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Abstract
The psychological processes that underlie performance on the Iowa gambling

task (IGT) are often isolated with the help of reinforcement-learning (RL)

models. The most popular method to compare RL models is the BIC post

hoc fit criterion—a criterion that considers goodness-of-fit relative to model

complexity. However, the current implementation of the BIC post hoc fit

criterion considers only one dimension of model complexity, that is, the

number of free parameters. A more sophisticated implementation of the BIC

post hoc fit criterion, one that provides a coherent and complete discounting

of complexity, is provided by the Bayes factor. Here we demonstrate an

analysis in which Bayes factors are obtained with a Monte Carlo method,

known as importance sampling, in order to compare four RL models of

the IGT: the Expectancy Valence (EV), Prospect Valence Learning (PVL),

PVL-Delta, and Value-Plus-Perseveration (VPP) models. We illustrate the

method using a data pool of 771 participants from 11 different studies.

Our results provide strong evidence for the VPP model and moderate

evidence for the PVL model, but little evidence for the EV and PVL-Delta

models—results that were not in line with a BIC post hoc fit analysis. We

discuss how our results may be combined with results obtained from other

model comparison studies in order to obtain a balanced and comprehensive

assessment of model adequacy.

Keywords: Importance Sampling, BIC, Decision Making Under Uncertainty,

Perseveration, Expectancy Valence Model, Prospect Valence Learning Model

The Iowa gambling task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994) is

arguably the most popular neuropsychological paradigm to assess decision-making deficits
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in clinical populations. In order to isolate and identify the psychological processes that drive

performance on the IGT, behavioral analyses of IGT data are insufficient. A promising

additional analysis approach is to use reinforcement-learning (RL) models that try to

disentangle the psychological processes underlying performance on the IGT. Two of the

most frequently used representatives include the Expectancy Valence model (EV), and

the Prospect Valence Learning model (PVL; see Steingroever, Wetzels, & Wagenmakers,

2013a, for references). The parameters of these models correspond to distinct psychological

processes such as motivation, learning/memory, and response consistency (Busemeyer,

Stout, & Finn, 2003). However, recent research suggests that there might be better IGT

models; promising alternatives include the PVL-Delta model which is a hybrid version of the

EV and PVL models (Ahn, Busemeyer, Wagenmakers, & Stout, 2008; Fridberg et al., 2010;

Steingroever, Wetzels, & Wagenmakers, 2014, 2013b), and the Value-Plus-Perseveration

(VPP) model which includes an additional perseveration process (Worthy, Pang, & Byrne,

2013).

RL models for the IGT have been tested and compared using a wide variety of methods

that focus on different aspects of the models. These methods include, for instance: the post

hoc fit criterion (i.e., Ahn et al., 2008; Busemeyer & Stout, 2002; Fridberg et al., 2010;

Worthy, Hawthorne, & Otto, 2013; Yechiam & Busemeyer, 2005; Yechiam & Ert, 2007;

Yechiam & Busemeyer, 2008);1 the simulation method (i.e., Ahn et al., 2008; Fridberg et

al., 2010; Steingroever et al., 2014; Worthy, Hawthorne, & Otto, 2013; Worthy, Pang, &

Byrne, 2013); tests of generalizability (i.e., Ahn et al., 2008; Yechiam & Busemeyer, 2005;

Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008); tests of parameter consistency (i.e.,

Yechiam & Busemeyer, 2008); parameter space partitioning (i.e., Steingroever, Wetzels, &

Wagenmakers, 2013a, 2013b); and tests of specific influence (i.e., Steingroever, Wetzels,

& Wagenmakers, 2013b; Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010).

In addition, several studies have carefully investigated the ability of the EV, PVL, PVL-

Delta, and VPP models to recover the data-generating parameters (Ahn, Krawitz, Kim,
1In the context of RL models for the IGT, the post hoc fit criterion is also known as the one-step-ahead

prediction method.
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Busemeyer, & Brown, 2011; Ahn et al., 2014; Steingroever, Wetzels, & Wagenmakers,

2013b; Wetzels et al., 2010). A good parameter recovery is important because it signals

that the estimated parameter values are reliable reflections of the underlying processes

(Steingroever, Wetzels, & Wagenmakers, in press).

Among these different methods to compare and evaluate RL models for the IGT, the

Bayesian information criterion (BIC; Schwarz, 1978) has proven to be the most popular.

Since it is termed “post hoc fit criterion” (or “one-step-ahead prediction method”) in the

context of RL models for the IGT, in the remainder of this article we refer to this method

as “BIC post hoc fit criterion” to emphasize that the BIC and post hoc fit criterion are

essentially the same method. This criterion implements a tradeoff between goodness-of-fit

(i.e., descriptive adequacy of a model) and parsimony (i.e., a model should be as simple as

possible), as follows:

BICM(.) = −2 log(L(.))︸ ︷︷ ︸
Descriptive adequacy

+ k(.) log(n)︸ ︷︷ ︸
Penalty term

, (1)

where L(.) is the maximum likelihood of modelM(.), k(.) is the number of free parameters

of modelM(.), and n is number of IGT trials. Equation 1 illustrates how the BIC post hoc

fit criterion uses the penalty term k(.) log(n) to discount descriptive adequacy −2 log(L(.)).

It is also apparent that the BIC post hoc fit criterion only considers one dimension of model

complexity, that is, the number of free parameters. On the other hand, the gold standard

of model comparison in Bayesian statistics –the Bayes factor– also takes into account two

additional dimensions of model complexity, that is, the functional form of the model (i.e.,

the way in which the parameters are combined in the model equations), and the extension

of the parameter space (i.e., the prior distributions over parameters; Myung & Pitt, 1997).

In this way the Bayes factor implements the tradeoff between goodness-of-fit and parsimony

in a manner that is more comprehensive than that used by the current implementation of

the BIC post hoc fit criterion. However, the Bayes factor has not yet been used to compare

RL models for the IGT.
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In this article we use Bayes factors to compare four popular RL models: the EV,

PVL, PVL-Delta, and VPP models.2 Bayes factors are derived using importance sampling,

a numerical technique developed by Stanislaw Ulam and John von Neumann (Eckhardt,

1987; Kass & Raftery, 1995; Hammersley & Handscomb, 1964; Robert & Casella, 2011;

Vandekerckhove, Matzke, & Wagenmakers, 2015). We illustrate this method with a large

IGT data pool containing 771 healthy participants from 11 studies.

The outline of this article is as follows. Sections 1− 3 explain the IGT, the different

models (i.e., the EV, PVL, PVL-Delta, and VPP models), and the Bayes factor, respectively.

In the fourth section we explain how Bayes factors can be obtained with importance

sampling, and in the fifth section we report a Bayes factor analysis of the four RL models

with IGT data from 771 healthy participants. This analysis allows us to compare the EV,

PVL, PVL-Delta, and VPP models by means of the Bayes factor. In the last section,

we summarize our findings and discuss their ramifications, and how our results may be

combined with results obtained from other model comparison studies in order to obtain a

balanced and comprehensive assessment of model adequacy. In the supplemental materials,

we present a recipe on how to obtain Bayes factors with importance sampling, two tests to

check our implementation of importance sampling: (1) a model-recovery study, and (2) the

Savage-Dickey density ratio test for each model. In addition, the supplemental materials

contain a robustness analysis, and a model comparison study using BIC for the same models

and data pool as used in this article. To anticipate our main result, our model comparison

shows that the data provide strong evidence for the VPP model and moderate evidence for

the PVL model, but weak evidence for the EV and PVL-Delta models.

2Even though it might be interesting to include additional models obtained from different combinations
of the utility function, learning rule and sensitivity function, we decided to focus on these four RL models
because of results from previous model comparison studies (e.g., Ahn et al., 2008, 2014; Busemeyer & Stout,
2002; Yechiam & Busemeyer, 2005) and because of their popularity in the field of RL models for the IGT
(e.g., Ahn et al., 2011; Fridberg et al., 2010; Steingroever et al., 2014; Stout, Busemeyer, Lin, Grant, &
Bonson, 2004; Wood, Busemeyer, Koling, Cox, & Davis, 2005; Yechiam, Busemeyer, Stout, & Bechara,
2005).
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The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Wetzels, Horstmann,

Neumann, & Wagenmakers, 2013; Steingroever, Wetzels, & Wagenmakers, 2013a, 2013b;

Steingroever et al., 2014). The purpose of the IGT is to measure decision-making deficits

of clinical populations in an experimental setting. In the traditional IGT, participants

are initially given $2000 facsimile money and are presented with four decks of cards with

different payoffs. Participants are instructed to choose cards in order to maximize their

long-term net outcome (Bechara et al., 1994; Bechara, Damasio, Tranel, & Damasio, 1997).

Unbeknownst to the participants, the task typically contains 100 trials. After each choice,

participants receive feedback on the rewards and the losses (if any) associated with that

card, and the running tally.

Table 1
Main characteristics of the payoff scheme of the traditional IGT as developed by Bechara et
al. (1994).

Deck A Deck B Deck C Deck D
Bad deck Bad deck Good deck Good deck
with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses
Reward/trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards −1250 −1250 −250 −250
Net outcome/10 cards −250 −250 250 250

The task aims to determine whether participants learn to prefer the good, safe decks

over the bad, risky decks because this is the only choice pattern that maximizes the long-

term net outcomes. The good, safe decks are typically labeled as decks C and D, whereas

the bad, risky decks are labeled as decks A and B. Table 1 presents the main characteristics

of the traditional payoff scheme as developed by Bechara et al. (1994). This table illustrates

that decks A and B yield high immediate, constant rewards, but even higher unpredictable,

occasional losses: hence, the long-term net outcome is negative. Decks C and D, on the

other hand, yield low immediate, constant rewards, but even lower unpredictable, occasional

losses: hence, the long-term net outcome is positive. In addition to the different payoff
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magnitudes, the decks also differ in the frequency of losses: Two decks yield frequent losses

(decks A and C) and two decks yield infrequent losses (decks B and D).

The EV, PVL, PVL-Delta, and VPP Models

In this section, we describe the EV, PVL, PVL-Delta, and VPP models (see also

Steingroever, Wetzels, & Wagenmakers, 2013a, and Steingroever et al., 2014). Table 2

contains the model equations, the psychological interpretation of the free parameters, and

their ranges. In the following, we describe each model separately; the general idea, however,

is that each model describes the performance on the IGT through the interaction of distinct

psychological processes captured by the model parameters.

The four RL models share the assumption that, following each choice, participants

evaluate the rewards and losses (if any) associated with the just-chosen card by means of

a utility function. These momentary utilities are used to update expectancies about the

utilities of all decks. This updating process entails that, on every trial, participants adjust

their expected utilities of the decks based on the new utility they just experienced, a process

described by a learning rule. In the next step, the models assume that the expected utilities

of all decks are used to guide the participants’ choices on the next trial. This assumption

is formalized by the softmax choice rule, also known as the ratio-of-strength choice rule,

that all models use to compute the probability of choosing a particular deck on a particular

trial (Luce, 1959). This rule contains a sensitivity parameter θ(t) that indexes the extent to

which the trial-by-trial choice probabilities of the decks match the expected deck utilities.

