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• The Bayes factor follows logically from Jeffreys’s philosophy of model selection.
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a b s t r a c t

Harold Jeffreys pioneered the development of default Bayes factor hypothesis tests for standard statistical
problems. Using Jeffreys’s Bayes factor hypothesis tests, researchers can grade the decisiveness of the
evidence that the data provide for a point null hypothesis H0 versus a composite alternative hypothesis
H1. Consequently, Jeffreys’s tests are of considerable theoretical and practical relevance for empirical
researchers in general and for experimental psychologists in particular. To highlight this relevance and to
facilitate the interpretation and use of Jeffreys’s Bayes factor tests we focus on two common inferential
scenarios: testing the nullity of a normal mean (i.e., the Bayesian equivalent of the t-test) and testing the
nullity of a correlation. For both Bayes factor tests, we explain their development, we extend them to
one-sided problems, and we apply them to concrete examples from experimental psychology.
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Consider the common scenario where a researcher entertains
two competing hypotheses. One, the null hypothesis H0, is imple-
mented as a statistical model that stipulates the nullity of a param-
eter of interest (i.e., µ = 0); the other, the alternative hypothesis
H1, is implemented as a statistical model that allows the param-
eter of interest to differ from zero. How should one quantify the
relative support that the observed data provide for H0 versus H1?
Harold Jeffreys argued that this is done by assigning prior mass to
the point null hypothesis (or ‘‘general law’’) H0, and then calculate
the degree towhich the data shift one’s prior beliefs about the rela-
tive plausibility ofH0 versusH1. The factor by which the data shift
one’s prior beliefs about the relative plausibility of two competing
models is nowwidely known as the Bayes factor, and it is arguably
the gold standard for Bayesian model comparison and hypothe-
sis testing (e.g., Berger, 2006; Lee & Wagenmakers, 2013; Lewis &
Raftery, 1997; Myung & Pitt, 1997; O’Hagan & Forster, 2004).
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In his brilliant monograph ‘‘Theory of Probability’’, Jeffreys
introduced a series of default Bayes factor tests for common
statistical scenarios. Despite their considerable theoretical and
practical appeal, however, these tests are hardly ever used in
experimental psychology and other empirical disciplines. A no-
table exception concerns Jeffreys’s equivalent of the t-test, which
has recently been promoted by Jeffrey Rouder, Richard Morey, and
colleagues (e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009).
One of the reasons for the relative obscurity of Jeffreys’s default
tests may be that a thorough understanding of ‘‘Theory of Proba-
bility’’ requires not only an affinity with mathematics but also a
willingness to decipher Jeffreys’s non-standard notation.

In an attempt to make Jeffreys’s default Bayes factor tests ac-
cessible to a wider audience we explain the basic principles that
drove their development and then focus on two popular inferential
scenarios: testing the nullity of a normal mean (i.e., the Bayesian t-
test) and testing the nullity of a correlation. We illustrate Jeffreys’s
methodology using data sets from psychological studies. The
paper is organized as follows: The first section provides some
historical background and outlines four of Jeffreys’s convictions
regarding scientific learning. The second section shows how the
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Bayes factor is a natural consequence of these four convictions.We
decided to include Jeffreys’s own words where appropriate, so as
to give the reader an accurate impression of Jeffreys’s ideas as well
as his compelling style of writing. The third section presents the
procedure from which so-called default Bayes factors can be con-
structed. This procedure is illustrated with the redevelopment of
the Bayesian counterpart for the t-test and the Bayesian correla-
tion test. For both the t-test and the correlation test, we also derive
one-sided versions of Jeffreys’s original tests. We apply the result-
ing Bayes factors to data sets from psychological studies. The last
section concludes with a summary and a discussion.

1. Historical and philosophical background of the Bayes factor

1.1. Life and work

Sir Harold Jeffreys was born in 1891 in County Durham, United
Kingdom, and died in 1989 in Cambridge. Jeffreys first earned
broad academic recognition in geophysics when he discovered
the earth’s internal structure (Bolt, 1982; Jeffreys, 1924). In 1946,
Jeffreys was awarded the Plumian Chair of Astronomy, a position
he held until 1958. After his ‘‘retirement’’ Jeffreys continued his
research to complete a record-breaking 75 years of continuous
academic service at any Oxbridge college, during which he was
awarded medals by the geological, astronomical, meteorological,
and statistical communities (Cook, 1990; Huzurbazar, 1991;
Lindley, 1991; Swirles, 1991). His mathematical ability is on
display in the book ‘‘Methods of Mathematical Physics’’, which he
wrote together with his wife (Jeffreys & Jeffreys, 1946).

Our first focus is on the general philosophical framework
for induction and statistical inference put forward by Jeffreys
in his monographs ‘‘Scientific Inference’’ (Jeffreys, 1931, sec-
ond edition 1955, third edition 1973) and ‘‘Theory of Probabil-
ity’’ (henceforth ToP; first edition 1939, second edition 1948,
third edition 1961). An extended modern summary of ToP is
provided by (Robert, Chopin, & Rousseau, 2009). Jeffreys’s ToP
rests on a principled philosophy of scientific learning (ToP, Chap-
ter I). In ToP, Jeffreys distinguishes sharply between problems
of parameter estimation and problems of hypothesis testing. For
estimation problems, Jeffreys outlines his famous transformation-
invariant ‘‘Jeffreys’s priors’’ (ToP, Chapter III); for testing problems,
Jeffreys proposes a series of default Bayes factor tests to grade
the support that observed data provide for a point null hypothe-
sis H0 versus a composite H1 (ToP, Chapter V). A detailed sum-
mary of Jeffreys’s contributions to statistics is available online at
www.economics.soton.ac.uk/staff/aldrich/jeffreysweb.htm.

For several decades, Jeffreys was one of only few scientists
who actively developed, used, and promoted Bayesianmethods. In
recognition of Jeffreys’s persistence in the face of relative isolation,
E. T. Jaynes’s dedication of his own book, ‘‘Probability theory: The
logic of science’’, reads: ‘‘Dedicated to the memory of Sir Harold
Jeffreys, who saw the truth and preserved it’’ (Jaynes, 2003). In
1980, the seminalwork of Jeffreyswas celebrated in the 29-chapter
book ‘‘Bayesian Analysis in Econometrics and Statistics: Essays in
Honor of Harold Jeffreys’’ (e.g., Geisser, 1980; Good, 1980; Lind-
ley, 1980; Zellner, 1980). In one of its chapters, Dennis Lindley dis-
cusses ToP and argues that ‘‘The Theory is a wonderfully rich book.
Open it at almost any page, read carefully, and you will discover
some pearl’’ (Lindley, 1980, p. 37).

Despite discovering the internal structure of the earth and
proposing a famous rule for developing transformation-invariant
prior distributions, Jeffreys himself considered his greatest scien-
tific achievement to be the development of the Bayesian hypoth-
esis test by means of default Bayes factors (Senn, 2009). In what
follows, we explain the rationale behind Jeffreys’s Bayes factors
and demonstrate their use for two concrete tests.
1.2. Jeffreys’s view of scientific learning

Jeffreys developed his Bayes factor hypothesis tests as a
natural consequence of his perspective on statistical inference,
a philosophy guided by principles and convictions inspired by
Karl Pearson’s classic book The Grammar of Science and by the
work of W. E. Johnson and Dorothy Wrinch. Without any claim
to completeness or objectivity, here we outline four of Jeffreys’s
principles and convictions that we find particularly informative
and relevant.

1.2.1. Conviction i: Inference is inductive
Jeffreys’s first conviction was that scientific progress depends

primarily on induction (i.e., learning from experience). For
instance, he states ‘‘There is a solid mass of belief reached
inductively, ranging from common experience and the meanings
of words, to some of the most advanced laws of physics, on
which there is general agreement among people that have studied
the data’’ (Jeffreys, 1955, p. 276) and, similarly: ‘‘When I taste
the contents of a jar labelled ‘raspberry jam’ I expect a definite
sensation, inferred from previous instances. When a musical
composer scores a bar he expects a definite set of sounds to follow
when an orchestra plays it. Such inferences are not deductive, nor
indeed are they made with certainty at all, though they are still
widely supposed to be’’ (Jeffreys, 1973, p. 1). The same sentiment
is stated more forcefully in ToP: ‘‘(...) the fact that deductive logic
provides no explanation of the choice of the simplest law is an
absolute proof that deductive logic is grossly inadequate to cover
scientific and practical requirements’’ (Jeffreys, 1961, p. 5). Hence,
inference is inductive and should be guided by the datawe observe.

1.2.2. Conviction ii: Induction requires a logic of partial belief
Jeffreys’s second conviction is that in order to formalize

induction one requires a logic of partial belief: ‘‘The idea of
a reasonable degree of belief intermediate between proof and
disproof is fundamental. It is an extension of ordinary logic, which
deals only with the extreme cases’’ (Jeffreys, 1955, p. 275). This
logic of partial belief, Jeffreys showed, needs to obey the rules
of probability calculus in order to fulfill general desiderata of
consistent reasoning—thus, degrees of belief can be thought of as
probabilities (cf. Ramsey, 1926). Hence, all the unknowns should
be instantiated as random variables by specifying so-called prior
distributions before any datum is collected. Using Bayes’ theorem,
these priors can then be updated to posteriors conditioned on the
data that were actually observed.

