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Hawkins GE, Wagenmakers EJ, Ratcliff R, Brown SD. Dis-
criminating evidence accumulation from urgency signals in speeded
decision making. J Neurophysiol 114: 40–47, 2015.—First published
April 22, 2015; doi:10.1152/jn.00088.2015. The dominant theoretical
paradigm in explaining decision making throughout both neurosci-
ence and cognitive science is known as “evidence accumulation”—the
core idea being that decisions are reached by a gradual accumulation
of noisy information. Although this notion has been supported by
hundreds of experiments over decades of study, a recent theory
proposes that the fundamental assumption of evidence accumulation
requires revision. The “urgency gating” model assumes decisions are
made without accumulating evidence, using only moment-by-moment
information. Under this assumption, the successful history of evidence
accumulation models is explained by asserting that the two models are
mathematically identical in standard experimental procedures. We
demonstrate that this proof of equivalence is incorrect, and that the
models are not identical, even when both models are augmented with
realistic extra assumptions. We also demonstrate that the two models
can be perfectly distinguished in realistic simulated experimental
designs, and in two real data sets; the evidence accumulation model
provided the best account for one data set, and the urgency gating
model for the other. A positive outcome is that the opposing modeling
approaches can be fruitfully investigated without wholesale change to
the standard experimental paradigms. We conclude that future re-
search must establish whether the urgency gating model enjoys the
same empirical support in the standard experimental paradigms that
evidence accumulation models have gathered over decades of study.

decision-making; response time; mathematical model; urgency gating;
evidence accumulation

THE STUDY OF DECISION-MAKING has over 50 years of history that
crosses disciplinary lines, with particularly important contribu-
tions from cognitive science and neuroscience. The dominant
theoretical paradigm explains decision-making using “accumu-
lator” or “diffusion” models, which assume that noisy infor-
mation is gradually sampled from the environment (Laming
1968; Link and Heath 1975; Ratcliff 1978; Stone 1960). This
information is accumulated in an evidence counter that tracks
support for one choice option over another. The process con-
tinues until support for one option or another reaches a thresh-
old amount, triggering a choice. In hundreds of human studies

with thousands of participants, diffusion models have de-
scribed many aspects of the data and provided insight into
many theoretical and practical research areas, including deci-
sions about motion stimuli, consumer goods, sleep deprivation,
aging, and psychopharmacology (e.g., Krajbich and Rangel
2011; Palmer et al. 2005; Ratcliff et al. 2004; Ratcliff and Van
Dongen 2011; Van Ravenzwaaij et al. 2012). The same models
have been used to understand the neural structures that under-
pin decision-making, in both humans (Ditterich 2006; Forst-
mann et al. 2008, 2010; O’Connell et al. 2012; Ratcliff et al.
2009; Schurger et al. 2012) and other primates (Ding and Gold
2012; Hanes and Schall 1996; Kiani and Shadlen 2009; Mai-
mon and Assad 2006; Purcell et al. 2010, 2012; Ratcliff et al.
2003a, 2007; Roitman and Shadlen 2002).

Recently, this understanding of decision-making based on
evidence accumulation models (EAMs) has been radically
revised by an interesting proposal from Cisek et al. (2009) and
Thura et al. (2012). The core of the revision is the “urgency
gating model” (UGM), which drops the central component of
the EAMs, by assuming that environmental evidence is not
accumulated over time. Instead, the UGM passes novel sensory
information, which varies from moment-to-moment, through a
low-pass filter. The low-pass filtered information is multiplied
by an urgency signal that grows with decision time, and then
these multiplied samples are monitored until any sample ex-
ceeds a decision threshold. The UGM is an original and
insightful proposal that has already had important impacts on
the field (for similar approaches see Hockley and Murdock
1987, and accompanying critique from Gronlund and Ratcliff
1991).

A critical question is why the standard EAMs have had such
a long history in fitting real data, if they are so fundamentally
wrong. An explanation for this was given by Thura et al.
(2012), who gave a mathematical proof that the EAM and
UGM are identical, whenever the stimulus environment does
not change during the course of a decision. That is, as long as
the decision stimulus is relatively constant, such as a static
image, a stationary sound, or a random dot kinematogram with
constant coherence, then the EAM’s success can be explained
by its perfect mimicry of the UGM. This explanation is
particularly powerful because almost all experiments used to
support the EAM framework over the past 50 years have used
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just these time-constant stimuli (although there have been
exceptions, reviewed in DISCUSSION).

We investigate more carefully the claim that the EAM and
UGM cannot be distinguished. First, we show that the mathe-
matical proof of this equivalence provided by Thura et al.
(2012) is incorrect, and hence that the UGM and EAM make
different predictions when the decision stimulus is constant.
Second, we report simulation studies and an application to real
data that illustrate the models can be easily distinguished in
practice, even in data sets of practical sizes, and even with
time-constant decision stimuli.

The proof of equivalence between the evidence accumulation
model and the urgency gating model is incorrect. The key
elements of this proof of equivalence occur in Equations 28
and 29 on page 2918 from Thura et al. (2012). Those equations
provide distributions for sample paths from an EAM and
UGM, respectively, in the absence of decision thresholds.1 The
two equations are identical except for the last term of each,
which for the EAM (Equation 28) is �0

t � and for the UGM
(Equation 29) is t � �0

t �, where � represents a Gaussian
distributed noisy stimulus representation. Thura et al. (2012)
note that the integral in this term “quickly goes to zero in both
cases because the noise has a mean of zero,” and conclude that
the two models “behave nearly identically.”

The integral in question (�0
t �) is an Îto integral of identically

and independently distributed normal increments. The proper-
ties of this integral have been studied extensively (Feller 1968),
originally for application to Brownian motion, but later in
many different variants for psychological application (for a
mathematically-focused review, see Smith 2000). This integral
defines a family of normal distributions that change with time
t. As Thura et al. (2012) note, the mean of these distributions
is exactly zero, for all t. However, and crucially, the variance
of the distributions grows linearly with t.

Returning to the argument of Thura et al. (2012) about the
EAM and UGM, the two terms that discriminate Equations 28
and 29 are not identical. The term from Equation 28 produces
normal distributions whose variance grows with t, while the
term from Equation 29 produces normal distributions whose

variance grows with t3. The difference between t and t3

becomes very large, very quickly. Indeed, rather than “quickly
[going] to zero in both cases,” these final terms will quickly
come to dominate Equations 28 and 29, producing very differ-
ent model predictions.2

Figure 1 illustrates this effect. The left panel shows sample
paths from the noise process of a diffusion model, from
Equation 28 of Thura et al. (2012). Those sample paths were
generated from a random walk simulation of a Brownian
motion process, in which each time step of size � adds a
random Gaussian increment with zero mean and standard
deviation��. The right panel shows samples from the noise
process of an urgency gating model, from Equation 29 of
Thura et al. (2012), with zero drift; sample paths from this
model are multiplied by an urgency signal linearly related to
time. The variance parameters of the two models were set such
that they lead to identical distributions of sample paths for the
two models at time t � 600 (so the middle of the three
distributions shown in each panel are identical for the EAM
and UGM). The differences between the models are apparent
in the distributions of sample paths before and after that time.
The standard deviation of the EAM grows with the square root
of time, while for the UGM it grows with t3/2. This leads to
larger variance for the EAM at early time points, with the
UGM taking over at later times.

METHODS

Even though the above argument makes it clear that the EAM and
UGM are not mathematically identical, it still may be the case that
they are similar enough to be practically identical. That is, perhaps
Cisek et al. (2009) and Thura et al. (2012) were correct in the sense
that the models are impossible to distinguish in finite data samples
from realistic experiments with time-constant stimuli. We investigated
this question using a model recovery simulation (Navarro et al. 2004;
Wagenmakers et al. 2004). This procedure involves simulating data
sets from one model (e.g., the EAM) and fitting those simulated data
sets with both the EAM and UGM, to see which model fits best. If the
models are discriminable, then data generated by the EAM will be
better fit by the EAM than by the UGM, and vice versa.

1 Beyond the error in Equation 29 we describe here, Equation 29 does not
follow from the model specified by Thura et al. (2012), because the UGM
assumes a finite time constant for its low-pass filter. We thank an anonymous
reviewer for pointing out this additional error.

2 The finite time constant used in the UGM, not considered in Equations 28
and 29 of Thura et al. (2012), influences these rates of growth further. We take
this into account carefully in the simulation analyses below.
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Fig. 1. Sample paths (gray lines) for an evidence
accumulation model (left panel) and an urgency
gating model (right panel), both with zero drift. The
three black distribution lines on each panel show the
distribution of sample paths across trials at times t �
300, 600, and 900. There are no units on the y-axes
because the models’ evidence units are arbitrary.
EAM, evidence accumulation model; UGM, urgency
gating model.
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Following Thura et al. (2012), we simulated synthetic data sets
from the Stone (1960) version of the EAM. We implemented the
UGM with an urgency function �(t) that was linear in time with a zero
intercept, �(t) � �t, where � � 1 is a scalar gain, and a low-pass filter
with a time constant of 100 ms (for details see Thura et al. 2012).3 For
consistency with previous applications of the EAM, and with standard
parameter estimation software, we fixed the standard deviation of the
moment-to-moment variability in evidence strength to s � 0.1, for
both models. To provide consistency with parameters reported by
Thura et al. (2012) and Cisek et al. (2009), we report the final
parameter estimates in time units of milliseconds. This transformation
has no effect on model predictions: a distance of 100/2 units at a drift
rate of 0.1 per millisecond is the same distance as 0.1/2 units at a drift
rate of 0.1 per second. This results in the fixed parameter for

moment-to-moment variability taking the value s � 0.1 ��1,000 �
3.16.

We simulated data sets that mimicked a common experimental
design in the perceptual decision-making literature, with a single
experimental factor (e.g., difficulty level) manipulated within sub-
jects across a number of levels (we chose four). We selected
parameter values for the EAM and UGM that led to approximately
equivalent predictions in the limit of large samples: a mean
response time 667 ms, and mean accuracy 60%, 75%, 87%, and
95% in the four difficulty conditions. The parameter values used to
generate the data are shown in Table 1 and the predicted response
time distributions, in the limit of large samples, are shown as
crosses in the quantile-probability plots in Fig. 2A. Using the
parameter values in Table 1, separately for the EAM and UGM we
simulated data from 100 synthetic participants. Each participant’s
data set was of a plausible sample size for the study of perceptual
decision-making, with 200 trials per difficulty condition for a total
of 800 trials. The realistic sample sizes per condition meant that
synthetic data sets were subject to noise relative to the predicted
distributions shown as crosses in Fig. 2A.

We estimated parameters for the EAM and UGM separately for
each synthetic data set using quantile maximum products estimation
(QMPE; Heathcote et al. 2002; Heathcote and Brown 2004). Each
synthetic data set was summarized with five quantiles of the distribu-
tion of response times (10th, 30th, 50th, 70th, 90th), calculated
separately for correct and incorrect responses. The QMP statistic
quantifies agreement between model and data by comparing the
observed and predicted proportions of data falling into each inter-
quantile bin, similarly to G2 and �2. We evaluated model predictions
by Monte Carlo simulation, using 10,000 replicates per experimental
condition during parameter estimation, and 50,000 replicates per
condition to precisely evaluate predictions at the search termination
point. All Monte Carlo simulations (i.e., generating synthetic data sets
and estimating model parameters) used Euler’s method to approxi-
mate diffusion processes as stochastic diffusion equations, with a step
size of 1 ms.

We optimized goodness of fit by adjusting the model parameters
using differential evolution (Ardia et al. 2013; Mullen et al. 2011). For
each synthetic data set and model, we independently estimated six
model parameters (shown in boldface in Table 1). We set wide
boundaries on all parameters and ran 100 particles for 500 search
iterations. To avoid searches terminating in local maxima, we re-
peated this parameter estimation exercise five times, independently,
for each model fit to each synthetic data set, and chose the best set of
parameters overall. The EAM and UGM had the same number of
parameters freely estimated from data, so we compared their goodness
of fit to each synthetic data set using the maximized value of the QMP
statistic, which approximates log-likelihood.

RESULTS

Model recovery was accurate for every single synthetic data
set: data generated from the EAM was always best fit by the
EAM and vice versa for the UGM. This result is shown as
distributions of the difference in goodness of fit in Fig. 2B.
Values above zero (vertical gray line) indicate that the EAM
provided a better fit than the UGM (i.e., higher QMP result for
the EAM than the UGM) and vice versa. The reason for the
complete separation of the distributions in Fig. 2B can be seen
in Fig. 2A: there was considerable misfit between model
predictions and data when the data-generating model did not
match the fitting model—a poor fit when the UGM was fit to
data generated from the EAM and when the EAM was fit to
data generated from the UGM (top right and bottom left panels,
respectively). In contrast, there was an excellent fit to data
when the fitting model matched the data-generating model (top
left and bottom right panels).

The model recovery simulation study provided unequivocal
results. The distributions of differences in goodness of fit were
perfectly separated (Fig. 2B), which occurred because there
was considerable misfit when the fitting model did not match
the data-generating model (Fig. 2A). These results confirm that
the EAM and UGM do not make identical predictions when
environmental input is constant.

The model recovery results were clear because the EAM and
UGM predict qualitatively distinct patterns of response times.
As shown in Fig. 2A, the EAM predicts positively skewed
response time distributions, as typically observed in human
data (Luce 1986). With no further modifications, it also pre-
dicts correct and error response times that are identical (Feller
1968). In contrast, the UGM predicts a pattern of response
times that are approximately normally distributed where error
responses are slower than correct responses (Fig. 2A). Even
more unusually, the UGM predicts a monotonic relationship
between the probability of making a particular response and the
associated response time; that is, the quantile probability plots
predicted by the UGM are monotonically increasing from right

3 Cisek et al. (2009) studied a low-pass filter with a time constant of 200 ms.
The results presented here remain the same whether one assumes a shorter (100
ms) or slightly longer (200 ms) time constant.

Table 1. Parameters used to generate data sets from the EAM and UGM for the model recovery simulation study

Model v1–4 aL, aU z ter s Time Scale Time Constant

EAM 0.03, 0.08, 0.14, 0.23 0, 130 aU/2 300 3.16 milliseconds �
UGM 0.04, 0.11, 0.18, 0.28 �aU, 126 0 300 3.16 milliseconds 100

Boldface indicates parameters that were freely estimated from data when the models were fit to the synthetic data sets; regular face indicates parameters that
were fixed (not estimated from data). Abbreviations: v, drift rate; aL,aU, lower and upper boundary; z, start point; ter, nondecision time. Diffusion constant (s)
refers to the SD of the within-trial Gaussian noise process, � N(0, s), which was fixed at �1,000 multiplied by the standard value of 0.1 to accommodate time
scale in ms. Time constant (in ms) of the low-pass filter implemented in the urgency gating model (UGM) relates to the temporal integration period. The dash
(�) indicates the absence of a time constant parameter in the evidence accumulation model (EAM).
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Fig. 2. Results of the model recovery analyses. A: quantile probability plots of goodness of fit of the EAM and UGM (left and right columns, respectively) to
data generated from the EAM and UGM (top and bottom rows, respectively). Panels show the probability of a correct response on the x-axes and response time
on the y-axes. Green and red crosses represent correct and error responses, respectively, across experimental conditions, simulated from the parameter values
described in Table 1. Gray dots represent the predictions of the best fitting model to each synthetic data set. Vertical placement of the crosses and dots show,
for each condition, the 10th, 30th, 50th (i.e., median), 70th, and 90th percentiles of the response time distribution. B: distributions of the difference in QMP
statistics for data generated from the EAM (dashed histogram) and UGM (solid histogram). Distributions that fall to the left of zero indicate the UGM provided
the best fit to data and those to the right of zero indicate the EAM provided the best fit to data. The gray vertical line shows the point where both models provided
an equally good fit to data. C and D: results of the model recovery analysis that allowed trial-to-trial variability in drift rate (�), using identical formatting to
A and B, respectively.
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to left. This means, for example, that incorrect responses in
very easy conditions (low probability responses) are slower
than incorrect responses in difficult conditions. This pattern is
not typically observed in data, but was observed in predictions
from the UGM for all parameter settings that we investigated.

Figure 3 demonstrates this robustness to parameter settings
in the UGM. The pattern of increasingly slow errors and
near-normal distributions is observed across a broad range of
drift rates and boundary settings.

Next, we investigated the claim that the UGM can mimic the
EAM. We did this by allowing structural parameters of the
UGM to be estimated as free parameters, including the time
constant of the low-pass filter and the scaling parameter of the
urgency function. We simulated data from the EAM using
parameter settings described in Table 1, with a very large
number of observations per cell. The simulated data were fit
with the UGM using identical methods to the model recovery
study, except that we now freely estimated the time constant of
the low-pass filter and the scaling parameter (�) of the urgency
function, both with wide bounds. The � parameter was free to
vary across the interval [0,5] units, and the time constant was
free to vary from [0,2] seconds, which was larger than any
response time in the (simulated EAM) data. Figure 4 shows
that when the time constant and urgency signal parameters of
the UGM are freely estimated from data, it makes highly
similar predictions to the EAM: equal mean response times,
when collapsed across correct and error responses (left panel,
though the UGM always predicts that errors are slower than
corrects), and equal mean accuracy (position along the x-axis,
right panel). However, even in this very free version of the
UGM, the models once again make different predictions for the
shape of the response time distributions (y-axis position, right

panel). This finding further confirms that the EAM and UGM
can be distinguished in standard experimental paradigms.

As a final simulation-based test of the discriminability of the
EAM and UGM, we further explored the UGM prediction that
error responses are slower than correct responses (Fig. 3). This
is the same qualitative relationship predicted by an EAM that
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Fig. 3. Quantile probability plots of UGM model predictions
across a range of parameter settings. The center panel shows
the UGM predictions of the parameter settings described in
Table 1. Relative to the generating values used in the model
recovery study, the left and right columns, respectively, show
UGM predictions when drift rates are 50% smaller and 50%
larger. The top and bottom rows, respectively, show UGM
predictions when the boundary settings are 50% lower and
50% higher. All other details are as described in Fig. 2A. The
pattern of slow errors and near-normal distributions is robust
across parameter settings.
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is modified with trial-to-trial variability in drift rate (Ratcliff
1978). It is therefore possible that the EAM and UGM might
not be discriminable in time-constant stimuli paradigms when
both are endowed with across-trial variability in drift rate. To
this end, we conducted a second model recovery study with
identical methods to the first, where the only difference was
that both models also included trial-to-trial variability in drift
rate in the form of a Gaussian distribution. In the simulated
data, the means of the Gaussian were the drift rates described
in Table 1 and the standard deviation (denoted �) was set to
approximately half the largest drift rate (� � .1 for the EAM,
� � .13 for the UGM), a common value in the EAM literature
(cf. Table 3, Matzke and Wagenmakers 2009). The crosses in
Fig. 2C confirm that the value of � in the EAM was sufficient
to predict the qualitative pattern of error responses that are
slower than correct responses. When fitting the models to the
simulated data, we freely estimated the � parameter for both
the EAM and UGM, as well as the six parameters that were
estimated from data in the first model recovery analysis (i.e.,
parameters shown in boldface in Table 1).

Model recovery was again accurate for every single syn-
thetic data set (see Fig. 2, C and D). That is, even when
endowed with across-trial noise in drift rate, data simulated
from the EAM were always best fit by the EAM and vice versa
for the UGM. Even though the EAM with drift rate variability
predicts the qualitative pattern of slower errors than correct
responses, just like the UGM, the models are perfectly discrim-
inable because they still predict markedly different shapes for
response time distributions. It is possible that the EAM and
UGM may become less discriminable when across-trial noise
in drift rate is much larger than within-trial noise. In some
ways this is a foregone conclusion because when across-trial
noise, which is external to the core model components under
consideration here, dominates within-trial noise, a core com-
ponent of the models, the EAM and UGM become models of
“noise” and are thus less identifiable. These considerations are
tangential to our arguments, as we use the standard settings for
within-trial noise parameters, and we estimated a ratio of
across- to within-trial noise that was representative of the
broader literature.

Application to experimental data. Although the model re-
covery analyses provided clear results, it is still possible that
the models are indistinguishable in real data. We provide a
proof-of-concept against this possibility, by fitting the two
models to data from two classic studies of decision-making
with constant environmental input (Experiment 1, Ratcliff
and McKoon 2008; Roitman and Shadlen 2002). Ratcliff
and McKoon (2008) had 15 human participants, and Roit-
man and Shadlen (2002) had 2 Rhesus macaques, make deci-
sions about random dot motion (RDM), a popular paradigm in
the study of visual perceptual decision-making. An RDM
decision is based on a cloud of dots, of which a certain
percentage move coherently toward the left or right of the
screen while the remaining dots move randomly. The task was
to indicate the direction of coherent motion by making button
responses (Ratcliff and McKoon 2008) or eye movements
(Roitman and Shadlen 2002). The percentage of coherently-
moving dots was varied from trial to trial across six levels that
differed across the two studies: Ratcliff and McKoon (2008)
5%, 10%, 15%, 25%, 35%, and 50%; Roitman and Shadlen
(2002) 0%, 3.2%, 6.4%, 12.8%, 25.6%, and 51.2%. Ratcliff

and McKoon (2008) had each participant complete approxi-
mately 960 decision trials. Roitman and Shadlen (2002) had
one monkey complete 2,614 trials and the other complete 3,534
trials.

To demonstrate that the EAM and UGM accounts can be
identified in data, we fit the models to individual participant
data using identical methods as in our second model recovery
analysis, which assumed a fixed time constant of 100 ms in the
UGM and allowed for trial-to-trial variability in drift rate in
both models (� parameter). Although we fit the models to
individual participant data, we present the data and model
predictions averaged over participants. The top panels of Fig.
5 show that the EAM provided a better fit to the human data of
Ratcliff and McKoon (2008).4 The bottom panels show the
reverse result: the macaque data of Roitman and Shadlen
(2002) were much better described by the UGM. Neither
model provided a perfect account of the data—for example, the
EAM predicted the 90th percentile was slower than observed in
the data of Ratcliff and McKoon (2008), and the UGM tended
to underestimate the observed accuracy rates and predicted the
10th percentile for error responses was slower than observed in
the data of Roitman and Shadlen (2002). Nevertheless, the fits
of the EAM and UGM clearly demonstrate that separation of
the models is possible in real data. In particular, our model fits
suggest that the principles of evidence accumulation may
provide the best account of the human data of Ratcliff and
McKoon (2008), and that the nonhuman primates of Roitman
and Shadlen (2002) may have used urgency-related mecha-
nisms in their decisions, which may or may not be imple-
mented within an accumulation framework (e.g., see Ditterich
2006).

While this analysis demonstrates that the models can be
discriminated in data, and that at least one data set exists whose
data are consistent with each model, much more work is
required to address the question of which model fits most data
best. Extensive analysis of many experiments from multiple
paradigms will be required to establish whether the UGM
enjoys the same empirical support that the EAM has gathered
in previous research.

DISCUSSION

Evidence accumulation models have a long history in ex-
plaining decision-making, at neural and behavioral levels.
Recent research has suggested that this success occurred de-
spite the fundamental assumption of the models being wrong.
In contrast, the urgency gating model (Cisek et al. 2009; Thura
et al. 2012) supposes instead that decision-relevant information
from the environment is not accumulated at all but is instead
used in a moment-by-moment fashion in the form of low-pass
filtering the sensory state. This interesting, and radical, pro-
posal raises the question of why evidence accumulation models
have provided a good fit to data from hundreds of experiments
in dozens of paradigms, if their fundamental assumptions are
erroneous.

A proposed explanation for this discrepancy relies on a proof
that the evidence accumulation model and the urgency gating

4 The fit of the EAM to the data of Ratcliff and McKoon (2008) reported
here is not as precise as the fit of the EAM shown in the original publication.
This is because there were differences in the model assumptions and fitting
methods. Our current set of assumptions and methods were chosen to best
match the UGM for fair comparison.
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model are mathematically identical in situations where the
decision stimulus does not vary with time (Thura et al. 2012).
This might explain the successes of the evidence accumulation
models, as many experiments in which they are used involve
time-constant stimuli. There are, however, notable exceptions
where evidence accumulation models have provided a good
account of decisions with time-varying information, such as
dynamic stimuli that vary in strength (e.g., Brown and Heath-
cote 2005; Pietsch and Vickers, 1997; Usher and McClelland,
2001), and briefly presented stimuli (e.g., Huk and Shadlen
2005; Ratcliff 2002; Ratcliff and Rouder 2000; Ratcliff et al.
2003b; Smith and Ratcliff 2009; Smith et al. 2004; Thapar et
al. 2003). In the latter paradigms, letters, patches of black and
white pixels, or Gabor patches were presented briefly and then
masked. If evidence used in the decision process tracks stim-
ulus information, as the UGM suggests, then drift rate should
rise at stimulus onset and then fall to zero. When stimulus
durations are short enough that the decision process has not
terminated before the mask, then this is equivalent to moving
the starting point toward the correct decision boundary. Rat-
cliff and Rouder (2000) showed that this predicts errors that are
much slower than correct responses (because the diffusion
process must travel a long way to the incorrect boundary), but
this did not occur in data. The data provided most support for
a model that assumed sensory evidence was encoded in a
short-term representation that provided a constant drift rate,
which suggests that the EAM can provide a good account of
data from tasks that use nonstationary decision stimuli. It is not
immediately clear how the UGM may account for this pattern
of results as its low-pass filtering of sensory evidence leads to
a gradual decrease in information over time. This series of
experiments might therefore provide a critical test of the UGM.

More generally, the EAM and UGM examined here can be
considered special cases drawn from the broader class of
sequential sampling models (e.g., Ditterich 2006). For exam-
ple, both models assume arbitrary time constants (perfect in the
case of the EAM, relatively short for the UGM) and time-
variant gain (constant in the EAM, increasing over time in the
UGM). Neither approach can provide a perfect account of data,
and it might be most fruitful to consider the models examined
here as particular model instantiations drawn from a larger family
of possible models. Careful comparison of general model features,
such as urgency signals, allows bounds to be placed on models of
the cognitive processes that are more (or less) active under various
task constraints (for an example of this approach, see Hawkins et
al. 2015). We believe that consideration of data from a large range
of experimental paradigms, including briefly presented stimuli
and time-invariant and time-variant sensory information, will be
instructive in this process.

Here, we have shown that the proof of Thura et al. (2012) is
incorrect, and that evidence accumulation models are not
identical to the urgency gating model, even when the decision
stimulus is constant. We also showed that the two models could be
perfectly distinguished in simulated data—in which the true,
data-generating model was known—even when the simulated
stimulus was constant, and when the sample sizes were realistic.
Finally, we demonstrated that the two models can be discrimi-
nated in real data. Our results therefore show that the urgency
gating model and evidence accumulation models can be discrim-
inated in standard paradigms with time-constant stimuli. This
work opens the possibility of fruitful investigations of the relative
merits of the two opposing models considered here, and the family
of sequential sampling models in general, without wholesale
change to the standard experimental paradigms.
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Fig. 5. Quantile probability plots of the goodness of fit
of the EAM (left panels) and UGM (right panels) to data
from Ratcliff and McKoon (2008; top panels) and Roit-
man and Shadlen (2002; bottom panels). Green and red
crosses, respectively, show mean correct and error re-
sponses in data. Model predictions averaged over indi-
vidual participant fits are shown as gray circles con-
nected with lines. The mean QMP goodness-of-fit sta-
tistic is shown in the top right of each panel, where
larger (more positive) values indicate better fit to data.
All other details are as described in Fig. 2A.
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