Values of θ(t) close to zero indicate a random choice behavior (i.e., strong exploration),

whereas large values of θ(t) indicate a choice behavior that is strongly determined by the

expected deck utilities (i.e., strong exploitation). As is customary, for all analyses in this

article, we scaled the traditional payoffs of the IGT as presented in Table 1 by dividing by

100 (cf. Ahn et al., 2011).
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Table 2
Formalization of the EV, PVL, PVL-Delta, and VPP models.
Concept Model(s) Model equation Free parameters Range
Utility
function

EV uk(t) = (1− w) ·W (t) + w · L(t) w: Attention
weight

[0, 1]

PVL,
PVL-Delta,
& VPP

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0 A: Shape

w: Loss aversion
[0, 1]
[0, 5]

Learning
rule

EV,
PVL-Delta,
& VPP

Evk(t) = Evk(t− 1) + a · (uk(t)− Evk(t− 1)) a: Updating [0, 1]

PVL Evk(t) = a · Evk(t− 1) + δk(t) · uk(t) a: Recency [0, 1]

Perse-
veration

VPP Pk(t) =
{
d · Pk(t− 1) + δk(t) · εpos if X(t) ≥ 0
d · Pk(t− 1) + δk(t) · εneg if X(t) < 0 d: Decay

εpos
εneg

[0, 1]
[−1, 1]
[−1, 1]

Evk(t) = wEv · Evk(t) + (1− wEv) · Pk(t) wEv: Expectancy
weight

[0, 1]

Choice
rule

All Pr[Sk(t+ 1)] = eθ(t)Evk(t)∑4
j=1 e

θ(t)Evj(t)

Sensi-
tivity

EV θ(t) = (t/10)c c: Consistency [−2, 2]

PVL,
PVL-Delta,
& VPP

θ(t) = 3c − 1 c: Consistency [0, 5]

Note. W (t) and L(t) are the rewards and losses, respectively, on trial t. X(t)
is the net outcome on trial t, X(t) = W (t) − |L(t)|. δk(t) is a dummy
variable that takes the value 1 if deck k is chosen on trial t and 0 otherwise.
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The EV Model

The EV model uses three parameters to formalize its assumptions about participants’

performance on the IGT (Busemeyer & Stout, 2002). The first model assumption is that

after choosing a card from deck k, k ∈ {1, 2, 3, 4}, on trial t, participants compute a weighted

mean of the experienced reward W(t) and loss L(t) to obtain the utility of deck k on trial

t, uk(t). The weight that participants assign to losses relative to rewards is the attention

weight parameter w. A small value of w, that is, w < .5, is characteristic for decision makers

who put more weight on the immediate rewards and can thus be described as reward-seeking,

whereas a large value of w, that is, w > .5, is characteristic for decision makers who put

more weight on the immediate losses and can thus be described as loss-averse (Ahn et al.,

2008; Busemeyer & Stout, 2002).

The EV model asssumes that decision makers use the utility of deck k on trial t, uk(t),

to update only the expected utility of deck k, Evk(t); the expected utilities of the unchosen

decks are left unchanged. This updating process is described by the Delta learning rule,

also known as the Rescorla-Wagner rule (Rescorla & Wagner, 1972). If the experienced

utility uk(t) is higher than expected, the expected utility of deck k is adjusted upward.

If the experienced utility uk(t) is lower than expected, the expected utility of deck k is

adjusted downward. This updating process is influenced by the second model parameter—

the updating parameter a. This parameter quantifies the memory for rewards and losses. A

value of a close to zero indicates slow forgetting and weak recency effects, whereas a value

of a close to one indicates rapid forgetting and strong recency effects. For all models, we

initialized the expectancies of all decks to zero, Evk(0) = 0 (k ∈ {1, 2, 3, 4}). This setting

reflects an absence of prior knowledge about the payoffs of the decks.

According to the EV model, the sensitivity θ(t) changes over trials depending on the

response consistency parameter c. If c is positive, successive choices become less random

and more determined by the expected deck utilities; if c is negative, successive choices

become more random and less determined by the expected deck utilities, a pattern that is

clearly non-optimal. We restricted the consistency parameter of the EV model to the range
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[−2, 2] instead of the proposed range [−5, 5] (Busemeyer & Stout, 2002). This modification

improved the estimation of the EV model and prevented the choice rule from producing

numbers that exceed machine precision (see also Steingroever et al., 2014).

In sum, the EV model has three parameters: (1) the attention weight parameter w,

which quantifies the weight of losses over rewards; (2) the updating parameter a, which

determines the memory for past expectancies; and (3) the response consistency parameter

c, which determines the balance between exploitation and exploration.

The PVL Model

The PVL model uses four parameters to formalize its assumptions about participants’

performance on the IGT (Ahn et al., 2008, 2011). The PVL model assumes that decision

makers only process the net outcome after choosing a card from deck k on trial t, X(t) =

W (t)−|L(t)|. In contrast to the linear utility function of the EV model, the PVL model uses

the Prospect Utility function—a non-linear utility function from prospect theory (Tversky &

Kahneman, 1992). The Prospect Utility function contains the first two model parameters—

the shape parameter A, that determines the shape of the utility function, and the loss

aversion parameter w. As A approaches zero, the shape of the utility function approaches a

step function. The implication of such a step function is that given a positive net outcome

X(t), all utilities are similar because they approach one, and given a negative net outcome

X(t), all utilities are also similar because they approach −w. On the other hand, as A

approaches one, the subjective utility uk(t) increases in direct proportion to the net outcome,

X(t). A value of w larger than one indicates a larger impact of net losses than net rewards

on the subjective utility, whereas a value of w of one indicates equal impact of net losses and

net rewards. As w approaches zero, the model predicts that net losses will be neglected.

Unlike the EV model, the PVL model assumes that, on every trial t, decision makers

update the expected utilities of every deck according to the Decay learning rule (Erev &

Roth, 1998). This rule discounts expectancies of every deck on every trial to an extent

depending on the recency parameter a. This means that, in contrast to the EV model, the
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expectancies of the unchosen decks are discounted. The dummy variable contained in the

learning rule, δk, ensures that only the current utility of the chosen deck k is added to the

expectancy of that deck. A small value of a indicates rapid forgetting and strong recency

effects, whereas a large value of a indicates slow forgetting and weak recency effects.

The PVL model assumes a trial-independent sensitivity parameter θ, which depends

on the final model parameter: the response consistency c. Small values of c cause a random

choice pattern, whereas large values of c cause a deterministic choice pattern.

In sum, the PVL model has four parameters: (1) the shape parameter A, which

determines the shape of the utility function; (2) the loss aversion parameter w, which

quantifies the weight of net losses over net rewards; (3) the recency parameter a, which

determines the memory for past expectancies; and (4) the response consistency parameter

c, which determines the balance between exploitation and exploration.

The PVL-Delta Model

The PVL-Delta model is a hybrid version of the EV and PVL models because it uses

the Delta learning rule of the EV model (Rescorla & Wagner, 1972), but all remaining

equations of the PVL model (i.e., the Prospect Utility function and the trial-independent

sensitivity parameter; Ahn et al., 2008; Fridberg et al., 2010; Steingroever, Wetzels, &

Wagenmakers, 2013b; Steingroever et al., 2014). This construction results in a model with

four parameters: (1) the shape parameter A, which determines the shape of the utility

function; (2) the loss aversion parameter w, which quantifies the weight of net losses

over net rewards; (3) the updating parameter a, which determines the memory for past

expectancies; and (4) the response consistency parameter c, which determines the balance

between exploitation and exploration.

The VPP Model

The VPP model uses eight parameters to formalize its assumptions about

participants’ performance on the IGT (Worthy, Pang, & Byrne, 2013). The VPP model
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is a more complex version of the PVL-Delta model that consists of the same utility

function, learning rule, and sensitivity parameter as the PVL-Delta model, but also includes

preservation—an additional psychological process representing participants’ tendency to

stay with the same option (i.e., to persevere), or to switch. The VPP model assumes that

a participant’s tendency to persevere on deck k decays on each trial by d, and if deck k is

chosen on trial t an additional value εpos or εneg –depending on whether the net outcome

on trial t is positive or negative– is added to the perseveration of deck k. Positive values of

εpos or εneg indicate a tendency of persevere (i.e., to take the same option on the following

trial), whereas negative values indicate a tendency to switch.

The VPP model considers perseveration and maximization of expected utility as two

fundamental, but separate psychological processes involved in decision making. A weighted

average of these two processes (i.e., wEv represents the weight for the expected utilities of

the decks, and 1 − wEv represents the weight for the perseveration process) is used in the

softmax choice rule to determine the choice probabilities of all decks on the next trial. A

large value of wEv, that is, wEv > .5, is characteristic for decision makers who put more

weight on the expected utility of the decks, whereas a small value of w, that is, wEv < .5, is

characteristic for decision makers who put more weight on the perseveration of the decks.

As in Worthy, Pang, and Byrne (2013), we initialized the perseveration of all decks to zero

(i.e., Pk(0) = 0 for k ∈ {1, 2, 3, 4}).

In sum, the VPP model has eight parameters: (1) the shape parameter A, which

determines the shape of the utility function; (2) the loss aversion parameter w, which

quantifies the weight of net losses over net rewards; (3) the updating parameter a, which

determines the memory for past expectancies; (4) the decay parameter d, which determines

how strongly the perseveration of each deck decays; (5) εpos and (6) εneg, which quantify

the tendency to persevere given positive and negative net outcomes, respectively; (7) the

weight of the expected utility wEv, which quantifies the weight given to the expected utility

relative to the perseveration of each deck, and (8) the response consistency parameter c,

which determines the balance between exploitation and exploration.
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The Bayes Factor

In this section we describe how two models, M1 and M2, can be compared using

the Bayes factor (e.g., Jeffreys, 1961; Kass & Raftery, 1995). The Bayes factor BF12

is defined as the change from prior model odds p(M1)/p(M2) to posterior model odds

p(M1 | y)/p(M2 | y) brought about by the data y:

p(M1 | y)
p(M2 | y)︸ ︷︷ ︸

Posterior model odds

= p(M1)
p(M2)︸ ︷︷ ︸

Prior model odds

× m(y | M1)
m(y | M2)︸ ︷︷ ︸
Bayes factor

(2)

Thus, the Bayes factor is the ratio of the marginal likelihoods of the two models:

BF12 = m(y | M1)/m(y | M2). The Bayes factor can range from zero to infinity. For ease

of interpretation the Bayes factor is often transformed to the log scale, where log(BF12) = 0

indicates that observed data are equally likely to occur under both models, log(BF12) =

log(10) indicates that the data are 10 times more likely to occur under modelM1 than model

M2, and log(BF12) = log(.10) indicates that the data are 10 times more likely to occur under

modelM2 than modelM1. To get an indication of the strength of evidence measured with

the Bayes factor, Jeffreys (1961) proposed to divide the continuous scale of the Bayes factor

into discrete categories of evidential strength. For example, a log(BF12) between log(3) and

log(10) is characterized as moderate evidence forM1, whereas a log(BF12) between log(10)

and log(30) is characterized as strong evidence forM1.

Note that the marginal likelihood is the likelihood of the data averaged across the

entire parameter space, with the prior acting as averaging weights. That is, the marginal

likelihood of the data y given modelM(.) is obtained by integrating the likelihood over the

prior:

m(y | M(.))︸ ︷︷ ︸
Marginal likelihood

=
∫
p(y | θ,M(.))︸ ︷︷ ︸

Likelihood

p(θ | M(.))︸ ︷︷ ︸
Prior

dθ, (3)

with θ being a vector containing the model parameters. Equation 3 illustrates why the

Bayes factor automatically accounts for the tradeoff between parsimony and goodness-
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of-fit (e.g., Myung & Pitt, 1997): Although complex models may provide a good fit to

the data as indicated by a high maximum likelihood, these models may have a high-

dimensional parameter space with large regions that yield a poor fit to the data (i.e., a

low likelihood). Parsimonious models, on the other hand, use only a small part of the

parameter space, and do not contain large parameter regions that yield a poor fit to the

data; consequently, the average likelihood of parsimonious models may be higher than that

of overly complex models. Thus, by considering the entire parameter space the Bayes factor

penalizes overly complex models; models that make vague predictions by including extra

parameters, by assigning very wide prior distributions to the model parameters, and/or by

using parameters that affect the likelihood through a complicated functional form of the

model (Busemeyer, Wang, & Shiffrin, in press; Myung & Pitt, 1997; Vandekerckhove et al.,

2015; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). By averaging the likelihood

over the prior distribution, the Bayes factor focuses on the extent to which models make

good predictions, thereby taking into account, automatically and simultaneously, all three

different dimensions of model complexity (i.e., number of free parameters, functional form

of the model, and the extension of the parameter space). Thus, the main thrust of our work

is that the current version of the BIC post hoc fit method for comparing RL models can

be made more sophisticated by using Bayes factors instead of only penalizing maximum

likelihood through the number of free parameters. The next section outlines a method that

shows how this can be accomplished in a way that is practical and efficient.