1.2.3. Conviction iii: The test of a general law requires it be given prior
probability

Jeffreys’s third conviction stems from his rejection of treating
a testing issue as one of estimation. This is explained clearly and
concisely by Jeffreys himself:

‘‘My chief interest is in significance tests. This goes back to
a remark in Pearson’s Grammar of Science and to a paper of
1918 by C. D. Broad. Broad used Laplace’s theory of sampling,
which supposes that if we have a population of nmembers, r of
which may have a property φ, and we do not know r , the prior
probability of any particular value of r (0 to n) is 1/(n + 1).
Broad showed that on this assessment, if we take a sample of
number m and find them all with φ, the posterior probability
that all n are φs is (m + 1)/(n + 1). A general rule would never
acquire a high probability until nearly the whole of the class
had been inspected. We could never be reasonably sure that
apple trees would always bear apples (if anything). The result
is preposterous, and started the work of Wrinch and myself in
1919–1923. Our point was that giving prior probability
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1/(n + 1) to a general law is that for n large we are already
expressing strong confidence that no general law is true. The
way out is obvious. To make it possible to get a high probability
for a general law from a finite sample the prior probabilitymust
have at least some positive value independent of n’’ (Jeffreys,
1980, p. 452).

The allocation of probability to the null hypothesis is known
as the simplicity postulate (Wrinch & Jeffreys, 1921), that is, the
notion that scientific hypotheses can be assigned prior plausibility
in accordance with their complexity, such that ‘‘the simpler laws
have the greater prior probabilities’’ (e.g., Jeffreys, 1961, p. 47;
see also Jeffreys, 1973, p. 38). In the case of testing a point null
hypothesis, the simplicity postulate expresses itself through the
recognition that the point null hypothesis represents a general law
and, hence, requires a separate, non-zero prior probability.

Jeffreys’s view of the null hypothesis as a general law is influ-
enced by his background in (geo)physics. For instance, Newton’s
law of gravity postulates the existence of a fixed universal gravi-
tational constant G. Clearly, this law is more than just a statement
about a constant; it provides a model of motion that relates data to
parameters. In this context, the null hypothesis should be identi-
fied with its own separate null model M0 rather than be perceived
as a simplified statement H0 within the model M1.

Hence, Jeffreys’s third conviction holds that in order to test the
adequacy of a null hypothesis, the model that instantiates that
hypothesis needs to be assigned a separate prior probability, which
can be updated by the data to a posterior probability.

1.2.4. Conviction iv: Classical tests are inadequate
Jeffreys’s fourth conviction was that classical ‘‘Fisherian’’ p-

values are inadequate for the purpose of hypothesis testing.
In the preface to the first edition of ToP, Jeffreys outlines the
core problem: ‘‘Modern statisticians have developed extensive
mathematical techniques, but for the most part have rejected the
notion of the probability of a hypothesis, and thereby deprived
themselves of any way of saying precisely what they mean
when they decide between hypotheses’’ (Jeffreys, 1961, p. ix).
Specifically, Jeffreys pointed out that the p-value significance test
‘‘(...) does not give the probability of the hypothesis; what it
does give is a convenient, though rough, criterion of whether
closer investigation is needed’’ (Jeffreys, 1973, p. 49). Thus, by
selectively focusing on the adequacy of predictions under the null
hypothesis – and by neglecting the adequacy of predictions under
the alternative hypotheses – researchers may reach conclusions
that are premature (see also the Gosset–Berkson critique, Berkson,
1938; Wagenmakers, Verhagen, Ly, Matzke, Steingroever, Rouder
and Morey, 2015):

‘‘Is it of the slightest use to reject a hypothesis until we have
some idea of what to put in its place? If there is no clearly
stated alternative, and the null hypothesis is rejected, we are
simply left without any rule at all, whereas the null hypothesis,
though not satisfactory, may at any rate show some sort of
correspondence with the facts’’ (Jeffreys, 1961, p. 390).

Jeffreys also argued against the logical validity of p-values,
famously pointing out that they depend on more extreme events
that have not been observed: ‘‘What the use of P implies, therefore,
is that a hypothesis that may be true may be rejected because it
has not predicted observable results that have not occurred. This
seems a remarkable procedure’’ (Jeffreys, 1961, p. 385). In a later
paper, Jeffreys clarifies this statement: ‘‘I have always considered
the arguments for the use of P absurd. They amount to saying that
a hypothesis that may or may not be true is rejected because a
greater departure from the trial value was improbable; that is, that
it has not predicted something that has not happened’’ (Jeffreys,
1980, p. 453).
In sum, Jeffreys was convinced that induction is an extended
form of logic; that this ‘‘logic of partial beliefs’’ needs to treat
degrees of belief as probabilities; that simple laws or hypothe-
ses should be viewed as separate models that are allocated non-
zero prior probabilities, and that a useful and logically consistent
method of hypothesis testing need to be comparative, and needs to
be based on the data at hand rather than on data that were never
observed. These convictions coalesced in Jeffreys’s development
of the Bayes factor, an attempt to provide a consistent method of
model selection and hypothesis testing that remedies the weak-
nesses and limitations inherent to p-value statistical hypothesis
testing.

1.3. The Bayes factor hypothesis test

In reverse order, we elaborate on the way in which each
of Jeffreys’s convictions motivated the construction of his Bayes
factor alternative to the classical hypothesis test.

1.3.1. ad. Conviction iv: Classical tests are inadequate
Jeffreys’s development of a Bayesian hypothesis test was

motivated in part by his conviction that the use of classical p
values is ‘‘absurd’’. Nevertheless, Jeffreys reported that the use of
Bayes factors generally yields conclusions similar to those reached
by means of p values: ‘‘As a matter of fact I have applied my
significance tests to numerous applications that have also been
worked out by Fisher’s, and have not yet found a disagreement in
the actual decisions reached’’ (Jeffreys, 1961, p. 393); thus, ‘‘In spite
of the difference in principle between my tests and those based
on the P integrals (...) it appears that there is not much difference
in the practical recommendations’’ (Jeffreys, 1961). However,
Jeffreys was acutely aware of the fact that disagreements can
occur (see also Edwards, Lindman, & Savage, 1963; Lindley, 1957).
In psychology, these disagreements appear to arise repeatedly,
especially for cases in which the p value is in the interval from .01
to .05 (Johnson, 2013; Wetzels et al., 2011).

1.3.2. ad. Conviction iii: The test of a general law requires it be given
prior probability

Jeffreys first identified the null hypothesis with a separate null
model M0 that represents a general law and pits it against the
alternativemodelM1 which relaxes the restriction imposed by the
law. For instance, for the t-test, M0 : normal data X with µ =

0 – the law says that the population mean is zero – and M1 :

normal data X that allows µ to vary freely. As we do not know
whether the data were generated according to M0 or M1 we
consider the model choice a random variable such that P(M1) +

P(M0) = 1.

1.3.3. ad. Conviction ii: Induction requires a logic of partial belief
As the unknowns are considered to be random, we can

apply Bayes’ rule to yield posterior model probabilities given the
observed data, as follows:

P(M1 | d) =
p(d | M1)P(M1)

P(d)
, (1)

P(M0 | d) =
p(d | M0)P(M0)

P(d)
, (2)

where p(d | Mi) is known as the marginal likelihood which
represents the ‘‘likelihood of the data being generated frommodel
Mi’’. By taking the ratio of the two expressions above, the common
term P(d) drops out yielding the key expression:

P(M1 | d)
P(M0 | d)  
Posterior odds

=
p(d | M1)

p(d | M0)  
BF10(d)

P(M1)

P(M0)  
Prior odds

. (3)



22 A. Ly et al. / Journal of Mathematical Psychology 72 (2016) 19–32
This equation has three crucial ingredients. First, the prior odds
quantifies the relative plausibility of M1 over M0 before any
datum is observed. Most researchers enter experiments with prior
knowledge, prior experiences, and prior expectations, and these
can in principle be used to determine the prior odds. Jeffreys
preferred the assumption that both models are equally likely a
priori, such that P(M0) = P(M1) = 1/2. This is consistent
with the Wrinch–Jeffreys simplicity postulate in the sense that
prior mass 1/2 is assigned to a parsimonious model (e.g., M0 :

µ = 0, the general law), and the remaining 1/2 is spread out
over a larger model M1 where µ is unrestricted. In general then,
the prior odds quantify a researcher’s initial skepticism about the
hypotheses under test. The second ingredient is the posterior odds,
whichquantifies the relative plausibility ofM0 andM1 after having
observed data d. The third ingredient is the Bayes factor (Jeffreys,
1935): the extent to which data d update the prior odds to the
posterior odds. For instance, when BF10(d) = 9, the observed data
d are 9 times more likely to have occurred under M1 than under
M0; when BF10(d) = 0.2, the observed data d are 5 times more
likely to have occurred under M0 than under M1. The Bayes factor,
thus, quantifies the relative probability of the observed data under
each of the two competing hypotheses.

Typically, each model Mi has unknown parameters θi that,
in accordance to Jeffreys’s second conviction, are considered as
random with a density given by πi(θi). By the law of total
probability the ‘‘likelihood of the data being generated frommodel
Mi’’ is then calculated by integrating out the unknown parameters
within that model, that is, p(d | Mi) =


f (d | θi, Mi)πi(θi)dθi,

where f (d | θi, Mi) is the likelihood, that is, the function that relates
the observed data to the unknown parameters θi within model
Mi (e.g., Myung, 2003). Hence, when we do not know which
of two models (M0, M1) generated the observed data and both
models contain unknown parameters, we have to specify two
prior densities (π0, π1)which formalize our uncertainty before any
datum has been observed.

1.3.4. ad. Conviction i: Inference is inductive
The specification of the two prior distributions π0, π1 is

guided by two desiderata, predictive matching and information
consistency. Predictive matching implies that the Bayes factor
equals 1when the data are completely uninformative; information
consistency implies that the Bayes factor equals 0 or ∞ when the
data are overwhelmingly informative. These desiderata ensure that
the correct inference is reached in extreme cases, and in doing so
they provide useful restrictions for the specification of the prior
distributions.

To achieve the desired result that the Bayes factor equals
BF10(d) = 1 for completely uninformative data, π0, π1 need to
be chosen such that the marginal likelihoods of M0 and M1 are
predictively matched to each other, that is,

Θ0

f (d | θ0, M0)π0(θ0)dθ0 = p(d | M0) = p(d | M1)

=


Θ1

f (d | θ1, M1)π1(θ1)dθ1 (4)

for every completely uninformative data set d.
On the other hand, when data d are overwhelmingly informa-

tive in favor of the alternative model the Bayes factor should yield
BF10(d) = ∞ or, equivalently, BF01(d) = 1/BF10(d) = 0, as
this then yields P(M1 | d) = 1 for any prior model probability
P(M1) > 0. A Bayes factor with this property is known to be infor-
mation consistent.
2. Jeffreys’s procedure for constructing a default Bayes factor

We now elaborate on Jeffreys’s general procedure in construct-
ing default Bayes factors – the specification of the two priorsπ0, π1
– such that the procedure fulfills the desiderata discussed above.

2.1. Step 1. Nest π0 within π1

In null hypothesis tests the model M1 can be considered an ex-
tension ofM0 by inclusion of a new parameter, that is, θ1 = (θ0, η)

where θ0 denotes the common parameters and η denotes the test-
relevant parameter. Equivalently, M0 is said to be nested within
M1 due to the connection f (d | θ0, M0) = f (d | θ0, η = 0, M1).
Jeffreys exploited the connection between these two likelihood
functions to induce a relationship between π1 and π0. In general
one has π1(θ0, η) = π1(η | θ0)π1(θ0), but due to the nesting Jef-
freys treats the common parameters within M1 as in M0, that is,
π1(θ0) = π0(θ0). Furthermore, when η can be sensibly related to
θ0, Jeffreys redefines the test-relevant parameter as δ, and decom-
poses the prior as π1(η, θ0) = π1(δ)π0(θ0). For instance, in the
case of the t-test Jeffreys focuses on effect size δ =

µ

σ
.

This implies that once we have chosen π0, we have then
completely specified the marginal likelihood p(d | M0) and can,
therefore, readily calculate the denominator of the Bayes factor
BF10(d) given data d. Furthermore, due to the nesting of π0 within
π1 we can also calculate a large part of the marginal likelihood of
M1 as

p(d | M1) =


∆


Θ

f (d | θ0, δ, M1)π0(θ0)dθ0  
h(d | δ)

π1(δ)dδ, (5)

where h(d | δ) is the test-relevant likelihood, a function that only
depends on the data and the test-relevant parameter δ as the
common parameters θ0 are integrated out. The following two steps
are concerned with choosing π1(δ) such that the resulting Bayes
factor is well-calibrated to extreme data.

2.2. Step 2. Predictive matching

Typically, a certain minimum number of samples nmin is
required before model M1 can be differentiated from M0. All
possible data sets with sample sizes less than nmin are considered
uninformative. For example, at least nmin = 2 observations
are required to distinguish M0 : µ = 0 from M1 in a t-
test. Specifically, confronted with a single Gaussian observation
unequal to zero, for instance, x1 = 5, lack of knowledge about
σ within M0 means that we cannot exclude M0 as a reasonable
explanation for the data.

Indeed, a member of M0, a zero-mean normal distribution
with a standard deviation of seven, produces an observation less
than five units away from zero with 53% chance. Similarly, lack
of knowledge about σ also means that M1 cannot be excluded
as a reasonable explanation of the data. To convey that – for the
purpose of discriminating M0 from M1 – nothing is learned from
any data set with a sample smaller than nmin we choose π1(δ) such
that

p(d | M0) = p(d | M1) =


∆

h(d | δ)π1(δ)dδ (6)

for every data set dwith a sample size less than nmin. In sum, π1(δ)

is chosen such that when the data are completely uninformative,
BF10(d) = 1.
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2.3. Step 3. Information consistency

Even a limited number of observations may provide over-
whelming support forM1. In the case of the t-test, for instance, the
support that an observed non-zero mean provides for M1 should
increase without boundwhen the observed variance, based on any
sample size n ≥ nmin, goes to zero. Consequently, for data dwith a
sample size greater or equal to nmin that point undoubtedly to M1,
Jeffreys chose π1(δ) such that p(d | M1) diverges to infinity. That
is, in order to achieve information consistency p(d | M0) needs to
be bounded and π1(δ) needs to be chosen such that p(d | M1) =

∆
h(d | δ)π1(δ)dδ diverges to infinity for overwhelmingly infor-

mative data of any size n greater or equal to nmin.

2.4. Summary

Jeffreys’s procedure to construct a Bayes factor begins with
the nesting of π0 within π1 and the choice of π0 is, therefore,
the starting point of the method. The specification of π0
yields p(d | M0). Next, the test-relevant prior π1 is chosen
such that p(d | M1) is well-calibrated to extreme data that are
either completely uninformative or overwhelmingly informative.
Togetherwithπ0, this calibrated test-relevant prior forms the basis
for Jeffreys’s construction of a Bayes factor.

As a default choice for π0, Jeffreys used his popular ‘‘Jeffreys’s
prior’’ on the common parameters θ0 (Jeffreys, 1946). Derived from
the likelihood function f (d | θ0, M0), this default prior is transla-
tion invariant, meaning that the same posterior is obtained regard-
less of how the parameters are represented (e.g., Ly,Marsman, Ver-
hagen, Grasman, & Wagenmakers, submitted for publication). Jef-
freys’s translation-invariant priors are typically improper, that is,
non-normalizable, even though they do lead to proper posteriors
for the designs discussed below.

The specification of the test-relevant prior requires special
care, as priors that are too wide inevitably reduce the weighted
likelihood, resulting in a preference for H0 regardless of the
observed data (Jeffreys–Lindley–Bartlett paradox; Bartlett, 1957;
Jeffreys, 1961; Lindley, 1957;Marin & Robert, 2010). Consequently,
Jeffreys’s translation-invariant prior cannot be used for the test-
relevant parameter.

Note that Jeffreys’s methodical approach in choosing the two
priors π0, π1 is fully based on the likelihood functions of the two
models that are being compared; the priors do not represent sub-
stantive knowledge of the parameters within the model and the
resulting procedure can therefore be presented as a reference anal-
ysis that may be fine-tuned in the presence of additional informa-
tion. In the following two sectionswe illustrate Jeffreys’s procedure
by discussing the development of the default Bayes factors for two
scenarios that are particularly relevant for experimental psychol-
ogy: testing the nullity of a normalmean and the testing the nullity
of a correlation coefficient. Appendix A provides a list of additional
Bayes factors that are presented in ToP.

3. Jeffreys’s Bayes factor for the test of the nullity of a normal
mean: The Bayesian t-test

To develop the Bayesian counterpart of the classical t-test we
first characterize the data and discuss how they relate to the
unknown parameters within eachmodel in terms of the likelihood
functions. By studying the likelihood functions we can justify the
nesting of π0 within π1 and identify data that are completely
uninformative and data that are overwhelmingly informative.
The test-relevant prior is then selected based on the desiderata
discussed above. We then apply the resulting default Bayes factor
to an example data set on cheating and creativity. In addition, we
develop the one-sided extension of Jeffreys’s t-test, after whichwe
conclude with a short discussion.
3.1. Normal data

For the case at hand, experimental outcomes are assumed
to follow a normal distribution characterized by the unknown
population mean µ and standard deviation σ . Similarly, the
observed data d from a normal distribution can be summarized by
twonumbers: the observed samplemean x̄ and the average sumsof
squares s2n =

1
n

n
i=1(xi−x̄)2; hencewewrite d = (x̄, s2n). Themain

difference between the null model M0 : µ = 0 and its relaxation
M1 is reflected in the population effect size, which is defined as
δ =

µ

σ
, as σ provides a scale to the problem. This population effect

size cannot be observed directly, unlike its sampled scaled version
the t-statistic, i.e., t =

√
nx̄
sν

, where sν refers to the sample standard
deviation based on ν = n − 1 degrees of freedom. Extreme data
can be characterized by |t| → ∞ or equivalently by s2n → 0 and it
is used in the calibration step of the Bayes factor to derive the test-
relevant prior. To improve readability we remove the subscript n
when we refer to the average sum of squares s2 = s2n.

3.2. Step 1. Nesting of π0 within π1

3.2.1. Comparing the likelihood functions
A model defines a likelihood that structurally relates how the

observed data are linked to the unknown parameters. The point
null hypothesis M0 posits that µ = 0, whereas the alternative
hypothesis M1 relaxes the restriction on µ. Conditioned on the
observations d = (x̄, s2), the likelihood functions of M0 and M1
are given by

f (d | σ , M0) = (2πσ 2)−
n
2 exp


−

n
2σ 2


x̄2 + s2


, (7)

f (d | µ, σ , M1) = (2πσ 2)−
n
2 exp


−

n
2σ 2


(x̄ − µ)2 + s2


, (8)

respectively. Note that f (d | σ , M0) is a function of σ alone,
whereas f (d | µ, σ , M1) depends on two parameters, σ and µ.
By the nesting we can set π1(µ, σ ) = π1(µ | σ)π0(σ ). Jeffreys
removed the scale from the problem by considering δ =

µ

σ
as the

test-relevant parameter which leads to π1(δ, σ ) = π1(δ)π0(σ )
with a likelihood expressed as

f (d | δ, σ , M1) = (2π)−
n
2


∞

0
σ−n−1

×


∞

−∞

exp


−
n
2


x̄
σ

− δ
2

+


s
σ

2


π1(δ) dδ dσ . (9)

3.2.2. The denominator of BF10(d)
Jeffreys’s default choice leads to π0(σ ) ∝ 1/σ , the translation-

invariant prior that Jeffreys’swoulduse to arrive at a posterior forσ
within either model. This prior specification leads to the following
marginal likelihood of M0:

p(d | M0) =



1
2|x̄|

n = 1, (a)

Γ ( n
2 )

2(πnx̄2)
n
2

n > 1 and s2 = 0, (b)

Γ
 n
2


2


πns2

 n
2


1 +

t2
ν

−
ν+1
2 n > 1 and s2 > 0, (c)

(10)

where t is the observed t-value and ν the degrees of freedom
defined as before. Hence, Eq. (10)(a)–(c) define the denominator of
the Bayes factor BF10(d); Eq. (10)(a) will be used to calibrate the
Bayes factor BF10(d) to completely uninformative data, whereas
Eq. (10)(b) will be used for the calibration to overwhelmingly
informative data. Some statisticians only report the right term
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
1 +

t2
ν

−
n
2 of Eq. (10)(c), as the first term also appears in the

marginal likelihood ofM1 and, thus, cancels out in the Bayes factor.

3.3. Step 2. Predictive matching: Symmetric π1(δ)

We now discuss how the test-relevant prior π1(δ) can be
chosen such that the resulting Bayes factor is well-calibrated. As
elaborated above, we consider data sets with only one sample as
completely uninformative in discriminating M0 from M1. Jeffreys
(1961, p. 269) studied Eq. (9) with n = 1, x̄ > 0, and, consequently,
s2 = 0, and concluded that p(d | M1) is matched to Eq. (10)(a)
whenever π1(δ) is symmetric around zero.

3.4. Step 3. Information consistency: Heavy-tailed π1(δ)

On the other hand, observed data x̄ > 0, s2 = 0 with
n > 1 can be considered overwhelmingly informative as the t-
value is then infinite. To obtain maximum evidence in favor of the
alternative we require that BF10(d) = ∞. This occurs whenever
the marginal likelihood of M1 is infinite and p(d | M0) finite, see
Eq. (10)(b). Jeffreys (1961, p. 269–270) showed that this is the case
whenever the test-relevant prior π1(δ) is heavy-tailed.

3.5. The resulting Bayes factor

Hence, a Bayes factor that meets Jeffreys’s desiderata can be
obtained by assigning π0(σ ) ∝ 1/σ and π1(δ, σ ) = π1(δ)π0(σ ),
where π1(δ) is symmetric around zero and heavy-tailed.

3.5.1. Jeffreys’s choice: The standard Cauchy distribution
The Cauchy distribution with scale γ is the most well-known

distribution which is both symmetric around zero and heavy-
tailed:

π1(δ ; γ ) =
1

πγ


1 +


δ
γ

2
 . (11)

As a default choice for π1(δ), Jeffreys suggested to use the simplest
version, the standard Cauchy distribution with γ = 1.

3.5.2. Jeffreys’s Bayesian t-test
Jeffreys’s Bayes factor now follows from the integral in Eq. (9)

with respect to Cauchy distributions π1(δ) divided by Eq. (10)(c),
whenever n > 1 and s2 > 0. Jeffreys knew that this integral
is hard to compute and went to great lengths to compute an
approximation that makes his Bayesian t-test usable in practice.
Fortunately, we can now take advantage of computer software
that can numerically solve the aforementioned integral and we
therefore omit Jeffreys’s approximation from further discussion. By
a decomposition of a Cauchy distribution we obtain a Bayes factor
of the following form:

BF10 ; γ (n, t)

=

γ


∞

0 (1 + ng)−
1
2


1 +

t2
ν(1+ng)

−
ν+1
2

(2π)
−

1
2 g−

3
2 e

−
γ 2

2g dg
1 +

t2
ν

−
ν+1
2

, (12)

where g is an auxiliary variable that is integrated out numerically.
Jeffreys’s choice is obtained when γ = 1. The Bayes factor
BF10 ; γ=1(n, t) now awaits a user’s observed t-value and the
associated n number of observations.
Fig. 1. Posterior and prior distributions of the effect size for a two-sided default
Bayes factor analysis of Experiment 2 of Gino and Wiltermuth (2014). The Jeffreys
default Bayes factor of BF10 ; γ=1 ≈ 4.60 equals the height ratio of the prior
distribution π1(δ) over the posterior distribution π1(δ | d) at δ = 0.

3.6. Example: The Bayesian between-subject t-test

To illustrate the default Bayesian t-test we extend Eq. (12) to a
between-subjects design and apply the test to a psychological data
set. The development above is easily generalized to a between-
subject design in which observations are assumed to be drawn
from two separate normal populations. To do so, we replace: (i)
the value of t by the observed two-sample (grouped) t value, (ii) the
effective sample size by n =

n1nx
n1+n2

, and (iii) the degrees of freedom
with ν = n1 + n2 − 2, see Rouder et al. (2009).

Example 1 (Does Cheating Enhance Creativity?). Gino and Wilter-
muth (2014, Experiment 2) reported that the act of cheating en-
hances creativity. This conclusion was based on five experiments.
Here we analyze the results from Experiment 2 in which, hav-
ing been assigned either to a control condition or to a condition
in which they were likely to cheat, participants were rewarded
for correctly solving each of 20 math and logic multiple-choice
problems. Next, participants’ creativity levels were measured by
having them complete 12 problems from the Remote Association
Task (RAT; Mednick, 1962).

The control group featured n1 = 48 participants who scored an
average of x̄1 = 4.65 RAT items correctly with a sample standard
deviation of sn1−1 = 2.72. The cheating group featured n2 =

51 participants who scored x̄2 = 6.20 RAT items correctly with
sn2−1 = 2.98. These findings yield t(97) = 2.73 with p = .008.
Jeffreys’s default Bayes factor yields BF10(d) ≈ 4.6, indicating
that the data are 4.6 times more likely under M1 than under M0.
With equal prior odds, the posterior probability for M0 remains an
arguably non-negligible 17%.

For nested models, the Bayes factor can be obtained without
explicit integration, using the Savage–Dickey density ratio test
(e.g., Dickey & Lientz, 1970; Marin & Robert, 2010; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010). The Savage–Dickey test is
based on the following identify:

BF10(d) =
π1(δ = 0)

π1(δ = 0 | d)
. (13)

One of the additional advantages of the Savage–Dickey test is that it
allows the result of the test to be displayed visually, as the height of
the prior versus the posterior at the point of test (i.e., δ = 0). Fig. 1
presents the results from Experiment 2 of Gino and Wiltermuth
(2014). �

In this example, both the Bayesian and Fisherian analysis gave
the same qualitative result. Nevertheless, the Bayes factor is more
conservative, and some researchers may be surprised that, for the
same data, p = .008 and posterior model probability P(M0 | d) =

.17. Indeed, for many cases the Bayesian and Fisherian analyses
disagree qualitatively as well as quantitatively (e.g., Wetzels et al.,
2011).
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Fig. 2. Posterior and prior distributions of effect size for a one-sided default Bayes
factor analysis of Experiment 2 of Gino andWiltermuth (2014). The Jeffreys default
Bayes factor of BF+0 = 9.18 equals the height ratio of the prior distribution π1(δ)

over the posterior distribution π1(δ | d) at δ = 0. The prior distribution π+(δ) is
zero for negative values of δ. Furthermore, note that the prior distribution for δ ≥ 0
is twice as high compared to π1(δ) in Fig. 1.

3.7. The one-sided extension of Jeffreys’s Bayes factor

Some reflection suggests that the authors’ hypothesis from
Example 1 is more specific—the authors argued that cheating leads
to more creativity, not less. To take into account the directionality
of the hypothesis we need a one-sided adaptation of Jeffreys’s
Bayes factor BF10 ; γ=1(n, t). The comparison that is made is then
between the model of no effect M0 and one denoted by M+ in
which the effect size δ is assumed to be positive. We decompose
BF+0(d) as follows:

BF+0(d) =
p(d | M+)

p(d | M1)  
BF+1(d)

p(d | M1)

p(d | M0)  
BF10(d)

, (14)

where BF+1(d) is the Bayes factor that compares the unconstrained
model M1 to the positively restricted model M+ (Morey &
Wagenmakers, 2014; Mulder, Hoijtink, & Klugkist, 2010; Pericchi,
Liu, & Torres, 2008). The objective comparison between M+ and
M1 is then to keep all aspects the same: π+(σ ) = π1(σ ) =

π0(σ ) except for the distinguishing factor of δ being restricted to
positive values within M+. For the test-relevant prior distribution
we restrict π1(δ) to positive values of δ, which by symmetry
of the Cauchy distribution means that π+(δ) accounts doubly
for the likelihood when δ is positive and nullifies it when δ is
negative (Klugkist, Laudy, & Hoijtink, 2005).

Example 1 (One-Sided Test for the Gino and Wiltermuth Data,
continues). For the data from Gino and Wiltermuth (2014,
Experiment 2) the one-sided adaptation of Jeffreys’s Bayes factor
equation (12) yields BF+0(d) = 9.18. Because almost all of the
posterior mass is consistent with the authors’ hypothesis, the one-
sided Bayes factor is almost twice the two-sided Bayes factor. The
result is visualized through the Savage–Dickey ratio in Fig. 2. �

3.8. Discussion on the t-test

In this section we showcased Jeffreys’s procedure in selecting
the instrumental priors π0, π1 that yield a Bayes factor for
grading the support that the data provide for M0 versus M1.
The construction of this Bayes factor began by assigning Jeffreys’s
translation-invariant prior to the common parameters, that is,
π0(σ ) ∝ 1/σ . This is the same prior Jeffreys would use
for estimating σ in either of the two models, when one of
these two models is assumed to hold true. This prior on
the common parameters then yields the denominator of the
Bayes factor Eq. (10)(a)–(c). Jeffreys noted that when the test-
relevant prior π1(δ) is symmetric and heavy tailed, the resulting
Bayes factor is guaranteed to yield the correct conclusion
for completely uninformative data and for overwhelmingly
informative data. Jeffreys (1961, p. 272–273) noted that the
standard Cauchy prior for δ yields a Bayes factor equation (12)
(with γ = 1) that aligns with this calibration.

It took several decades before Jeffreys’s Bayes factor for the
t-test was adopted by Zellner and Siow (1980) who generalized
it to the linear regression framework based on a multivariate
Cauchy distribution. One practical drawback of their proposal was
the fact that the numerical integration required to calculate the
Bayes factor becomes computationally demanding as the number
of covariates grows.

Liang, Paulo, Molina, Clyde, and Berger (2008) proposed a
computationally efficient alternative to the Zellner and Siow
(1980) setup by first decomposing the multivariate Cauchy
distribution into a mixture of gamma and normal distributions
followed by computational simplifications introduced by Zellner
(1986). As a result, the Bayes factor can be obtained from only a
single numerical integral, regardless of the number of covariates.
The form of the numerator in Eq. (12) is in fact inspired by Liang
et al. (2008) and introduced to psychology by Rouder et al. (2009)
and Wetzels, Raaijmakers, Jakab, and Wagenmakers (2009). The
combination π0(σ ) ∝ σ−1 and δ ∼ C(0, 1) was dubbed the JZS-
prior in honor of Jeffreys, Zellner, and Siow; this is understandable
in the framework of linear regression, although it should be noted
that all ideas for the t-test were already present in the second
edition of ToP (Jeffreys, 1948, p. 242–248).

3.8.1. Model selection consistency
In addition to predictive matching and information consis-

tency, Liang et al. (2008) showed that Zellner and Siow’s 1980 gen-
eralization of Jeffreys’s work is also model selection consistent,
which implies that as the sample size n increases indefinitely, the
support that the data d provide for the correct data-generating
model (i.e., M0 or M1) grows without bound. Hence, Jeffreys’s de-
fault Bayes factor equation (12) leads to the correct decisionwhen-
ever the sample size is sufficiently large. Jeffreys’s procedure of as-
signing default priors for Bayesian hypothesis testing was recently
generalized by Bayarri, Berger, Forte, and García-Donato (2012).
We now turn to Jeffreys’s development of another default Bayes
factor: the test for the presence of a correlation.

4. Jeffreys’s Bayes factor for the test of the nullity of a
correlation

To develop the Bayesian correlation test we first characterize
the data and discuss how they relate to the unknown parameters
within eachmodel in terms of the likelihood functions. By studying
the likelihood functions we can justify the nesting of π0 within
π1 and identify data that are completely uninformative and data
that are overwhelmingly informative. Aswas done for the Bayesian
t-test, the test-relevant prior is selected based on a calibration
argument. The derivations and calibrations given here cannot be
found in Jeffreys (1961), as Jeffreys appears to have derived the
priors intuitively. Hence, we divert from the narrative of Jeffreys
(1961, Paragraph 5.5) and instead: (a) explain Jeffreys’s reasoning
with a structure analogous to that of the previous section; and (b)
give the exact results instead, as Jeffreys used an approximation
to simplify the calculations. In effect, we show that Jeffreys’s
intuitive choice is very close to our exact result. After presenting
the correlation Bayes factor we relate it to Jeffreys’s choice and
apply the resulting default Bayes factor to an example data set
that is concerned with presidential height and the popular vote.
In addition, we develop the one-sided extension of Jeffreys’s
correlation test, after which we conclude with a short discussion.
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4.1. Bivariate normal data

For the case at hand, experimental outcome pairs (X, Y ) are
assumed to follow a bivariate normal distribution characterized by
the unknown population means µx, µy, standard deviations σ , υ

of X and Y respectively. Within M1 the parameter ρ characterizes
the linear association between X and Y . To test the nullity of the
population correlation it is helpful to summarize the data for X
and Y separately in terms of their respective sample means and
average sums of squares: x̄ =

1
n

n
i=1 xi, s

2
=

1
n

n
i=1(xi − x̄)2 and

ȳ =
1
n

n
i=1 yi, u

2
=

1
n

n
i=1(yi − ȳ)2, respectively. The sample

correlation coefficient r then defines an observable measure of the
linear relationship between X and Y :

r =

n
i=1

(xi − x̄)(yi − ȳ)
n

i=1
(xi − x̄)2

n
i=1

(yi − ȳ)2
=

−nx̄ȳ +

n
i=1

xiyi

nsu
. (15)

This sample correlation coefficient r is an imperfect reflection of
the unobservable population correlation coefficientρ. The data can
be summarized by the five quantities d = (x̄, s2, ȳ, u2, r).

The main difference between the null model M0 and M1
is reflected in the population correlation coefficient ρ, which
cannot be observed directly, unlike its sampled version known as
Pearson’s r , Eq. (15). Extreme data can be characterized by |r| = 1
and this is used in the calibration step of the Bayes factor to derive
the form of the test-relevant prior.

4.2. Step 1. Nesting of π0 within π1

4.2.1. Comparing the likelihood functions
The point null hypothesis M0 assumes that the data follow

a bivariate normal distribution with ρ known and fixed at zero.
Hence, M0 depends on four parameters which we abbreviate as
θ0 = (µx, µy, σ , υ), while the alternative model M1 can be
considered an extension of M0 with an additional parameter ρ,
i.e., θ1 = (θ0, ρ). These two bivariate normal models relate the
observed data to the parameters using the following two likelihood
functions:

f (d | θ0, M0) =

2πσυ

−n exp

−

n
2


x̄−µx

σ

2
+


ȳ−µy

υ

2
× exp


−

n
2


s
σ

2
+


u
υ

2
. (16)

f (d | θ1, M1) =


2πσυ


1 − ρ2

−n exp

−

n
2(1−ρ2)

 (x̄ − µx)
2

σ 2

− 2ρ
(x̄ − µx)(ȳ − µy)

συ
+

(ȳ − µy)
2

υ2


× exp


−

n
2(1 − ρ2)


s
σ

2
− 2ρ


rsu
συ


+


u
υ

2
. (17)

Note that f (d | θ0, M0) = f (d | θ0, ρ = 0, M1) and because the
population correlation ρ is defined as

ρ =
Cov(X, Y )

√
Var(X)

√
Var(Y )

=
E(XY ) − µxµy

συ
, (18)

we know that ρ remains the same under data transformations of
the form X̃ = aX − b, Ỹ = cY − d. In particular, we can take
b = µx, d = µy, a = 1/σ , c = 1/υ and conclude that ρ does not
depend on these common parameters θ0. Hence, we nestπ0 within
π1 orthogonally, that is, π1(θ0, ρ) = π1(ρ)π0(θ0).
4.2.2. The denominator of BF10(d)
Jeffreys’s default choice leads to assigning π0(θ0) the joint prior

π0(µx, µy, σ , υ) = 1 ·1 ·
1
σ

1
υ
; this is the translation-invariant prior

that Jeffreys would use to update to the posterior for θ0 within
either model. When the averaged sum of squares are both non-
zero, this yields the following marginal likelihood of M0:

p(d | M0) = 2−2n−nπ1−n(su)1−n

Γ

 n−1
2

2
. (19)

Eq. (19) defines the denominator of the correlation Bayes factor
BF10(d). Observe that this marginal likelihood does not depend on
the sample correlation coefficient r .

4.3. Step 2. Predictive matching: Symmetric π1(ρ)

4.3.1. Deriving the test-relevant likelihood function
We now discuss how the test-relevant prior π1(ρ) can be

defined such that the resulting Bayes factor is well-calibrated.
The conclusion is as before: we require π1(ρ) to be symmetric
around zero.We discuss the resultmore extensively as it cannot be
found in Jeffreys (1961). Furthermore, the test-relevant likelihood
function reported by Jeffreys (1961, p. 291, Eq. 8) is in fact an
approximation of the result given below.

