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Abstract

A Bayesian analysis concerns the quantification and updating of knowledge
according to the laws of probability theory. A Bayesian analysis allows re-
searchers to estimate parameters (e.g., how effective is a new treatment?) or
to conduct hypothesis testing and model selection (e.g., is the new treatment
more effective than the standard treatment?). The Bayesian paradigm of-
fers concrete advantages for the practical research worker; one of these is the
ability to attach probabilities to hypotheses and parameters, and another is
the ability to collect data until the evidence conclusively supports the null
hypothesis or the alternative hypothesis.
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Statistics is of central importance to all empirical sciences, including clinical psychol-
ogy. In a world without statistics it remains unclear, for instance, whether a new treatment
against depression is superior to the standard treatment; whether the standard treatment
is superior to placebo; or whether the placebo treatment is superior to no treatment what-
soever. Only by using statistics can we draw conclusions from data that are inherently
noisy. A world without statistics is reigned by chaos, anarchy, and arbitrariness. It is true
that some findings are clear enough to pass what Berkson called the interocular traumatic
test – when the data are so compelling that conclusion hits you straight between the eyes.
However, “...the enthusiast’s interocular trauma may be the skeptic’s random error. A little
arithmetic to verify the extent of the trauma can yield great peace of mind for little cost.”
(Edwards, Lindman, & Savage, 1963, p. 217).

Because of its pivotal role in separating the empirical wheat from the chaff, clinical
psychologists are confronted with statistics as soon as they enter university. There students
are implicitly or explicitly taught that statistics comprises a toolbox of objective methods,
and that the main challenge is to select the tool –ANOVA, regression, correlation– that is
appropriate for the situation at hand. Following selection of the right tool, the remaining
work is highly automatized. Data are analyzed in a software package such as SPSS, and
the final result is captured in a single number: the p value. If p < .05, the null hypothesis
can be rejected and one is allowed to claim that, for instance, the new treatment is better
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than the standard treatment. These teachings carry over to later research practices, and
consequently most articles in clinical psychology rely exclusively on the p value to back up
their statistical claims.

This state of affairs is unfortunate, for at least three reasons. First, it ignores the
fact that the statistics taught (i.e., classical, orthodox, or frequentist statistics) comes with
deep conceptual and practical problems. Many students, for instance, remain unaware that
p values depend on the intention with which the data were collected, that they overestimate
the evidence against the null hypothesis, and that one may not continue data collection until
the p value falls below .05. Only by teaching the limitations of a particular method can it
be properly understood. Second, the current state of affairs falsely suggest that statistics
speaks with one voice, and that for a particular problem there exists one single correct
answer. Perhaps this is comforting to the student, but in reality statisticians do not agree
on how to analyze even the simplest problems. This disagreement reflects fundamentally
different opinions about the nature of probability and the goal of scientific inference. The
lines between competing statistical camps can be drawn a number of ways, but the most
often-used distinction, one elaborated on below, is that between frequentists and Bayesians.
Third, the current state of affairs is old-fashioned as it reflects the statistical state-of-the-art
from half a century ago. In those times, the field of statistics was dominated by frequentists,
and Bayesian statisticians constituted a small but stubborn minority. Times have changed,
however, and a Bayesian revolution has transformed statistics.

Bayesian Statistics

In deductive reasoning, general laws allow one to make statements about an individual
case with absolute certainty: if all humans are mortal, and if Socrates is a human, then it
follows that Socrates must be mortal. However, the empirical sciences usually proceed by
inductive reasoning, where observation of individual cases alter the plausibility of a general
law. The observation of every new white swan makes it more plausible that all swans are
white; however, inductive reasoning is inherently probabilistic and does not offer the kind
of absolute certainty that is associated with deduction: indeed, