
Supplemental Materials for “Bayes Factors for
Reinforcement-Learning Models of the Iowa Gambling Task”

Helen Steingroevera, Ruud Wetzelsb, and Eric-Jan Wagenmakersa
a Department of Psychology, Psychological Methods, University of Amsterdam, The

Netherlands
b PricewaterhouseCoopers, Amsterdam, The Netherlands

In these supplemental materials, we present a recipe on how to obtain Bayes factors

with importance sampling, and two tests to check our implementation of importance

sampling: (1) a model-recovery study, and (2) the Savage-Dickey density ratio test for

each model. In addition, we present the results of a robustness analysis showing that our

conclusions are unaffected by the choice of the priors on the model parameters. Finally, we

present a model comparison study using BIC for the same models and data pool as used in

the article.

Recipe for Importance Sampling

In this section, we present a recipe that describes how we obtained Bayes factors with

importance sampling. We use M(.) to refer to specific model that can either be the EV,

PVL, PVL-Delta, or the VPP model.

1. Fit modelM(.) to the data of participant s = 1.

2. Find the beta distributions (i.e., Beta(α, β)) with the best fit to the posterior

distributions of θ.1 Save the corresponding α and β parameters.
1Note that θ represents a subject and model-specific parameter vector (see Table 2 in the main article

for each model’s parameters). This means that we obtain one beta distribution for each of the parameters
contained in θ.
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3. Draw a set of parameters from the Beta importance densities, and compute the

associated likelihood. Save the likelihood.

4. Repeat the previous step D − 1 times (with D the number of draws).

5. Compute the marginal likelihood using Equation 1.

m(y | M(.)) ≈
1
N

N∑
i=1

p(y | θi,M(.))p(θi | M(.))
g(θi | M(.))

, θi ∼ g(θ | M(.)) (1)

6. Repeat steps 1− 5 for all s ∈ {2, ..., S} (with S the number of participants).

Model-Recovery Studies

In this section, we present the results of the model-recovery study. The purpose of

this study was to confirm that the Bayes factor tends to favor the data-generating model.

This study is based on eight generated data sets: We generated 25 synthetic participants

completing a 100-trial IGT using each of the four models. As data-generating parameters

we used the median parameter values obtained from fitting the models to a subset of the

data used in the article.

We fit each of the four models to the four data sets, and then applied importance

sampling to derive Bayes factors for all possible model comparisons. Analogous to the

analyses reported in the main text, we present histograms showing the distribution of the

log Bayes factors. In addition, we calculated the median posterior model probability for each

model, and the proportion of participants for whom each model has the highest posterior

model probability. The latter two should be high whenever the data-generating model is

the same as the model that was used to fit the data (see also Pitt & Myung, 2002).

Figure 1 shows the distribution of the log Bayes factors of 25 synthetic participants

completing a 100-trial IGT. It is evident that in the case of all models, the majority of

the synthetic participants provides evidence for the data-generating model. This finding is

corroborated by Table 1: The median posterior model probability and the percentage of

participants for whom each model has the largest posterior model probability are highest
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Figure 1 . Histograms of the log(BF) of 25 synthetic participants completing a 100-trial
IGT. Data of the first to fourth row were generated with the EV, PVL, PVL-Delta, and
VPP model, respectively. A positive log(BF12) indicates that the data are more likely to
occur under the first model (i.e., the data-generating model) than under the second model,
whereas a negative log(BF12) indicates that the data are more likely to occur under the
second model (i.e., the model that did not generate the data).
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for the data-generating model. Thus, these results suggest that our implementation of

importance sampling is correct and that the Bayes factor is a useful model comparison tool.

Table 1
Median posterior model probabilities (MPMP) and percentage of participants for whom the
corresponding model has the largest posterior model probability. The data were generated
with either the EV, PVL, PVL-Delta, or VPP model, and describe the performance of 25
synthetic participants on a 100-trial IGT (i.e., first model-recovery study).

Data-generating model
EV PVL PVL-Delta VPP

MPMP % MPMP % MPMP % MPMP %
EV .95 100 .00 12 .07 40 .00 16
PVL .00 0 .69 56 .05 0 .07 12
PVL-Delta .03 0 .02 12 .58 56 .02 8
VPP .02 0 .12 20 .21 4 .69 64

Savage-Dickey Density Ratio Tests

An alternative way to check our implementation of importance sampling is to

investigate whether Bayes factors obtained with our implementation of importance sampling

are in line with Bayes factors obtained with the Savage-Dickey density ratio test (Dickey,

Lientz, et al., 1970; Dickey, 1971). The Savage-Dickey density ratio offers a method to

compute Bayes factors for nested models. In order to be able to compare Bayes factors

obtained with these two different methods, we thus needed to create nested RL models.