Before we can discuss the calibration we first derive the
test-relevant likelihood function by integrating out the common
parameters θ0 from Eq. (17) with respect to the translation-
invariant priors π0(θ0) as outlined by Eq. (5). This leads to the
following simplification:

p(d | M1) = p(d | M0)

 1

−1
h(n, r | ρ)π1(ρ)dρ, (20)

where h is the test-relevant likelihood function that depends on
n, r, ρ alone and is given by Eqs. (22) and (23). The Bayes factor,
therefore, reduces to

BF10(d) =
p(d | M1)

p(d | M0)
=

p(d | M0)
 1
−1 h(n, r | ρ)π1(ρ)dρ

p(d | M0)

=

 1

−1
h(n, r | ρ)π1(ρ)dρ. (21)

Note that whereas p(d | M0) does not depend on ρ or the statistic
r (see Eq. (19)), the function h does not depend on the statistics
x̄, s2, ȳ, u2 that are associated with the common parameters. Thus,
the evidence for M1 over M0 resides within n and r alone.

The test-relevant likelihood function h(n, r | ρ) possess more
regularities. In particular, it can be decomposed into an even and
an odd function, that is, h = A + B, with A defined as

A(n, r | ρ) = (1 − ρ2)
n−1
2 2F1

 n−1
2 , n−1

2 ;
1
2 ; (rρ)2


, (22)

where 2F1 is Gauss’ hypergeometric function (see Appendix B for
details). Observe that A is a symmetric function of ρ when n and r
are given. The second function B is relevant for the one-sided test
and is given by

B(n, r | ρ) =2rρ(1 − ρ2)
n−1
2


Γ

 n
2


Γ

 n−1
2

2

2F1
 n
2 ,

n
2 ;

3
2 ; (rρ)2


,

(23)

which is an odd function of ρ when n and r are given. Thus, the
test-relevant likelihood function h that mediates inference about
the presence of ρ from n and r is given by h(n, r | ρ) = A(n, r | ρ)+

B(n, r | ρ). Examples of the functions A and B are shown in Fig. 3.



A. Ly et al. / Journal of Mathematical Psychology 72 (2016) 19–32 27
Fig. 3. A(n, r | ρ) is an even function of ρ, and B(n, r | ρ) is an odd function of ρ.
Together, A and B determine the function h from Eq. (21): h(n, r | ρ) = A(n, r | ρ)+

B(n, r | ρ). For this illustration, we used n = 46 and r = 0.39 based on the example
data discussed below.

4.3.2. Predictive matching and the minimal sample size of nmin = 3
Interestingly, the predictive matching principle implies the use

of a symmetric test-relevant prior as in the previous case. Note that
we cannot infer the correlation of a bivariate normal distribution
whenever we have only a single data pair (x, y); r is undefined
when n = 1. Furthermore, when n = 2 we automatically get
r = 1 or r = −1 regardless of whether or not ρ = 0 is true.
As such, nothing is learned up to nmin = 3 when testing the nullity
of ρ. Hence, we have to choose π1(ρ) such that the resulting Bayes
factor equation (21) equals one for n = 1 and n = 2 regardless of
the actually observed r .

Using n = 1 in Eqs. (22) and (23) we see that h(1, r | ρ) =

A(1, r | ρ)+B(1, r | ρ) = 1 for every ρ and r . From a consideration
of Eq. (21) it follows that for a Bayes factor of one with n = 1, we
require π1(ρ) to integrate to one (i.e., BF10(d) =

 1
−1 π1(ρ)dρ =

1), underscoring Jeffreys’s claim that test-relevant priors should
be proper.1 Similarly, for n = 2 we automatically obtain |r| = 1
and plugging this into Eq. (22) yields A(2, |r| = 1 | ρ) = 1. Thus,
with π1(ρ) a proper prior this yields a Bayes factor of BF10(d) =

1 +
 1
−1 B(2, |r| = 1 | ρ)π1(ρ)dρ. To ensure that the Bayes factor

equals one for data with a sample size of n = 2 we have to nullify
the contribution of the function B(2, |r| = 1 | ρ). This occurs when
π1(ρ) is symmetric around zero, since B(2, r | ρ) is an odd function
of ρ, see Fig. 3.

4.4. Step 3. Information consistency

On the other hand, a sample correlation r = 1 or r = −1 with
n ≥ nmin = 3 can be considered overwhelmingly informative data
in favor of the alternative model M1. In our quest to find the right
test-relevant prior that yields a Bayes factor that is information
consistent, we consider the so-called stretched symmetric beta
distributions given by

π1(ρ ; κ) =
2

κ−2
κ

B( 1
κ
, 1

κ
)
(1 − ρ2)

1−κ
κ , (24)

where B(1/κ, 1/κ) is a beta function, see Appendix C for details.
Each κ > 0 yields a candidate test-relevant prior. Jeffreys’s
intuitive choice is represented by Eq. (24) with κ = 1, as this
choice corresponds to the uniform distribution of ρ on (−1, 1).
Furthermore, κ can be thought of as a scale parameter of the prior
as in Eq. (11). We claim that a Bayes factor based on a test-relevant
prior Eq. (24) with κ ≥ 2 is information consistent.

1 Jeffreys rejected the translation-invariant prior ρ ∝ (1−ρ2)−1 because it leads
to unwelcome results when testing the null hypothesis ρ = 1. However, Robert
et al. (2009) noted that such a test is rather uncommon as interest typically centers
on the point null hypothesis M0 : ρ = 0.
Table 1
The Bayes factor BF10 ; κ=2 is information consistent as it diverts to infinitywhen r =

1 and n ≥ 3, while Jeffreys’s intuitive choice BF10 ; κ=1 does not do so until n ≥ 4.
Hence, Jeffreys intuitive choice κ = 1 misses the information consistency criterion
by one observation. Furthermore, note the role of κ; the smaller it is, the stronger
the associated Bayes factors violate the criterion of information consistency.

n BF10 ; κ=5 BF10 ; κ=2 BF10 ; κ=1 BF10 ; κ=1/3 BF10 ; κ=1/10

1 1 1 1 1 1
2 1 1 1 1 1
3 ∞ ∞ 2 1.2 1.05
4 ∞ ∞ ∞ 1.75 1.17
5 ∞ ∞ ∞ 3.20 1.36

4.5. The resulting Bayes factor

To prove the information consistency claim, ρ is integrated out
of the test-relevant likelihood with h = A + B as discussed above
(Eq. (21)). This results in the following analytical Bayes factor:

BF10 ; κ(n, r) =

 1

−1
h(n, r | ρ)π1(ρ ; κ)dρ

=

 1

−1
A(n, r | ρ)π(ρ ; κ)dρ +

 1

−1
B(n, r | ρ)π(ρ ; κ)dρ  

0

=
2

κ−2
κ

√
π

B( 1
κ
, 1

κ
)

Γ


2+(n−1)κ

2κ


Γ

 2+nκ
2κ

 2F1
 n−1

2 , n−1
2 ;

2+nκ
2κ ; r2


, (25)

where the contribution of the B-function is nullified due to
symmetry of the prior. We call Eq. (25) Jeffreys’s exact correlation
test, as we believe that Jeffreys would have derived this Bayes
factor BF10 ; κ(n, r), if he had deemed it necessary to calculate it
exactly.

Table 1 lists the Bayes factors for a selection of values for κ
and n with r = 1 fixed; the results confirm that the Bayes
factor is indeed information consistent when κ ≥ 2. Note that
Jeffreys’s choice of κ = 1 does not lead to a Bayes factor which
provides extreme support for M1 when confronted with data that
are overwhelmingly informative (i.e., r = 1 and nmin = 3).
However, this Bayes factor does diverge when n ≥ 4. Thus,
Jeffreys’s intuitive choice for κ misses the information consistency
criterion by one data pair. The resulting Bayes factor BF10 ; κ(n, r)
now awaits a user’s observed r-value and the associated n number
of observations. In what follows, we honor Jeffreys’s intuition and
showcase the correlation Bayes factor using Jeffreys’s choice κ = 1.

4.6. Example: The Bayesian correlation test

We now apply Jeffreys’s default Bayesian correlation test to
a data set analyzed earlier by Stulp, Buunk, Verhulst, and Pollet
(2013).

Example 2 (Do Taller Electoral Candidates Attract More Votes?).
Stulp et al. (2013) studied whether there exists a relation between
the height of electoral candidates and their popularity among
voters. Based on the data from n = 46 US presidential
elections, Stulp et al. (2013) reported a positive linear correlation of
r = .39 between X , the relative height of US presidents compared
to their opponents, and Y , the proportion of the popular vote. A
frequentist analysis yielded p = .007. Fig. 4 displays the data.
Based in part on these results, Stulp et al. (2013, p. 159) concluded
that ‘‘height is indeed an important factor in the US presidential
elections’’, and ‘‘The advantage of taller candidates is potentially
explained by perceptions associated with height: taller presidents
are rated by experts as ‘greater’, and having more leadership and
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Fig. 4. The data from n = 46 US presidential elections, showing the proportion
of the popular vote for the president versus his relative height advantage against
the closest competitor. The sample correlation equals r = .39, and, assuming
an unrealistic sampling plan, the p-value equals .007. Jeffreys’s default two-sided
Bayes factor equals BF10 ; κ=1(n = 46, r = .39) = 6.33, and the corresponding
one-sided Bayes factor equals BF+0 ; κ=1(n = 46, r = .39) = 11.87. See text for
details.

Fig. 5. Posterior and prior distributions of the population correlation coefficient ρ

for a two-sided default Bayes factor analysis of the height-popularity relation in US
presidents (Stulp et al., 2013). The Jeffreys default Bayes factor of BF10 ; κ=1 = 6.33
equals the height ratio of the prior distributionπ1(ρ) over the posterior distribution
π1(ρ | d) at ρ = 0.

communication skills. We conclude that height is an important
characteristic in choosing and evaluating political leaders’’.