Obtaining Bayes Factors for RL Models Using Importance Sampling

In the last section, we introduced the Bayes factor as the ratio of the marginal

likelihood of two models. The question that now arises is how a model’s marginal likelihood

m(y | M(.)) can be obtained. Unfortunately, we cannot analytically solve the integral shown

in Equation 3 because of the complex functional form of the likelihood of the four models.

An obvious alternative is to use brute force integration to approximate m(y | M(.)):
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m(y | M(.))︸ ︷︷ ︸
Marginal likelihood

≈ 1
N

N∑
i=1

p(y | θi,M(.))︸ ︷︷ ︸
Average likelihood

, θi ∼ p(θ | M(.))︸ ︷︷ ︸
Samples from the prior

. (4)

Note that for the sake of clarity we suppressed the notation that indexes a specific

participant and model. Equation 4 illustrates that the brute force integration consists of

drawing N samples from the prior p(θ | M(.)), and then averaging the corresponding values

for p(y | θi,M(.)). However, brute force integration might be very inefficient, especially

when the posterior distribution is highly peaked relative to the prior. In such a scenario,

most draws from the prior result in low likelihoods, whereas only a few draws result in high

likelihoods, increasing the variability of the estimator. A more efficient way to estimate a

model’s marginal likelihood m(y | M(.)) is to use a numerical method known as importance

sampling (for a detailed description see Eckhardt, 1987; Kass & Raftery, 1995; Hammersley

& Handscomb, 1964; Vandekerckhove et al., 2015). This method consists of sampling from

an importance density g(θ | M(.)) instead of the prior:

m(y | M(.))︸ ︷︷ ︸
Marginal likelihood

=
∫
p(y | θ,M(.))p(θ | M(.))dθ

=
∫
p(y | θ,M(.))p(θ | M(.))

g(θ | M(.))
g(θ | M(.))

dθ

=
∫
p(y | θ,M(.))p(θ | M(.))

g(θ | M(.))
g(θ | M(.))dθ

≈ 1
N

N∑
i=1

p(y | θi,M(.))p(θi | M(.))
g(θi | M(.))︸ ︷︷ ︸

Average adjusted likelihood

, θi ∼ g(θ | M(.)).︸ ︷︷ ︸
Samples from the importance density

(5)

The advantage of sampling from an importance density is that, if the importance

density resembles the posterior distribution, most samples come from regions with high

likelihood causing the estimator to have low variability. In our application to RL models,

we used an independent Beta mixture importance density (see solid line in the right panel

of Figure 1), that is, a density that is a mixture between a Beta(1, 1) density, and a
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Figure 1 . Two different importance sampling densities (solid lines) for the posterior
distribution (dashed lines) of the a parameter in the EV model. Left panel: a Beta posterior
importance density (i.e., a Beta distribution that provides the best fit to the posterior); right
panel: a Beta mixture importance density (i.e., a mixture of the uniform Beta density and
the Beta posterior density, with a mixture weight wIS = 0.2 on the uniform component).

Beta density that provides the best fit to the posterior (see left panel of Figure 1). The

Beta mixture importance density has several advantages: It is an importance density

that strongly resembles the posterior, is easy to evaluate, and is easy to sample from

(Vandekerckhove et al., 2015). In addition, this importance density has tails that are

fatter than those of the posterior, which is beneficial because thin tails cause the estimate

to have high variance (Vandekerckhove et al., 2015). Finally, the Beta mixture importance

density is a good candidate distribution because it is restricted to the [0, 1] range, just

as the parameters from the models under scrutiny.3 In our subsequent analyses, we drew

N = 20, 000 samples from the Beta mixture importance density, and set the mixture weight

for the uniform component to wIS = 0.10. The supplemental materials provide a recipe on

how to obtain Bayes factors with importance sampling.

3Parameters with different ranges (see Table 2) were transformed to the [0, 1] interval, and were only
transformed back to their correct ranges after the analysis was complete.
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Application to IGT Data from 771 Healthy Participants

In the previous section we described how Bayes factors can be obtained with

importance sampling in a relatively straightforward fashion. We now apply this

methodology to a large IGT data pool consisting of 771 healthy participants from 11

different experiments in order to compare four RL models. Most of the data are published

in Steingroever, Fridberg, et al. (in press). Below we first describe the details of the analysis

procedure and then present the results.

Method

We fit the four RL models to individual IGT data of 771 participants from 11 different

studies (Table 3; for more details on the data sets, see the original studies, Steingroever,

Fridberg, et al., in press, or Steingroever, Wetzels, Horstmann, et al., 2013, for details on five

of the data sets). We fit the data of each participant using Stan (Stan Development Team,

2014a, 2014b; Hoffman & Gelman, 2014). For each parameter, we ran two Hamiltonian

Monte Carlo (HMC) chains simultaneously. We used random starting values, and collected

5,000 samples of each chain after having discarded the first 1,000 samples of each chain

Table 3
Data sets used in this article.
Study Number of participants Number of IGT trials
Busemeyer and Stout (2002) 30 100
Fridberg et al. (2010) 15 95
Horstmanna 162 100
Kjome et al. (2010) 19 100
Maia and McClelland (2004) 40 100
Steingroever, Pachur, Šmíra, and Lee (in preparation) 70 100
Premkumar et al. (2008) 25 100
Wetzels et al. (2010)b 165 150
Wood et al. (2005) 153 100
Worthy, Pang, and Byrne (2013) 35 100
Own unpublished data set 57 150
Total 771

a Data collected by Annette Horstmann. These data were first published in Steingroever, Wetzels,
Horstmann, et al. (2013).
b Data of four different conditions: Standard condition (N = 41), rewards condition (N = 42), updating
condition (N = 41), and consistency condition (N = 41).
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as burn-in. We assigned uniform priors (i.e., U
(
0, 1
)
) to all model parameters; parameters

with different ranges (see Table 2) were transformed to the [0, 1] interval, and were only

transformed back to their correct ranges after the analysis was complete. All code is

available on www.helensteingroever.com.