This was done by fixing an arbitrary parameter of each model. We decided to fix the a

parameter of each model to a predefined value a0, and indicate nested models by M∗(.).

Thus, the idea is to compare each of the four RL models to its nested version using both

importance sampling and Savage-Dickey.

The Savage-Dickey method is explained in detail in Lee and Wagenmakers (2013),

Vandekerckhove, Matzke, and Wagenmakers (2015), and Wagenmakers, Lodewyckx,

Kuriyal, and Grasman (2010); here, we only provide the main idea: To obtain a Bayes

factor comparing a RL modelMi (where i ∈ {EV, PVL, PVL-Delta, VPP}) to its nested

versionM∗i , we need to divide the prior ordinate at a fixed value of parameter a (i.e., a0)

by the posterior ordinate at that same fixed parameter value. The Bayes factor according
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to the Savage-Dickey method is then defined as:

BFMiM∗
i

= p(y | Mi)
p(y | M∗i ) = p(a = a0 | Mi)

p(a = a0 | y,Mi)
, (1)

where y is the data, and a = a0 indicates that the parameter a is fixed to a predefined value

a0.

The Bayes factor that we wish to approximate with importance sampling is the ratio

of the marginal likelihood of the complete RL model and its nested version, that is:

BFMiM∗
i

= m(y | Mi)
m(y | M∗i ) . (2)

We applied the Savage-Dickey density ratio test and importance sampling to the same

synthetic data set as used in the last section (i.e., 25 synthetic participants completing a

100-trial IGT). In Figure 2 we present the Savage-Dickey density ratio test for the four

models and four synthetic subjects; the results for the remaining participants are similar.

The header of each plot shows the Bayes factor obtained with importance sampling (i.e.,

BF_IS), and the Bayes factor obtained with the Savage-Dickey method (i.e., BF_SD).

The dashed and solid lines represent the prior and posterior distribution, respectively. The

black dots indicate the height of the prior and posterior distributions at a = a0. From the

figure it is evident that there is a close correspondence between Bayes factors obtained with

the Savage-Dickey density ratio test and importance sampling suggesting that we correctly

implemented importance sampling.
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Figure 2 . Illustration of the Savage-Dickey density ratio test for all models. Data of the
first to fourth row were generated and fit with the EV, PVL, PVL-Delta, and VPP model,
respectively. The header of each plot shows the BF obtained with importance sampling (i.e.,
BF_IS), and the Bayes factor obtained with the Savage-Dickey method (i.e., BF_SD). The
dashed and solid lines represent the prior and posterior distribution, respectively. The black
dots indicate the height of the prior and posterior distributions at a = a0.
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Robustness Analyses

In this section, we present the results of a robustness analysis. The aim of this analysis

is to investigate the extent to which our conclusions are altered by the choice of the priors

on the model parameters. Whereas we used uniform priors on the model parameters in the

analyses presented in the main article (i.e., Beta(1, 1)), we repeat here the analyses with

two different priors: either a Beta(1, 2) or a Beta(2, 1) distribution. The different prior

distributions are visualized in Figure 3. It is evident that the Beta(1, 1) distribution puts

equal mass on all parameter values, the Beta(1, 2) distribution favors smaller parameter

values, whereas the Beta(2, 1) distribution favors larger parameter values.
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Figure 3 . Visulalization of the different priors. The prior distribution shown in the left
panel is used in the analyses presented in the main article, whereas the prior distributions
present in the middle and right panel are used in the sensitivity analyses.

Figures 4 - 6 show, separately for the three different prior distributions, the

distribution of the log Bayes factors of all participants for the six possible model

comparisons. A positive log(BF12) indicates that the data are more likely to occur under

the first model than under the second model, whereas a negative log(BF12) indicates that

the data are more likely to occur under the second model than under the first model. The

header of each histogram presents the percentage of participants for whom the data are

more likely to occur under modelM1 than modelM2.

Figures 4 - 6 show that there are some quantitative differences depending on which

prior distribution is used. For example, the EV model is stronger supported when a Beta(2,

1) prior is used compared to the two other prior distributions. However, the qualitative