For the Stulp et al. (2013) election data Jeffreys’s exact
correlation Bayes factor equation (25) yields BF10 ; κ=1 = 6.33,
indicating that the observed data are 6.33 times more likely
under M1 than under M0. This result is visualized in Fig. 5 using
the Savage–Dickey density ratio test. With equal prior odds, the
posterior probability for M0 remains an arguably non-negligible
14%. �

4.7. The One-sided extension of Jeffreys’s exact correlation Bayes
factor

Whereas the function A fully determines the two-sided Bayes
factor BF10 ; κ(n, r), the function B takes on a prominent role
when we compare the null hypothesis M0 against the one-sided
alternative M+ with ρ > 0.

To extend Jeffreys’s exact correlation Bayes factor to a one-sided
version, we retain the prior on the common parameters θ0. For the
test-relevant prior π+(ρ | κ) we restrict ρ to non-negative values,
which due to symmetry of π1(ρ | κ) is specified as

π+(ρ ; κ) =


2π1(ρ ; κ) for 0 ≤ ρ ≤ 1,
0 otherwise. (26)

Recall that A is an even function of ρ; combined with the doubling
of the prior for ρ this leads to a one-sided Bayes factor that can be
Fig. 6. Posterior and prior distributions of the population correlation coefficient ρ

for a one-sided default Bayes factor analysis of the height-popularity relation in US
presidents (Stulp et al., 2013). The Jeffreys default Bayes factor of BF+0 ; κ=1 = 11.87
equals the height ratio of the prior π+(ρ) over the posterior π+(ρ | d) at ρ = 0.
The prior π+(ρ) is zero for negative values of ρ. Furthermore, note that the prior
distribution π+(ρ) is twice as high for ρ ≥ 0 compared to π1(ρ) in Fig. 5.

decomposed as

BF+0 ; κ(n, r) = BF10 ; κ(n, r)   1
0 A(n,r | ρ)π+(ρ ; κ)dρ

+ C+0 ; κ(n, r)   1
0 B(n,r | ρ)π+(ρ ; κ)dρ

. (27)

The function C+0 ; κ(n, r) can be written as

C+0 ; κ(n, r) =
2

3κ−2
κ rκ

B( 1
κ
, 1

κ
)

(n − 1)κ + 2

 
Γ

 n
2


Γ

 n−1
2

2

× 3F2

1, n

2 ,
n
2 ;

3
2 ,

2+κ(n+1)
κ

; r2


, (28)

where 3F2 is a generalized hypergeometric function (Gradshteyn &
Ryzhik, 2007, p. 1010)with three upper and two lower parameters.

The function C+0 ; κ(n, r) is positive whenever r is positive,
since B as a function of ρ is then positive on the interval
(0, 1); consequently, for positive values of r the restricted, one-
sided alternative hypothesis M+ is supported more than the
unrestricted, two-sided hypothesis M1, that is, BF+0 ; κ(n, r) >
BF10 ; κ(n, r). On the other hand, C+0 ; κ(n, r) is negative whenever
r is negative; for such cases, BF+0 ; κ(n, r) < BF10 ; κ(n, r).

Example 2 (One-Sided Correlation Test for the US President Data,
Continued). As shown in Fig. 6, for the Stulp et al. (2013) data the
one-sided Jeffreys’s exact correlation Bayes factor equation (27)
yields BF+0 ; κ=1 = 11.87, indicating that the observed data are
11.87 timesmore likely under M+ than under M0. Because almost
all posteriormass obeys the order-restriction, BF+0 ≈ 2×BF10—its
theoretical maximum. �

Using the same arguments as above, we can define the Bayes
factor for a test between M− and M0, which is in fact given
by BF−0 ; κ(n, r) = BF+0 ; κ(n, −r) due to the fact that B is an
odd function of ρ. In effect, this implies that BF+0 ; κ(n, r) +

BF−0 ; κ(n, r) = 2 × BF10 ; κ(n, r), where the factor of two
follows from symmetry of π1(ρ ; κ) in the definition of π+(ρ ; κ).
Additional information on the coherence (Mulder, 2014) of the
Bayes factor for order restrictions is available elsewhere in this
special issue (e.g., Mulder, 2016).

4.8. Discussion on the correlation test

As mentioned earlier, the previous analysis cannot be found
in Jeffreys (1961) as Jeffreys did not derive the functions A and B
explicitly. In particular, Jeffreys (1961, Eqn. (8, 9), p. 291) suggested
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Fig. 7. Error of approximation between the exact function h and Jeffreys’s approximation hJ . The left panel shows that for a modest sample correlation (i.e., r = .39, as in
the example on the height of US presidents) Jeffreys’s approximation is quite accurate; moreover, the error decreases as n grows, and the curve of n = 10 overlaps with that
of n = 20. However, the right panel shows that for a sample correlation of r = .70 the error increases with n, but only for some values of ρ. Furthermore, note that Jeffreys’s
approximation hJ does not yield hJ (n = 1, r) = 1 for every possible r .
Table 2
A comparison of Jeffreys’s exact Bayes factor (i.e., BF10 ; κ=1) to Jeffreys’s approximate integrated Bayes factor (i.e., BFJ,I10) and to Jeffreys approximation of the approximate
integrated Bayes factor (i.e., BFJ10) reveals the high accuracy of the approximations, even for large values of r .

n BF10 ; κ=1(n, .7) BFJ,I10(n, .7) BFJ10(n, .7) BF10 ; κ=1(n, .9) BFJ, I10(n, .9) BFJ10(n, .9)

5 1.1 1.1 0.9 2.8 2.8 1.5
10 3.6 3.6 3.2 84.6 83.7 62.7
20 67.5 67.2 63.7 197,753.0 196,698.0 171,571.5
that the integral of the likelihood Eq. (17) with respect to the
translation-invariant parameters π0(θ0) yields

hJ(n, r | ρ) =
(1 − ρ2)

n−1
2

(1 − rρ)
2n−3

2

, (29)

which in fact approximates the true test-relevant likelihood
function h = A + B very well for modest values of |r| (cf. Jeffreys,
1961, p. 175)—this is illustrated in Fig. 7which plots the error h−hJ .
Specifically, the left panel of Fig. 7 shows that when r = .39, as in
the example on the height of US presidents, there is virtually no
error when n = 10. The right panel of Fig. 7, however, shows that
when r = .70, the error increases with n, but only for values of ρ
from about .30 to about .95. From Jeffreys’s approximation hJ one
can define Jeffreys’s integrated Bayes factor (Boekel et al., 2015;
Wagenmakers, Verhagen, & Ly, in press):

BFJ,I10(n, r) =
1
2

 1

−1
hJ(n, r | ρ)dρ

=

√
π

2
Γ

 n+1
2


Γ

 n+2
2

 2F1
 2n−3

4 , 2n−1
4 ;

n+2
2 ; r2


. (30)

Jeffreys (1961, p. 175) noticed the resulting hypergeometric
function, but as these functions were hard to compute, Jeffreys
went on to derive a practical approximation for the users of his
Bayes factor. The final Bayes factor that Jeffreys recommended for
the comparison M1 versus M0 is therefore an approximation of an
approximation and given by

BFJ10(n, r) =


π

2n − 3
(1 − r2)

4−n
2 . (31)

For the US presidents data from Example 2 all three Bayes factors
yield virtually the same evidence (i.e, BF10 ; κ=1(n = 46, r =

.39) = 6.331, BFJ,I10(n = 46, r = .39) = 6.329, and
BFJ10(n = 46, r = .39) = 6.379). Table 2 shows that the three
Bayes factors generally produce similar outcomes, even for large
values of r (cf. Robert et al., 2009). Jeffreys’s approximation of
an approximation turns out to be remarkably accurate, especially
because there is rarely the need to determine the Bayes factor
exactly. Jeffreys (1961, p. 432) remarks:

Inmost of our problemswe have asymptotic approximations to
K [i.e., BF01] when the number of observations is large. We do
not need K with much accuracy. Its importance is that if K > 1
the null hypothesis is supported by the evidence; if K is much
less than 1 the null hypothesis may be rejected. But K is not a
physical magnitude. Its function is to grade the decisiveness of
the evidence. It makes little difference to the null hypothesis
whether the odds are 10 to 1 or 100 to 1 against it, and in
practice no difference at all whether they are 104 or 1010 to
1 against it. In any case whatever alternative is most strongly
supported will be set up as the hypothesis for use until further
notice.

Hence, the main advantage of having obtained the exact
Bayes factor based on the true test-relevant likelihood function
h may be that it justifies Jeffreys’s approximation BFJ10(n, r). The
true function h also provides insight in the one-sided version
of Jeffreys’s test, and it provides a clearer narrative regarding
Jeffreys’s motivation in model selection and hypothesis testing in
general. Moreover, it allows us to show that Jeffreys’s exact Bayes
factor is model selection consistent.

4.8.1. Model selection consistency
To show that Jeffreys’s correlation Bayes factor is model

selection consistent, we use the sampling distribution of the
maximum likelihood estimate (MLE). As r is the MLE we know
that it is asymptotically normal withmean ρ and variance 1

n(1−ρ2)2
,

where ρ is the true value. In particular, when the data are
generated under M0, thus, ρ = 0, we know that r ∼ N


0, 1

n


when n is large. In order to show that the support for a true M0
growswithout bound as the number of data points n increases, the
Bayes factor BF10 ; κ(n, r) needs to approach zero as n increases.