To assess whether the chains of all parameters had converged successfully from their

starting values to their stationary distributions, we assessed convergence with the R̂ statistic

(Gelman & Rubin, 1992). The R̂ statistic is a formal diagnostic measure of convergence

that compares the between-chain variability to the within-chain variability. Values close

to 1.0 indicate convergence to the stationary distribution, whereas values greater than 1.1

generally indicate inadequate convergence.

If a data set resulted in posterior distributions with R̂ statistics larger than 1.05, we

fitted the corresponding data set again with an additional 5,000 samples per chain. We

repeated this process until all R̂ statistics of that data set were smaller than 1.05.

For each of the 771 participants, we quantified the relative support for each of the four

RL models by computing the Bayes factor using the method of importance sampling.4 For

each participant we obtained
(

4
2

)
= 6 Bayes factors (where 4 is the number of RL models

that we compare here). We summarize the results by presenting histograms of the Bayes

factors across all participants, and violin plots of the posterior model probabilities. Using

equal model priors, the posterior model probability of model M(.) given data y is defined

by:

P (M(.) | y) =
BF(.)B∑4
j=1 BFjB

, (6)

where B indicates the reference model which can be any of the four RL models (Berger

& Molina, 2005). We also used these subject-specific posterior model probabilities to

determine the most likely model for each participant. This allowed us to report the

percentage of participants for whom each of the four RL models has the largest posterior

4A model comparison study using BIC for the same models and data pool as used in this article can be
found in the supplemental materials.
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model probability.

Results

Before applying our implementation of importance sampling to each of the 771

individual data sets, we checked the adequacy of our implementation by comparing it

to the Savage-Dickey density ratio test,5 and by conducting a model recovery study (see

supplemental materials). In addition, we checked the adequacy of our implementation

by varying the mixture weight wIS , and the number of draws N from the Beta mixture

importance density.

Visual inspection of a sample of the HMC chains, and consideration of the R̂ statistics

for all parameters (all parameters had R̂ values below 1.05) suggest that the chains of

all parameters had converged successfully from their starting values to their stationary

distributions. In order to quantify the extent to which sampling error may perturb the

Bayes factor estimates, we computed bootstrapped standard errors for each participant

and each Bayes factor. For each Bayes factor comparison separately, Table 4 presents

summary information based on the 771 individual standard errors. Specifically, Table 4

shows the median standard error, the standard error interquartile range, and the standard

error 2.5% - 97.5% quantile range. Most standard errors are small relative to the Bayes

factor, underscoring the precision of the estimates. However, for a few participants and

model comparisons there remains some sampling uncertainty about the estimate of the

Bayes factor as reflected by a large value of the 97.5% quantile. The results of our Bayes

factor model comparison efforts are presented in Figures 2 and 3, and Table 5.

Figure 2 shows the distribution of the log Bayes factors of all participants for the six

possible model comparisons. A positive log(BF12) indicates that the data are more likely

to occur under the first model than under the second model, whereas a negative log(BF12)

indicates that the data are more likely to occur under the second model than under the first

5Note that the Savage-Dickey density ratio test offers a method to compute Bayes factors, but only for
nested models. We therefore had to construct nested models by fixing one of the model parameters. See
supplemental materials for a more detailed explanation and the results.
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Figure 2 . Histograms of the log(BF) for pairwise comparison of four RL models applied
to the IGT data from each of 771 participants. A positive log(BF12) indicates that the
data are more likely to occur under the first model than under the second model, whereas a
negative log(BF12) indicates that the data are more likely to occur under the second model.
Note that a log(BF) of 20 corresponds to a BF of almost 500 million, and that Jeffreys
(1961) considers as extreme evidence a Bayes factor larger than 100 (i.e., log(BF) > 4.6).
The header of each histogram presents the percentage of participants for whom the data
are more likely to occur under the corresponding model.
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Table 4
Median, 25% to 75% quantile range (i.e., interquartile range), and 2.5% to 97.5% quantile
range of the standard error of the Bayes factor estimates. The standard error is presented
as percentage of the Bayes factor.

median 25%, 75% quantile 2.5%, 97.5% quantile
[%] [%] [%]

SE(BFEV,PVL) 1.89 [1.36, 2.77] [0.93, 7.92]
SE(BFEV,PVL−D) 2.21 [1.54, 3.55] [1.05, 12.32]
SE(BFEV,VPP) 5.69 [4.03, 8.06] [2.14, 23.70]
SE(BFPVL,PVL−D) 2.13 [1.54, 3.26] [1.10, 8.71]
SE(BFPVL,VPP) 5.47 [4.00, 7.97] [2.09, 22.34]
SE(BFPVL−D,VPP) 5.74 [4.27, 8.27] [2.25, 22.83]

model. The header of each histogram presents the percentage of participants for whom the

data are more likely to occur under modelM1 than modelM2.

The top left panel of Figure 2, for example, shows that the data of 78.3% of the

participants are more likely to occur under the PVL model than under the EV model.

From this panel, it is also evident that the degree of evidence in favor of the PVL model is

in general very strong, but also differs greatly across participants: 31% of the participants

have a log Bayes factor in favor of the PVL model in between −10 and 0, 29% of the

participants have a log Bayes factor in favor of the PVL model in between −30 and −10,

and 18% of the participants have a log Bayes factor in favor of the PVL model in between

−80 and −30. Note that, first, the smaller the log Bayes factor, the stronger the evidence

in favor of the PVL model; second, a log(BF) of −20, for example, corresponds to a Bayes

factor of almost 500 million in favor of the PVL model; finally, Jeffreys (1961) considers

as extreme evidence a Bayes factor larger than 100 (i.e., log(BF) > 4.6). Thus, more than

47% of the participants provide extreme evidence in favor of the PVL model. In the case

of the participants that provide evidence in favor of the EV model (i.e., those participants

that have a positive log Bayes factor), the differences across participants are much smaller

(i.e., the largest Bayes factor is below 40), and most of these participants (i.e., 20%) have

a log Bayes factor between 0 and 10, and none has a log Bayes factor in favor of the EV

model larger than 40.