STEINGROEVER, WETZELS, AND WAGENMAKERS 8

EV = 21.7 % 

PVL =  78.3 %

log BFEV,PVL

F
re

q
u
e
n
c
y

−80 −40 0 20

0

50

100

150

200

250

EV = 30 % 

PVL−D =  70 %

log BFEV,PVL−D

−60 −20 0 20 40

0

50

100

150

200

250

300

EV = 8 % 

VPP =  92 %

log BFEV,VPP

−100 −50 0

0

50

100

150

200

PVL = 64.3 % 

PVL−D =  35.7 %

log BFPVL,PVL−D

F
re

q
u
e
n
c
y

−20 0 20 40 60 80

0

50

100

150

200

250

PVL = 27 % 

VPP =  73 %

log BFPVL,VPP

−80 −40 0 20

0

100

200

300

400

PVL−D = 11.8 % 

VPP =  88.2 %

log BFPVL−D,VPP

−120 −80 −40 0

0

50

100

150

200

250

300

350

Figure 4 . Beta(1, 1) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants (cf. Figure 2 in the
main article). A positive log(BF12) indicates that the data are more likely to occur under
the first model than under the second model, whereas a negative log(BF12) indicates that
the data are more likely to occur under the second model. Note that a log(BF) of 20
corresponds to a BF of almost 500 million, and that Jeffreys (1961) considers as extreme
evidence a Bayes factor larger than 100 (i.e., log(BF) > 4.6). The header of each histogram
presents the percentage of participants for whom the data are more likely to occur under
the corresponding model.
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Figure 5 . Beta(1, 2) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants. A positive log(BF12)
indicates that the data are more likely to occur under the first model than under the second
model, whereas a negative log(BF12) indicates that the data are more likely to occur under
the second model. Note that a log(BF) of 20 corresponds to a BF of almost 500 million,
and that Jeffreys (1961) considers as extreme evidence a Bayes factor larger than 100 (i.e.,
log(BF) > 4.6). The header of each histogram presents the percentage of participants for
whom the data are more likely to occur under the corresponding model.
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Figure 6 . Beta(2, 1) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants. A positive log(BF12)
indicates that the data are more likely to occur under the first model than under the second
model, whereas a negative log(BF12) indicates that the data are more likely to occur under
the second model. Note that a log(BF) of 20 corresponds to a BF of almost 500 million,
and that Jeffreys (1961) considers as extreme evidence a Bayes factor larger than 100 (i.e.,
log(BF) > 4.6). The header of each histogram presents the percentage of participants for
whom the data are more likely to occur under the corresponding model.
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Table 2
Median posterior model probabilities (MPMP; note that these need not sum to 1), and
percentage of participants for whom the corresponding model has the largest posterior model
probability, for the three different prior distributions separately. Grey shaded cells refer to
the best model.

Beta(1, 1) Beta(1, 2) Beta(2, 1)
MPMP % MPMP % MPMP %

EV .00 7 .00 6 .00 13
PVL .04 25 .04 30 .02 25
PVL-Delta .00 9 .00 11 .00 5
VPP .64 59 .49 52 .66 57

conclusions are the same irrespective of the prior distribution; all three figures show that

the data provide the most evidence for the VPP model, and the least evidence for the

EV model. In addition, the data provide more evidence for the PVL model than for the

PVL-Delta model.

The findings from Figures 4 - 6 are corroborated by Table 2. The second, fourth,

and sixth column of Table 2 show the median posterior model probabilities, and the third,

fifth and seventh column show the percentage of participants for whom the corresponding

model has the largest posterior model probability, separately for the three different prior

distributions. It is evident that the VPP model is supported the most; that is, the data

from 52-59% of the participants provide the most evidence for the VPP model. The PVL

model is favored by the second largest proportion of the participants (i.e., 25-30%). It is

also evident that the EV model is stronger supported than the PVL-Delta model when a

Beta(2, 1) prior is used—a finding that is reversed for the two other prior distributions.



STEINGROEVER, WETZELS, AND WAGENMAKERS 12
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Figure 7 . Beta(1, 1) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. second column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

The distributions of individual posterior model probabilities are visualized in Figures 7

- 9, which presents violin plots of the 771 posterior model probabilities for each of the four RL

models, for the three different prior distributions separately. The dots indicate the median

posterior model probability (cf. second, fourth, and sixth column of Table 2), and the boxes

indicate the interquartile range (i.e., the distance between the .25 and .75 quantiles). From

Figures 7 - 9, it is evident that in the case of the EV, PVL, and PVL-Delta models, the

individual posterior model probabilities follow a right skewed distribution suggesting that

the data of most participants provide little evidence for these models. It is also evident that

the tail of the distribution in the case of the EV and PVL-Delta models is thinner than in the

case of the PVL model. This suggests that there are more participants who provide strong
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Posterior model probabilities
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Figure 8 . Beta(1, 2) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. fourth column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

evidence for the PVL model then for the EV and PVL-Delta models. In the case of the VPP

model, the distribution of the posterior model probabilities is bimodal with the right mode

being more pronounced than the left mode. This distribution suggests that the evidence

for the VPP model differs greatly across participants, but that most participants provide

compelling evidence in favor of the VPP model. Altogether Figures 7 - 9 suggest that there

are only minor difference in the distributions of individual poster model probabilities. To

conclude, this robustness analysis suggests that our main conclusions are unaffected by the

choice of the prior distribution.
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Posterior model probabilities

VPP

PVL−D

PVL

EV

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 9 . Beta(2, 1) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. sixth column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

Comparison to BIC

In this section, we present the results of a model comparison study based on BIC

for the same models and data pool as used in the article. The BIC is called post hoc

fit criterion in the context of RL models for the IGT. Therefore, we call it here “BIC

post hoc fit criterion”. The advantage of the BIC post hoc fit criterion is that it is

easier to compute than the importance sampling Bayes factors. However, it should be

kept in mind that the BIC post hoc fit criterion considers only one dimension of model

complexity, that is, the number of parameters, and that the BIC post hoc fit criterion is

derived as an asymptotic approximation of Bayesian model selection using Bayes factors

(Myung, Cavagnaro, & Pitt, in press). Another popular measure is the Watanabe-Akaike
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information criterion (WAIC; Watanabe, 2010, 2013). However, WAIC is not suitable

for our predictive goal, that is, to predict the next choice given all previous choices (Aki

Vehtari, personal communication, 16.07.2014; see also a discussion on Andrew Gelman’s

blog http://andrewgelman.com/2014/09/25/waic-time-series/, and Vehtari & Ojanen,

2012).

Computation of BIC. The BIC for model M(.) is defined as follows (Schwarz,

1978):

BICM(.) = −2 log(L(.)) + ki log(n), (3)

where L(.) is the maximum likelihood of modelM(.), k(.) is the number of free parameters

of model M(.), and n is the number of IGT trials (Wagenmakers, 2007; Worthy, Pang,

& Byrne, 2013, but see also for example Ahn, Busemeyer, Wagenmakers, & Stout, 2008,

Fridberg et al., 2010, and Yechiam, Arshavsky, Shamay-Tsoory, Yaniv, & Aharon, 2010,

where the BIC post hoc fit criterion is computed for RL models relative to a baseline

model). Thus, the first term in Equation 3 (i.e., the log maximum likelihood) quantifies the

goodness-of-fit, whereas the second term penalizes a model for its complexity. Note that

for the sake of clarity we omitted the notation that indexes a specific participant.2

Approximation of the Bayes Factor. The BIC score can be used to approximate

the Bayes factor using the following equation (e.g., Wagenmakers, 2007):

BF12 ≈ exp
(BICM2 − BICM1

2

)
, (4)

Equation 4 allows us to investigate whether the approximations of the Bayes factors are in

line with Bayes factors obtained from importance sampling.

2Since we did not use maximum likelihood to estimate the parameters, the fitting routine did not
automatically provide us with L(.)—the maximum likelihood of model M(.). However, we obtained L(.) by
computing the likelihood of the parameter combination that corresponds to the maximum log posterior. The
log posterior is automatically returned by Stan (i.e., called “lp__”). The BIC computation was confirmed
by comparing our results obtained for the dataset of Worthy et al. (2013) to the ones reported in the original
article.
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Table 3
Median posterior model probabilities (MPMP), and percentage of participants for whom the
corresponding model has the largest posterior model probability obtained from three different
methods: (1) Importance sampling, and (2) BIC. Grey shaded cells refer to the best model.

Importance Sampling BIC
MPMP % MPMP %

EV .00 7 .00 14
PVL .04 25 .36 46
PVL-Delta .00 9 .00 17
VPP .64 59 .00 24

Posterior model probabilities

VPP

PVL−D

PVL

EV

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 10 . Distribution of the posterior model probabilities of 771 participants derived with
BIC. Each violin plot shows the distribution of one model. The dots indicate the median
posterior model probability (cf. Table 3), and the boxes indicate the interquartile range
(i.e., the distance between the .25 and .75 quantiles).
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Results. Table 3 shows the median posterior model probabilities (MPMP), and

percentage of participants for whom the corresponding model has the largest posterior

model probability obtained from two different methods: (1) Importance sampling, and (2)

BIC post hoc fit criterion. Just as the Bayes factors obtained from importance sampling,

the Bayes factors approximated with the BIC post hoc fit criterion suggest that the data of

only a minority of participants provide strong evidence for the EV and PVL-Delta models.

However, it is evident that in contrast to the Bayes factors obtained from importance

sampling, Bayes factors approximated with the BIC post hoc fit criterion suggest that the

data provide the most evidence for the PVL model and relatively little evidence for the

VPP model. These findings are corroborated by Figure 10 showing the distributions of the

posterior model probabilities of all participants derived with the BIC post hoc fit criterion.

This analysis illustrates the critique that the BIC prefers simple models that underfit the

data (Burnham & Anderson, 2002). In this particular case, the VPP model is punished for

having relatively many parameters; however our Bayes factor analysis reveals that for this

specific model comparison exercise, the number of free parameters alone is a limited and

possibly misleading index of model complexity.
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