. For seven data sets, the evidence in favor
of streakiness is either very strong or decisive. According to the
runs test, 17 out of 36 time series (47%) are significantly streaky.
The solid black dots in Fig. 6 represent those time series for
which both tests suggest streakiness. The four black dots with
gray border represent the time series for which the Bayes factor
indicates evidence for streakiness, while the runs test is undecided.
The three solid gray dots represent the time series for which the
runs test indicates streakiness, while the Bayes factor approach is
undecided. The other dots represent time series for which both
methods are undecided.

To provide a visual impression of the time series, Fig. 7 shows
the time series marked ‘‘A’’ and ‘‘B’’ in Fig. 6. The time series from
panel A yields a Bayes factor of approximately 3900 in favor of the
HMM over the CPM. This time series shows a pattern that appears
to be streaky with sequences of high performance, and sequences
of low performance. In contrast, the non-streaky time series (panel
B) does not show periods of pronounced deviation from average
performance.

8. Conclusions

Here we outlined a Bayes factor test for the hot hand phe-
nomenon. Inspired by the work of Albert, the Bayes factor test
compares the evidence for two models: a hidden Markov model
(HMM) that represents streaky performance and a constant perfor-
mancemodel (CPM) that represents non-streaky performance. Our
implementation of theHMMused appropriately restricted uniform
priors on the model parameters: first, the success probability is
higher in the hot state than in the cold state, preventing label-
switching; second, the switching probability α is only allowed to
take on values lower than .5, ensuring states are sticky and not re-
pelling. This second restriction resembles that used in a one-sided
hypothesis test where researchers have strong prior expectations
about the direction of an effect. For instance, a replication effort
by Donnellan, Lucas, and Cesario (2015) concerned the hypothe-
sis that lonely people take hotter showers than people who are
not lonely (because lonely people seek to nullify the lack of social
warmth with physical warmth from the shower, Bargh & Shalev,
2012). Although prior mass can be assigned to both negative and
positive values of effect size, the hypothesis under test emphati-
cally predicts that lonely people take hotter showers, not colder
showers (for a Bayesian reanalysis of the bathing data, see Wa-
genmakers, Verhagen, & Ly, in press). In the same manner, the hot
hand phenomenon refers to sticky states, not to repelling states.
By incorporating order-restrictions in the specification of the pri-
ors, the statistical model becomes amore veridical reflection of the
substantive hypothesis at hand, allowing a more informative as-
sessment (e.g., Hoijtink, 2011; Hoijtink, Klugkist, & Boelen, 2008;
Mulder et al., 2009; Vanpaemel, 2010; Vanpaemel & Lee, 2012).

Simulation studies showed thatwhen the data are generated by
the HMM, the evidence in its favor is often unimpressive, unless
the time series is very large (i.e., >2000 observations) or the
HMM parameters are extreme (i.e., very sticky states and large
discrepancy between the success probabilities in the hot and the
cold state). Nevertheless, the time series of Shaquille O’Neal’s free-
throw performance in the 2006 NBA season produced a Bayes
factor of 1085.7 in favor of HMM over CPM; in addition, in the
example application of 36 perceptual identification time series
each 500 trials long, 7 time series yielded very strong or decisive
Bayes factors in favor of the HMM. Such surprisingly high Bayes
factors may arise from model misspecification. For instance, the
presence of a trend (e.g., a gradual loss of concentration) harms the
CPM much more than it harms the HMM. In general, Bayes factors
are a measure of relative support, not absolute support. In other
words, Bayes factors depend not just on the specification of the
streaky model as a two-state HMM, but also on the specification
of the non-streaky model as a CPM. Alternative implementations
of the non-streaky model are possible and worth considering—for
instance, theO’Neal data suggest a non-streakymodel that features
a linear trend.

Our analysis demonstrates that for Bernoulli time series it
may be difficult in practice to discriminate an HMM from a
CPM. Perhaps this inherent ambiguity is to blame for the fact
that the support in favor of the hot hand in sports is as mixed
as it is (Avugos, Köppen, Czienskowski, Raab, & Bar-Eli, 2013;
Bar-Eli et al., 2006). Future work can explore several options
to create a more powerful test. First, subject-specific knowledge
can be included in the prior distributions for the parameters;
here we pursued a reference test and assumed independent
uniform distributions, but informed priors are likely to result in
less ambiguous results (Albert, 1993). Second, one can explore
the possibility of collecting and analyzing continuous variables
instead of binary variables. Finally, one can extend each of the
two competing models by allowing the switching probability to
depend on the state, or by adding a hierarchical structure that
simultaneously takes into account multiple seasons and multiple
players.
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Appendix A

Assumption. If α = .5 and 1
2 (θh + θc) = θ it follows that

L(T )
HMM = L(T )

CPM.

Proof. The likelihood of the CPM is defined as

L(T )
CMP = θ k(1 − θ)T−k,

where k is the number of 1‘s and T is the length of the data set. The
likelihood of the HMM can be written as

L(T )
HMM = δp(y1)Γ p(y2) . . . p(yT )1′

=

2
s1,...,sT=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT psT (yT ),

where st is the hidden state in time point t , γst ,st+1 is the probability
of switching from state st in time t to state st+1 in time t + 1, and
pst (yt) is the probability of the observation yt given state st in time
t with t ∈ {1, . . . , T }.

We prove this assumption by induction over the length of the
data set T . We begin with the base case for T = 1 and differentiate
between two cases. In the case of observing a hit, coded as yt = 1
the likelihood of the HMM is: 1
2

1
2

 θh 0
0 2θ − θh


1
1


=

1
2θh +

1
2 (2θ − θh) = θ.

