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In order to test their hypotheses, psychologists increasingly favor the Bayes factor, the standard Bayesian
measure of relative evidence between two competing statistical models. The Bayes factor has an intuitive
interpretation and allows a comparison between any two models, even models that are complex and
nonnested. In this introduction to the special issue “Bayes factors for Testing Hypotheses in Psychological
Research: Practical Relevance and New Developments”, we first highlight the basic properties of the
Bayes factor, stressing its advantages over classical significance testing. Next, we briefly discuss statistical

software packages that are useful for researchers who wish to make the transition from p values to Bayes
factors. We end by providing an overview of the contributions to this special issue. The contributions fall
in three partly overlapping categories: those that present new philosophical insights, those that provide
methodological innovations, and those that demonstrate practical applications.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many empirical researchers seek to evaluate and test hypothe-
ses by comparing theoretical predictions to observed data. The
dominant statistical vehicle for this activity is null hypothesis sig-
nificance testing using p values. Despite their popularity, the liter-
ature contains an intense and ongoing debate about the usefulness
of p values for testing scientific expectations (e.g., Berger & Sellke,
1987; Cohen, 1994; Edwards, Lindman, & Savage, 1963; Hubbard
& Armstrong, 2006; Wagenmakers, 2007; Wainer, 1999, among
many others).

One important critique of p values is that they cannot be
used to quantify evidence in favor of the null hypothesis; a p
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value can only be used to falsify that null hypothesis. This is a
limitation for replication research (Wagenmakers, Verhagen, &
Ly, in press), or when the null hypothesis reflects a surprising
prediction from a substantive theory (Gallistel, 2009). When the
p value is larger than the chosen significance level we enter a
state of suspended disbelief: there are insufficient grounds to reject
the null hypothesis but we cannot claim evidence in its favor.
In other words, the p value does not allow one to discriminate
absence of evidence (i.e., uninformative data) from evidence of
absence (i.e., data supporting the null hypothesis; Dienes, 2014).
Another important critique is that p values tend to overestimate
the evidence against the null hypothesis (Berger & Delampady,
1987; Johnson, 2013; Sellke, Bayarri, & Berger, 2001). This critique
is particularly relevant in light of the present discussion about
the lack of reproducibility of key results in psychology (Open
Science Collaboration, 2015; Pashler & Wagenmakers, 2012). A
third critique is that p values are computed as integrals over the
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sample space of more extreme outcomes, and therefore depend
on the sampling plan (i.e,, the intention with which the data
are collected, Berger & Berry, 1988a,b). This is a serious practical
limitation for research fields in which there is no known sampling
plan and data become available over time, as is common in ecology,
geophysics, and astronomy.

A final critique we mention here is that p values are limited
regarding the types of hypotheses that can be tested. For exam-
ple, p values cannot be used for testing two nonnested regression
models, such as a model M; with “gender” and “income” as ex-
planatory variables versus a model M, with “educational level”
and “age” as explanatory variables. Furthermore, p values are of
limited use for testing hypotheses with order constraints on the
parameters of interest (Braeken, Mulder, & Wood, 2015). This is un-
fortunate because psychologists often use order constraints to for-
mulate expectations. For example, a strong treatment is expected
to have more effect than a mild treatment, and a mild treatment is
expected to have more effect than a placebo treatment.

These and other considerations have stimulated statisticians
and scientists to explore alternative methods for testing theories
(e.g., Hoijtink, Klugkist, & Boelen, 2008; Mulder, Hoijtink, &
Klugkist, 2010; Rouder, Morey, Speckman, & Province, 2012;
Vanpaemel, 2010). Recently, there has been an increasing interest
in the use of the Bayes factor, the standard Bayesian method
for model selection and hypothesis testing (Jeffreys, 1961; Kass
& Raftery, 1995; Lewis & Raftery, 1997; O’Hagan & Forster,
2004). As a result, Bayes factors have been effectively used for
testing hypotheses in various subdisciplines of psychology, such as
cognitive psychology (Cavagnaro & Davis-Stober, 2014; Massaro,
Cohen, Campbell, & Rodriguez, 2001), experimental psychology
(Kammers, Mulder, de Vignemont, & Dijkerman, 2009a), clinical
psychology (van den Hout et al., 2012), and developmental
psychology (van de Schoot et al., 2011).

The current special issue “Bayes factors for Testing Hypotheses
in Psychological Research: Practical Relevance and New Develop-
ments” brings together a series of papers about Bayes factor tests
for psychological research. The papers can roughly be divided into
three categories. The first category consists of papers that explore
the philosophical foundations of the Bayes factor, such as its inter-
pretation as statistical evidence (Morey, Romeijn, & Rouder, 2016)
and the origin of default Bayes factors as proposed by Sir Harold Jef-
freys (Jeffreys, 1961; Ly, Verhagen, & Wagenmakers, 2016b). In the
second category papers present new statistical developments, such
as hypothesis testing based on the odds of correct rejection of the
null hypothesis to incorrect rejection (Bayarri, Benjamin, Berger,
& Sellke, 2016) and Bayes factors for testing order constraints on
correlations (Mulder, 2016). The third category presents new ap-
plications of Bayes factor tests, such as category learning (Van-
paemel, 2016), differential item functioning in educational assess-
ment (Verhagen, Levy, Millsap, & Fox, 2016), and sport statistics
(Wetzels et al., 2016).

Before discussing the contributions in this special issue in more
detail we highlight some fundamental properties of Bayes factor
tests and its relation to classical tests in Section 2. In Section 3
currently available statistical software packages are discussed that
can be used for computing Bayes factors without needing to know
all the details of statistical modeling. Finally, an overview is given
of the contributions of this special issue, followed by some closing
remarks.

2. Differences between Bayes factors and null hypothesis
significance tests

The Bayes factor, originally advocated by Jeffreys (1961), aims
to quantify the relative evidence that the data provide for two
competing hypotheses. For instance, a Bayes factor of a null

hypothesis F#, against an alternative #¢; of By; = 10 implies that
the data are ten times more likely under #, than under #;. Bayes
factors are computed by assessing the relative predictive adequacy
of the hypotheses under consideration, as provided by the so-called
marginal likelihood (Kass & Raftery, 1995; Morey et al., 2016).

The goal of a null hypothesis significance test (NHST) on the
other hand is to determine whether there is enough evidence in the
data to reject the null hypothesis, while controlling the probability
of incorrectly rejecting the null (i.e., the type I error probability),
using a significance level «. A NHST is constructed such that
the probability of not rejecting an incorrect null (i.e., the type II
error probability) is minimized, resulting in a test with maximal
power. This methodology dates back to Neyman and Pearson
(see Lehmann, 1959, for a classic reference on this paradigm). In
practice a NHST is typically performed using the p value, which was
originally proposed by Fisher. A p value smaller than « indicates
there is enough evidence to reject the null and a p value larger than
« indicates there is not enough evidence in the data to reject the
null. This mechanism automatically implies that a NHST can only
be used to falsify the null hypothesis; it cannot be used to quantify
evidence in favor of the null, even when the sample size N is large
and the p value is close to 1.

Another fundamental difference is the scale of the outcome
of both tests. In a Bayes factor test the outcome is the relative
evidence in the data for #, against #¢;, which lies on a continuous
scale from O (which implies infinitely more evidence for #¢; against
Fp) to infinity oo (which implies infinitely more evidence for #,
against #;). Based on the outcome of the Bayes factor, researchers
can judge for themselves whether the evidence is sufficiently
compelling in the context of the research question at hand. It can
also happen that both hypotheses predict the observed data about
equally well, in which case the Bayes factor is approximately 1. On
the other hand, the outcome of a NHST, as advocated by Neyman
and Pearson, is a dichotomous decision: There is either enough
evidence in the data to reject the null, i.e., the evidence against the
null is “significant”, or there is not enough evidence in the data to
reject the null, i.e., the evidence against the null is “not significant”.

For researchers who perform a NHST it may not be satisfactory
that the outcome of the test is dichotomous because the decision
is based on the significance level which is arbitrarily chosen. An
undesirable consequence is that the paradigm of Neyman and
Pearson, who advocated making a dichotomous decision about
rejecting the null while controlling the type I and type II error
probabilities, is sometimes mixed up with the paradigm of Fisher,
who advocated interpreting the p value in a NHST as a continuous
measure of evidence against the null while avoiding any clear
formulation about the effect under the alternative. For instance
researchers tend to interpret a p value in the range 0.05 < p <
0.10,0.01 < p < 0.05,and p < 0.01 as “mildly significant”,
“significant”, or “highly significant”, respectively, while having the
idea that the type I error probability is controlled. This practice
however results in an inflation of the type I error probability
because the significance level « is chosen after observing the data
where « is specified as small as possible but still larger than the
observed p value.

The cause of this mixup may be that on the one hand researchers
want to include the alternative hypothesis in the testing procedure,
for example via the type II error probability as advocated by
Neyman and Pearson (but not by Fisher). On the other hand
researchers want to interpret the evidence in the data on a
continuous scale as advocated by Fisher (but not by Neyman and
Pearson). In that sense one could argue that the Bayes factor test
has the best of both worlds. First the Bayes factor quantifies the
evidence in the data on a continuous scale and no dichotomous
decision has to be made about which hypothesis to select based
on an arbitrarily chosen cut-off value. Second this measure
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of evidence is a relative measure which balances between the
plausibility of the null hypothesis and the alternative hypothesis
where the prior under the alternative formalizes the anticipated
effect if the null is not true. A Bayes factor of, say, By; = 10, simply
implies that researchers need to adjust their prior beliefs about
the relative plausibility of the competing hypotheses by a factor
of 10. It is up to the scientific community to determine whether
this evidence is sufficiently compelling to warrant publication,
something that needs to be assessed in the context of the prior
plausibility of the competing hypotheses (Dreber et al., in press;
Jeffreys, 1935).

Finally we note another important difference between both
approaches regarding consistency. Roughly speaking a statistical
test is called consistent if the true hypothesis is always selected if
the sample size is large enough. The Bayes factor test is generally
consistent (e.g., O’'Hagan, 1995). Thus as the sample size goes to
infinity, the Bayes factor of #, against #; either goes to 0 (if #; is
true) or to oo (if Hy is true). In contrast, NHST is not consistent.
When the null hypothesis is true we still have a probability of
incorrectly rejecting the null hypothesis that is equal to the chosen
a-level, even in the case of extremely large samples. The Bayes
factor on the other hand always points toward the true hypothesis
as long as the sample is large enough.

3. Statistical software for computing Bayes factors

Easy-to-use statistical software is crucial in order for re-
searchers and practitioners to use Bayes factors in their own field.
Currently several statistical packages are available that can be used
for computing Bayes factors without needing to know all the in-
tricate details of statistical modeling: JASP (Love et al., 0000), the
BayesFactor package in R (Morey & Rouder, 2015), BIEMS (Mulder,
Hoijtink, & de Leeuw, 2012), BIG (Gu, Mulder, Decovi¢, & Hoijtink,
2014), and BOCOR (Mulder, 2016). All programs are freely down-
loadable and easy to use.

The first program, JASP, has a point-and-click graphical user
interface (jasp-stats.org). JASP is a spreadsheet program that
features both classical and Bayesian data analysis methods. Many
of the statistical models used by social scientists (e.g., ANOVA,
regression, repeated measures) are implemented in JASP, often by
using the functionality of the BayesFactor package.

The second program is the BayesFactor package in R. This
package provides much of the same functionality as JASP, and
users who are comfortable with R may prefer to work with the
BayesFactor package.

The third program, BIEMS, also produces Bayes factors for
commonly used statistical models via a graphical user interface
(jorismulder.com). BIEMS is particularly useful for testing hy-
potheses with order constraints (possibly in addition to equality
constraints) between the parameters of interest, say, ;t1 > iy >
W3, i.e., group mean 1 is expected to be larger than group mean
2, and group mean 2 is expected to be larger than group mean 3.
The program has a point-and-click tool for formulating hypotheses
with equality and/or order constraints in an easy manner.

Finally, BIG (informative-hypotheses.sites.uu.nl) and BOCOR
(jorismulder.com) can be used for computing Bayes factors
between hypotheses with only order constraints. BIG can be used
to test constrained hypotheses in general statistical models, such
as structure equation models, and BOCOR can be used to test
constrained hypotheses on correlations coefficients.

The Bayes factors in the above software packages can be
computed without needing to formulate prior distributions for
the model parameters. The motivation was that users who are
new to Bayesian statistics may find it difficult to translate one’s
prior beliefs into distributions. It may also be the case that prior
information is simply unavailable. For this reason default priors

can be used for computing Bayes factors in JASP, the BayesFactor
package, BIEMS, BIG, and BOCOR. The default prior in JASP and the
BayesFactor package builds on the work of Jeffreys (1961), Zellner
and Siow (1980), Rouder, Morey, Speckman, and Province (2012b)
and Rouder, Speckman, Sun, and Iverson (2009). The default prior
in BIEMS builds on earlier work of Berger and Pericchi (1996)
and Mulder et al. (2010, 2009), and it contains the information
of a minimal experiment to ensure that the prior distribution
is not unrealistically vague but also not too informative. In BIG
and BOCOR very vague proper priors are specified, which is
allowed when computing Bayes factors between hypotheses with
only order constraints on the parameters of interest (Klugkist &
Hoijtink, 2007; Mulder, 2014). Note that arbitrarily vague proper
priors should not be used when testing hypotheses with strict
equality constraints due to the Jeffreys—Bartlett-Lindley paradox
(Bartlett, 1957; Jeffreys, 1961; Lindley, 1957; Ly, Verhagen, &
Wagenmakers, 2016a).

4. Contributions of the special issue to Bayesian hypothesis
testing in psychological research

As indicated above, Bayes factors avoid many of the limitations
inherent to p value testing. The development of Bayes factors for
testing statistical models and its application to evaluate scientific
theories therefore remains an active area of research. This is
witnessed by the many applications of Bayes factor tests in
psychology (e.g. Cavagnaro & Davis-Stober, 2014; Kammers et al.,
2009a; Massaro et al., 2001) and other fields of research such
as genetics (Sawcer, 2010), ecology (King, Morgan, Gimenez, &
Brooks, 2010), and management research (Andraszewicz et al.,
2015; Braeken et al., 2015). The increasing interest in Bayes
factor hypothesis testing motivated the current special issue
“Bayes Factors for Testing Hypotheses in Psychological Research:
Practical Relevance and New Developments” for the jJournal
of Mathematical Psychology. The contributions in this special
issue aim to (i) provide new insights about the philosophical
underpinnings of Bayes factors for testing statistical hypotheses,
(ii) present methodological advancements of Bayes factor tests for
yet unexplored testing problems, and (iii) show how Bayes factors
can address research questions in various applications which
could not be properly addressed using alternative approaches. The
technical level of many contributions is relatively low so that most
readers are able to understand the new insights and key results.
The contributions can be divided into three partly overlapping
categories outlined below.

Philosophical foundations

e In The philosophy of Bayes factors and the quantification of
statistical evidence, Morey, Romeijn, and Rouder show how
the Bayes factor formalizes the important scientific concept of
statistical evidence. Furthermore the authors show how Bayes
factors provide a natural means for updating one’s prior beliefs
about scientific claims, hypotheses, or theories in light of the
newly observed data.

o In Harold Jeffreys’s default Bayes factor hypothesis tests: Explana-
tion, extension, and application in psychology, Ly, Verhagen, and
Wagenmakers discuss in an accessible manner how Sir Harold
Jeffreys, one of the most influential Bayesian statisticians, initi-
ated the development of default Bayes factor for testing statis-
tical hypotheses which can be used without having subjective
prior information. Furthermore, these authors presented use-
ful extensions of Jeffreys’ methodology such as a one-sided hy-
pothesis test for a bivariate correlation. Interesting response pa-
pers were provided about this discussion of Jeffreys’ work by
Robert, and Chandramouli and Shiffrin, which was followed by
arejoinder by Ly, Verhagen, and Wagenmakers.
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e In Bayes factors, relations to minimum description length,
and overlapping model classes, Shiffrin, Chandramouli, and
Griinwald investigate the theoretical and practical differences
between two prominent methods, the Bayes factor and
minimum description length. Although both methods have
different philosophical backgrounds, the authors show in a
nontechnical manner that both methods behave similarly when
testing one-sided hypotheses of the success probability in a
binomial experiment.

e In How Bayes factors change scientific practice, Dienes shows
how Bayes factors can help in solving several important
problems underlying the credibility crisis which currently
plagues psychology. These problems are partly caused by the
misuse of classical p values in null hypothesis significance
testing. Bayes factors potentially resolve these issues due to the
fact that the Bayes factor is a symmetric measure of evidence
between two hypotheses and the fact that Bayes factors are not
sensitive to the stopping rule that is used by researchers when
they collect data.

Methodological advancements

e In Rejection odds and rejection ratios: A proposal for statistical
practice in testing hypotheses, Bayarri, Benjamin, Berger, and
Sellke present Bayesian as well as classical methods that avoid
four common problems with standard statistical testing, such
as the failure to incorporate power when quantifying statistical
evidence. Furthermore the authors show that the Bayes factor
satisfies important frequentist principles. This holds out hope
for a possible synthesis of frequentist and Bayesian hypothesis
testing, a subject which statisticians have been struggling with
for decades.

e In Bayes factors for testing order-constrained hypotheses on
correlations, Mulder presents a methodology for computing
Bayes factors for testing order constraints on correlation co-
efficients. Applications include multitrait-multimethod analy-
ses, repeated measures studies, and tests for ordered moderator
effects. The methodology is implemented in the freely down-
loadable software package “BOCOR”. This package allows re-
searchers to test complex order constraints on correlations us-
ing the Bayes factor in a relatively easy manner.