We exploit the smoothness of BF10 ; κ(n, r) by Taylor expanding
it up to third order in r . By noting that the leading term of the
Taylor expansion BF10 ; κ(n, 0) has a factorΓ


(n−1)κ+2

2κ


/Γ

 nκ+2
2κ


we conclude that it converges to zero as n grows. The proof that
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the Bayes factor BF10 ; κ is also model selection consistent under
M1 follows a similar approach by a Taylor approximation of second
order and consequently concluding that BF10 ; κ(n, r) diverges to∞

as n grows indefinitely.

5. Conclusion

We hope to have demonstrated that the Bayes factors proposed
by Harold Jeffreys have a solid theoretical basis, and, moreover,
that they can be used in empirical practice to answer one
particularly pressing question:what is the degree towhich thedata
support either the null hypothesisM0 or the alternative hypothesis
M1? As stated by Jeffreys (1961, p. 302):

‘‘In induction there is no harm in being occasionally wrong; it is
inevitable thatwe shall be. But there is harm in stating results in
such a form that they do not represent the evidence available at
the time when they are stated, or make it impossible for future
workers to make the best use of that evidence’’.

It is not clear to us what inferential procedures other than the
Bayes factor are able to represent evidence forM0 versusM1. After
all, the Bayes factor follows directly from probability theory, and
this ensures that is obeys fundamental principles of coherence and
common sense (e.g., Wagenmakers, Lee, Rouder, & Morey, 2014).

It needs to be acknowledged that the Bayes factor has been
subjected to numerous critiques. Here we discuss two. First,
one may object that the test-relevant prior distribution for the
parameter of interest has an overly large influence on the Bayes
factor (Liu & Aitkin, 2008). In particular, uninformative, overly
wide priors result in an undue preference for M0, a fact that
Jeffreys recognized at an early stage. The most principled response
to this critique is that the selection of appropriate priors is an
inherent part of model specification. Indeed, the prior offers an
opportunity for the implementation of substantively different
model (Vanpaemel, 2010).

In thismanuscript, we showcased this abilitywhenwe adjusted
the prior to implement a directional, one-sided alternative
hypothesis. In general, the fact that different priors result in
different Bayes factors should not come as a surprise. As stated
by Jeffreys (1961, p. x):

‘‘The most beneficial result that I can hope for as a consequence
of this work is that more attention will be paid to the precise
statement of the alternatives involved in the questions asked.
It is sometimes considered a paradox that the answer depends
not only on the observations but on the question; it should be a
platitude’’.

The second critique is that in practice, all models are wrong. At
first glance this appears not to be a problem, as the Bayes factor
quantifies the support for M0 versus M1, regardless of whether
these models are correct. However, it is important to realize that
the Bayes factor is a relative measure of support. A Bayes factor of
BF10 = 100,000 indicates that M1 receives much more support
from the data than does M0, but this does not mean that M1 is
any good in an absolute sense (e.g., Andraszewicz et al., 2015;
Anscombe, 1973). In addition, it has recently been suggested that
when both models are misspecified, the Bayes factor may perform
poorly in the sense that it is too slow to select the best model (van
Erven, Grünwald, & de Rooij, 2012). However, the Bayes factor does
have a predictive interpretation that does not depend on one of
themodel being true (Wagenmakers, Grünwald, & Steyvers, 2006);
similarly, the model preferred by the Bayes factor will be closest
(with respect to the Kullback–Leibler divergence) to the true data-
generatingmodel (Berger, 1985; Jeffreys, 1980). Morework on this
topic is desired and expected.
In mathematical psychology, the Bayes factor is a relatively
popular method of model selection, as it automatically balances
the tension between parsimony and goodness-of-fit, thereby
safeguarding the researcher against overfitting the data and
preferring models that are good at describing the obtained data,
but poor at generalizing and prediction (Myung, Forster, & Browne,
2000; Myung & Pitt, 1997; Wagenmakers & Waldorp, 2006).
Nevertheless, with the recent exception of the Bayes factor t-
test, the Bayes factors proposed by Jeffreys (1961) have not
receivedmuch attention, neither by statisticians normathematical
psychologists. One of the reasons for this unfortunate fact is
that Jeffreys notation is more accustomed to philosophers of
logic (Geisser, 1980). In order to make Jeffreys’s work somewhat
more accessible, Appendix D provides a table with a modern-day
translation of Jeffreys’s notation. In addition, any scholar new to the
work of Jeffreys is recommended to first read the extendedmodern
summary by Robert et al. (2009).

We would like to stress that a Jeffreys Bayes factor is not
a mere ratio of likelihood functions averaged with respect
to a subjective elicited prior πi(θi) obtained from a within-
model perspective. Jeffreys’s development of the Bayes factor
resembles an experimental design for which one studies where
the likelihood functions overlap, how they differ, and in what way
the difference can be apparent from the data. These consideration
then yield priors from which a Bayes factor needs to be computed.
The computations are typically hard to perform and might
not yield analytical results. These computational issues were a
major obstacle for the Bayesian community, however, Jeffreys
understood that analytical solutions are not always necessary for
good inference; moreover, he was able to derive approximate
Bayes factors, allowing his exposition of Bayesian inductive
reasoning to transcend from a philosophical debate into practical
tools for scientific scrutiny.

Modern-day statisticians and mathematical psychologists may
lack Jeffreys’s talent to develop default Bayes factors, but we are
fortunate enough to live in a time in which computer-driven
sampling methods known as Markov chain Monte Carlo (MCMC:
e.g., Gamerman & Lopes, 2006; Geisser, 1996) are widely available.
This removes the computational obstacles one needs to resolve
after the priors are specified. These tools makes Jeffreys’s method
of testing more attainable than ever before.
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Appendix A. The default Bayes factor hypothesis tests proposed
by Jeffreys in ToP

See Table A.3

Appendix B. Hypergeometric functions

The hypergeometric function (Oberhettinger, 1972, section 15)
with two upper parameters and one lower parameter generalizes
the exponential function as follows (Gradshteyn & Ryzhik, 2007, p
1005):

2F1 (a, b ; c ; z) = 1 +
a · b
c · 1

z +
a(a + 1)b(b + 1)
c(c + 1) · 1 · 2

z2

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2) · 1 · 2 · 3
z3 + · · · . (B.1)
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Table A.3
Default Bayes factor hypothesis tests proposed by Jeffreys (1961) in Chapter V of ‘‘Theory of Probability’’ (third edition).

Tests Pages

Binomial rate 256–257
Simple contingency 259–265
Consistency of two Poisson parameters 267–268
Whether the true value in the normal law is zero, σ unknown 268–274
Whether a true value is zero, σ known 274
Whether two true values are equal, standard errors known 278–280
Whether two location parameters are the same, standard errors not supposed equal 280–281
Whether a standard error has a suggested value σ0 281–283
Agreement of two estimated standard errors 283–285
Both the standard error and the location parameter 285–289
Comparison of a correlation coefficient with a suggested value 289–292
Comparison of correlations 293–295
The intraclass correlation coefficient 295–300
The normal law of error 314–319
Independence in rare events 319–322
Table D.4
Translation of the notation introduced by (Jeffreys, 1961, pp. 245–267). The treatment of α and β as new or old parameters differs from context to context in (Jeffreys, 1961).

Jeffreys’s notation Modern notation Interpretation

q M0 Null hypothesis or null model
q′ M1 Alternative hypothesis or alternative model
H Background information (mnemonic: ‘‘history’’)
P(q |H) P(M0) Prior probability of the null model
f (α)dα


π(θ)dθ Prior density on the parameter θ

P(q′dα |H) P(M1, θ) Probability of the alternative model and its parameter
P(q | aH) π0(θ0 | x) Posterior density on the parameter within M0
P(q′dα | aH) π1(θ1 | x) Posterior density on the parameter within M1
K BF01(d) The Bayes factor in favor of the null over the alternative
α′, β θ0 = α, θ1 =


α′

β


‘‘Alternative’’ parameter θ1 =


function of the old parameter

new parameter


f (β, α′) π1(η | θ0) Prior of the new given the old prior within M1

gααdα′2
+ gβ,βdβ2 I(θ⃗) Fisher information matrix

P(q, db |H) = f (b)db π0(θ0) Prior density of the common parameters within M0
P(q′dbdα |H) = f (b)dbdα π1(θ1) Prior density of the parameters within M1
P(θ | q, b,H) f (d | θ0, M0) The likelihood under M0
P(θ | q′, b, α,H) f (d | θ0, η, M1) Likelihood under M1
P(q db | θH) π0(θ0 | d) Posterior of the parameters within M0
P(q′ db dα | θH) π1(θ1 | d) Posterior of the parameters within M1
Appendix C. The stretched beta density

By the change of variable formula, we obtain the stretched beta
density of ρ on (−1, 1) with parameters α, β > 0

1
2B(α, β)


ρ + 1

2

α−1 
1 − ρ

2

β−1

, (C.1)

where B(α, β) =
Γ (α)Γ (β)

Γ (α+β)
is the beta function that generalizes n

k


to real numbers. By setting β = α this yields the symmetric

beta density of ρ on (−1, 1) with parameters α > 0

2−2α+1

B(α, α)
(1 − ρ2)α−1. (C.2)

The reparametrization we used in text is given by simply
substituting α = 1/κ allowing us to interpret κ as a scale
parameter.

Appendix D. Translation of Jeffreys’s notation in ToP

See Table D.4
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