If we observe a miss which is coded as yt = 0 the likelihood of the
HMM is: 1
2

1
2

 1 − θh 0
0 1 − (2θ − θh)


1
1


=

1
2 (1 − θh + 1 − 2θ + θh) = 1 − θ.

Therefore, the assumption holds for T = 1. We now show that if
the induction hypothesis (IH) L(T−1)

HMM = θ k(1 − θ)(T−1)−k holds for
T − 1, it also holds for T . Again we distinguish two cases. The case
where the last observation is a hit, yT = 1 and the case were the
last observation is a miss yT = 0. If we observe a hit in time T , the
likelihood of the HMM can be written as:

L(T )
HMM =

2
s1,...,sT=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT psT (yT = 0)

=

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT=1psT=1(yT = 0)

+

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT=1psT=2(yT = 0).
Since Γ =

 1
2

1
2

1
2

1
2


if α =

1
2 it follows that γst−1,st =

1
2 for

all t . Additionally, if 1
2 (θh + θc) = θ the probability of a miss

in the ‘‘hot’’ state, sT = 1, equals psT=1(yT = 0) = 1 − θh
and the probability of a miss in the ‘‘cold’’ state, sT = 0, equals
psT=2(yT = 0) = 1− (2θ − θh). Using the induction hypothesis for
T − 1, we get:

L(T )
HMM =

1
2
(1 − θh)

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1

+
1
2
(1 − (2θ − θh))

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2

× ps2(y2) · · · γsT−1,sT−2psT−1

IH
=

1
2
(1 − θh)θ

k(1 − θ)(T−1)−k

+
1
2
(1 − (2θ − θh))θ

k(1 − θ)(T−1)−k

= θ k(1 − θ)(T−1)−k 1
2
(1 − θh + 1 − 2θ + θh)

= θ k(1 − θ)T−k.

If we observe a miss in time T the likelihood of the HMM can be
written as:

L(T )
HMM =

2
s1,...,sT=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT psT (yT = 1)

=

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT=1psT=1(yT = 1)

+

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1γsT−1,sT=1psT=2(yT = 1).

Again, γst−1,st=1 =
1
2 for all t and the probability of a hit in the ‘‘hot’’

state equals psT=1(yT = 1) = θh and the probability of a hit in the
‘‘cold’’ state psT=2(yT = 1) = 2θ − θh. Again, we use the induction
hypothesis for T − 1 and get:

L(T )
HMM =

1
2
θh

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · · γsT−1,sT−2psT−1

+
1
2
(2θ − θh)

2
s1,...,sT−1=1

δs1ps1(y1)γs1,s2ps2(y2) · · ·

× γsT−1,sT−2psT−1

IH
=

1
2
θhθ

k(1 − θ)(T−1)−k
+

1
2
(2θ − θh)θ

k(1 − θ)(T−1)−k

= θ k(1 − θ)(T−1)−k 1
2
(θh + 2θ − θh)

= θ k+1(1 − θ)(T−1)−k
= θ k+1(1 − θ)T−(k+1).
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Appendix B

## requires lattice and HiddenMarkov to run
library(lattice)
library(HiddenMarkov)

# Example: Sequence of Carlos Guillen’s batting outcomes
# for the 2005 season (Albert, 2008), 1 is a hit and 0 is
# out.

Guillen.data <-c(
0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,
1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,1,1,0,
1,0,1,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0,1,1,0,0,
0,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,1,0,1,
0,0,0,1,0,1,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,1,0,
0,0,0,1,1,1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,
1,0,0,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,
0,1,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,
0,0,0,1,0,1,1,0,0,0,1,0,0,0,1)

## the Bayes factor function
## use LogBF = LogBayesfactorHMM(data, gridprecision)
## input parameters are:
## dat: the data in vector form
## intprec: the precision of the integration process, higher is more precise
LogBayesfactorHMM <- function(dat,intprec=50){
grid1 <- 1 / (2 * (intprec - 1)) + seq(0, 1, length = intprec)[-intprec]
grid2 <- 1 / (2 * intprec) + seq(0, 0.5, length = intprec)[-intprec]
len1 <- length(grid1)
len2 <- length(grid2)
indices <- which(upper.tri(matrix(TRUE, len1, len1)), arr.ind = TRUE)
zzz <- matrix(0, nrow(indices), len1)
n <- length(dat)
m <- 2L
phi <- as.double(c(0.5, 0.5))
logalpha <- matrix(as.double(rep(0, m * n)), nrow = n)
lscale <- as.double(0)
memory0 <- rep(as.double(0), m)
for(k in seq_len(len2)){
xPi <- matrix(c(1 - grid2[k], grid2[k],

grid2[k], 1 - grid2[k]), 2, 2)
for(i in seq_len(nrow(zzz))){
prob <-
cbind(grid1[indices[i, 1]]^dat * (1 - grid1[indices[i, 1]])^(1 - dat),

grid1[indices[i, 2]]^dat * (1 - grid1[indices[i, 2]])^(1 - dat))
zzz[i, k] <- .Fortran("loop1", m, n, phi, prob, xPi, logalpha,

lscale, memory0, PACKAGE = "HiddenMarkov")[[7]]
}

}
f <- 699 - max(zzz, na.rm = TRUE)
zzz <- exp(zzz + f)
kMarginalHMM <- log(mean(zzz,na.rm=T)) - f
kMarginalCPM <- lgamma(length(dat[dat == 1]) + 1) + lgamma(length(dat)

- length(dat[dat == 1]) + 1) - lgamma(length(dat) + 2)
BF <- kMarginalHMM - kMarginalCPM
return(BF)

}

# compute log Bayes factor HMM/CPM
# positive log(BF) indicates evidence in favor of HMM
LogBayesfactorHMM(Guillen.data) ## should be approx 0.45
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