e In Bayes factors for state-trace analysis, Davis-Stober, Morey,
Gretton, and Heathcote generalize existing Bayes factor method-
ology for state-trace analysis. The authors’ methodology effi-
ciently assesses the evidence for a monotonic relation; in addi-
tion, the authors propose a group-level Bayes factor to evaluate
whether or not all individuals satisfy monotonicity. Particular
attention is paid to the specification of prior distributions in or-
der to ensure that the statistical models under test are veridical
reflections of the underlying theory.

e In Error probabilities in default Bayesian hypothesis testing, Gu,
Hoijtink, and Mulder investigate classical error probabilities
of commonly used default Bayes factors for a simple Student
t test. This work was motivated by the fact that Bayes
factors minimize the sum of the type I and type II error
probabilities when generating data via the proper priors that
are specified under the hypotheses. The authors show how
the prior implicitly controls for which effects one obtains good
frequentist performance.

o In Bayesian alternatives to null-hypothesis significance testing for
repeated-measures designs, Nathoo and Masson show how to
compute the BIC (i.e., a large sample approximation of the Bayes
factor) for testing hypotheses in repeated measures designs. An
R-package is provided to compute this BIC which only needs
standard output of a classical ANOVA analysis.

e In Automatic Bayes factors for testing variances of two indepen-
dent normal distributions, Béing-Messing and Mulder propose
different default Bayes factors for a multiple testing problem of
two population variances. The proposed methods can be used
to quantify the evidence in the data in favor of the null hypoth-
esis that two population variances are equal, something that is
not possible using classical p value tests. The authors show how
to compute these Bayes factors in a simple manner.

New applications of Bayes factor tests

e In Evaluating evidence for invariant items: A Bayes factor approach
to testing measurement invariance, Verhagen, Levy, Millsap,
and Fox present a Bayes factor test for detecting differential
item functioning in educational testing. The test is applied to
a mathematical test to investigate whether women answer
geometry items differently than men. An attractive feature of
the proposed test is that it can be used to quantify evidence in
favor of the hypothesis that an item is gender invariant.

e In Prototypes, exemplars and the response scaling parameter: A
Bayes factor perspective, Vanpaemel shows that the Bayes factor
can be used to break the stalemate between prototype and
exemplar theorists in category learning. As described by the
author this is due to the fact that Bayes factors behave like
an Occam’s razor where model fit and model complexity are
naturally balanced when quantifying the relative evidence in
the data between the two models.

e In Bayesian analysis of simulation-based models, Turner, Seder-
berg, and McClelland explore likelihood-free posterior estima-
tion for the Leaky, Competing Accumulator (LCA) model and
the Feed-Forward Inhibition (FFI) model. The authors then com-
pare these two models on the basis of the several performance
measures including Bayes factors based on the BIC. The results
reveal considerable participant heterogeneity, where the LCA
does better than the FFI for some participants, but worse for
others.

e In A Bayesian test for the hot hand phenomenon, Wetzels, Dolan,
Tutschkow, van der Sluis, Dutilh, and Wagenmakers present
a Bayes factor test to determine whether the performance
of sports players is punctuated by streaks of exceptional
performance. The results indicate that very long data sequences
are needed to determine whether the hot hand really exists or
not. The new method is applied to empirical basketball data and
time-series data of a visual perception task.

e In Using Bayes factors to test the predictions of models: A case
study in visual working memory, Kary, Taylor, and Donkin use
Bayes factors to quantify the relative predictive adequacy of
two models for visual working memory, that is, hierarchical
versions of standard slots and resource models. Data from
previous experiments are used to update the prior distributions,
resulting in more focused predictions. The authors rightly stress
the difference between fitting a model to data and evaluating
that model’s predictions.

5. Final remarks

The Bayes factor is increasingly used across many fields of
empirical research. Reasons for its increased popularity include
its intuitive interpretation as the relative evidence provided by
the data between the hypotheses of interest, its flexibility to
test nonnested hypotheses (possibly in the presence of order
constraints), and its straightforward availability through user-
friendly software packages. Together, the contributions to this
special issue form another step toward a better understanding
of the Bayes factor’s potential to address substantive research
questions in an appropriate and coherent fashion. We also would
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like to alert readers to a special issue on Bayesian methods
in psychology which is scheduled to appear in Psychonomic
Bulletin and Review later this year. These and other contributions
demonstrate how psychology and other empirical disciplines can
benefit from using Bayes factors to test statistical hypotheses and
evaluate scientific theories.
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