Taking all panels together, Figure 2 suggests that, among the four RL models, the
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Table 5
Median posterior model probabilities (MPMP; note that these need not sum to 1), and
percentage of participants for whom the corresponding model has the largest posterior model
probability. Grey shaded cells refer to the best model.

MPMP %
EV .00 7
PVL .04 25
PVL-Delta .00 9
VPP .64 59

data provide the most evidence for the VPP model, and the least evidence for the EV model.

In addition, the data provide more evidence for the PVL model than for the PVL-Delta

model. It is also evident that the data of many participants provide extreme evidence for a

particular model.

The findings from Figure 2 are corroborated by Table 5. The second column of

Table 5 shows the median posterior model probabilities, and the third column shows the

percentage of participants for whom the corresponding model has the largest posterior model

probability. It is evident that the VPP model is supported the most; that is, the data from

59% of the participants provide the most evidence for the VPP model. The PVL model is

favored by the second largest proportion of the participants (i.e., 25%). Only a minority

of participants provides the strongest evidence for the EV and PVL-Delta model (i.e., 7%

and 9%, respectively) suggesting that the data provide weak evidence for the EV and PVL-

Delta models. These findings are confirmed by the median posterior model probabilities

presented in the second column of Table 5; in general, the VPP model is supported most,

followed by the PVL model.

The distributions of individual posterior model probabilities are visualized in Figure 3,

which presents violin plots of the 771 posterior model probabilities for each of the four RL

models. The dots indicate the median posterior model probability (cf. second column of

Table 5), and the boxes indicate the interquartile range (i.e., the distance between the .25

and .75 quantiles). From Figure 3, it is evident that in the case of the EV, PVL, and PVL-

Delta models, the individual posterior model probabilities follow a right skewed distribution
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Figure 3 . Distribution of the posterior model probabilities of 771 participants derived
with importance sampling. Each violin plot shows the distribution of posterior model
probabilities for one model. The dots indicate the median posterior model probability
(cf. second column of Table 5), and the boxes indicate the interquartile range (i.e., the
distance between the .25 and .75 quantiles).

suggesting that the data of most participants provide little evidence for these models, but

that there are also a few participants who provide medium to strong evidence for either the

the EV, PVL, or PVL-Delta model. It is also evident that the tail of the distribution in the

case of the EV and PVL-Delta models is thinner than in the case of the PVL model. This

suggests that there are more participants who provide strong evidence for the PVL model

then for the EV and PVL-Delta models. In the case of the VPP model, the distribution of

the posterior model probabilities is bimodal with the right mode being more pronounced

than the left mode. This distribution suggests that the evidence for the VPP model differs

greatly across participants, but that most participants provide compelling evidence in favor

of the VPP model.
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Discussion

In this article, we illustrated how Bayes factor analyses can be performed to compare

four RL models of the Iowa gambling task using a large data pool with 771 participants

from 11 studies. The overall results provided strong evidence for the VPP model, moderate

evidence for the PVL model, but weak evidence for the EV and PVL-Delta models.

The possibility to obtain Bayes factors for RL models is an important contribution

to the ongoing model comparison efforts in the RL literature. The most popular method

to compare RL models for the IGT is the BIC post hoc fit criterion (i.e., Ahn et al.,

2008; Busemeyer & Stout, 2002; Fridberg et al., 2010; Worthy, Hawthorne, & Otto, 2013;

Yechiam & Busemeyer, 2005; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008). This

method implements the tradeoff between goodness-of-fit and parsimony. However, the

current implementation of the BIC post hoc fit criterion takes only one dimension of model

complexity into account, that is, the number of free parameters. The Bayes factor, on the

other hand, implicitly and automatically considers three dimensions of model complexity:

(1) the number of free parameters, (2) the functional form of the model, and (3) the

extension of the parameter space (e.g., Busemeyer et al., in press; Myung & Pitt, 1997).

Thus, the Bayes factor offers the opportunity for a more comprehensive and sophisticated

implementation of the BIC post hoc fit criterion. In fact, a model comparison study using

the BIC post hoc fit criterion for the same models and data pool as used in this article (see

supplemental materials), shows that, for the models and data pool under consideration,

the BIC post hoc fit criterion does not offer a good approximation of the Bayes factor;

according to the BIC post hoc criterion the PVL model should be preferred over the VPP,

PVL-Delta, and EV models. This analysis nicely illustrates the critique of the BIC that

it prefers simple models that underfit the data (Burnham & Anderson, 2002). In this

particular case, among the four models, the VPP model receives the strongest punishment

for having relatively many parameters; however our Bayes factor analysis reveals that for

this specific model comparison exercise, the number of free parameters alone is a limited

and possibly misleading index of model complexity.
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Despite the many advantages of the Bayes factor, it should be stressed that the Bayes

factor only considers relative model adequacy. When the Bayes factor expresses an extreme

preference for modelM1 over modelM2, this does not mean that modelM1 fits the data at

all well (Vandekerckhove et al., 2015). In addition, results from a model comparison based

on Bayes factors depend on the specifics of the data set under consideration. Thus, in order

to obtain a more complete account of the relative and absolute adequacy of the models

under consideration, a Bayes factor analysis needs to be conducted in combination with

other analyses featuring both relative and absolute indices of model adequacy (e.g., Ahn et

al., 2008; Steingroever et al., 2014; Worthy, Pang, & Byrne, 2013; Yechiam & Busemeyer,

2005).

For example, crucial additional dimensions that a model comparison study should

consider are parameter recovery, test of parameter consistency, test of generalizability, and

test of specific influence (e.g., Ahn et al., 2008, 2011; Steingroever, Wetzels, &Wagenmakers,

2013b; Wetzels et al., 2010; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008). We briefly

discuss these alternative methods in turn. First, among the most fundamental requirements

of model adequacy is accurate parameter recovery. Accurate parameter recovery means that

when fitting a model to a synthetic data set that was generated by that same model, the

parameter estimates converge to the true data-generating values (e.g., Ahn et al., 2011,

2014; Steingroever, Wetzels, & Wagenmakers, 2013b; Wetzels et al., 2010). Poor parameter

recovery suggests that a model is not identifiable because there are several parameter

combinations that are equally likely to have generated the data. If the true data-generating

parameters cannot be identified in an idealized scenario (i.e., where the fitted model has also

generated the data) this suggests that parameter estimates obtained from fitting real data

may not be reliable indicators of the underlying psychological processes. Thus, if researchers

wish to draw meaningful conclusions about the psychological processes underlying IGT

performance, they should avoid a model with poor parameter recovery even if this model

outperforms its competitors on other model comparison tests.

Second, the test of parameter consistency compares the correlations between model
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parameters estimated in two different tasks that are intended to measure the same

psychological processes (i.e., Yechiam & Busemeyer, 2008). Good parameter consistency

suggests that the psychological processes driving the performance on both tasks are invariant

across tasks, and that the model captures these psychological processes. Thus, good

parameter consistency confirms the validity of the model parameters. Third, the test of

generalizability also requires data from two different, but related tasks. However, this

method assesses a model’s predictions for the second task based on parameters estimated in

the first task. This method can be implemented as a relative assessment (i.e., compared to a

baseline model that makes random predictions for every trial; see Ahn et al., 2008; Yechiam

& Ert, 2007; Yechiam & Busemeyer, 2008) or as an absolute assessment (i.e., compared

to the observed choice proportions on the second task; see Ahn et al., 2008; Yechiam &

Busemeyer, 2005). Thus, good performance on the test of generalizability suggests that the

model can be used to make accurate predictions about the behavior of a decision maker in

other situations confirming the validity of the model parameters. Finally, the test of specific

influence assesses whether the model parameters indeed correspond to distinct psychological

processes (i.e., Steingroever, Wetzels, & Wagenmakers, 2013b; Wetzels et al., 2010). In

particular, it assesses whether experimental manipulations that were intended to affect the

model parameters model are also reflected by the parameter estimates. If participants are,

for example, distracted during the IGT by means of a filler task, this manipulation should be

reflected by the parameter capturing to the memory process involved in IGT performance.

To conclude, a good performance on the above methods suggests that the estimated model

parameters can be used to draw meaningful conclusions about the psychological processes

underlying performance on the IGT.

Finally, it should be stressed that a Bayes factor analysis should be accompanied

by a robustness analysis (e.g., Kass & Raftery, 1995; Matzke et al., 2015; Wagenmakers,

Wetzels, Borsboom, & van der Maas, 2011). The aim of such an analysis is to investigate

the extent to which the conclusions are altered by the choice of different priors for the

model parameters. The Bayes factor is sensitive to the prior distributions because the prior
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is part of the marginal likelihood computation (Equation 3). In particular, the marginal

likelihood is the likelihood of the data averaged across the entire parameter space, with the

prior acting as averaging weights. In the supplemental materials, we present a robustness

analysis which reveals that although different prior choices affect the exact value of the

Bayes factors the qualitative conclusions are unaffected by the prior choice.

An interesting and challenging future direction is to derive Bayes factors for a

hierarchical implementation of RL models. This allows a comparison of the models on the

group-level instead of on the level of individual participants. Unfortunately, importance

sampling for hierarchical models is not straightforward. The main reason for this is

the increase in the number of estimated parameters. In the case of the individual-level

implementation the dimension of the integral that we approximated with importance

sampling equals the number of parameters (i.e., 3 in the case of the EV model up to 8

in the case of the VPP model). However, in the case of the hierarchical implementation,

the dimension equals (2 + n) × k, with n the number of participants and k the number of

parameters.6 For example, an experiment with 30 participants requires a hierarchical EV

and VPP model with 32×3 = 96 and 32×8 = 256 parameters, respectively. Thus, a major

challenge is to find a method that accurately approximates the marginal likelihood of the

data of the entire group given a specific model. It is likely that future effort to approximate

such high-dimensional integrals will involve more sophisticated sampling methods such as

transdimensional Markov chain Monte Carlo (e.g., Green, 2003; Sisson, 2005). Finally, it

should be kept in mind that one drawback of hierarchical models is that they do not account

for the possibility that there can be different subgroups of participants—an issue that can

be solved with mixture modeling (e.g., Huizenga, Crone, & Jansen, 2007; Konstantinidis,

Speekenbrink, Stout, Ahn, & Shanks, 2014).

Our finding that the majority of the 771 healthy participants provided the strongest

evidence for the VPP model suggests that the perseveration process –a process that is

included in the VPP model, but not in the three other RL models– plays an important role

6We need to add two to the number of participants to also incorporate the group-level parameters.
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in risky decision-making. However, as mentioned above, our Bayes factor analysis should not

be considered in isolation of other model comparison methods. There are several findings

that have raised some skepticism about the VPP model. In particular, Ahn et al. (2014)

showed that among the EV, PVL, PVL-Delta, and VPP models, the VPP model had

the worst simulation and parameter recovery performance. In addition, Ahn et al. (2014)

showed that the posterior distributions of several VPP parameters were very broad. This

suggests that some parameters of the VPP model might be hardly interpretable and might

have little psychological value, and that a more thorough analysis of the validity of the VPP

model is required (for validations of the EV, PVL, and PVL-Delta model see Ahn et al.,

2011; Steingroever, Wetzels, & Wagenmakers, 2013b; Wetzels et al., 2010).

To conclude, Bayes factor analyses can be performed to compare RL models on the

level of individual participants. Also demonstrated is that importance sampling offers an

efficient way to obtain individual-participant Bayes factors for RL models, and that, for

the models and data under consideration, the BIC post hoc fit criterion does not offer a

good approximation of the Bayes factor. Our data provide strong evidence for the VPP

model, moderate evidence for the PVL model, but weak evidence for the EV and PVL-Delta

models. Future efforts should be made to more thoroughly validate the VPP model and to

derive Bayes factors for hierarchical models.
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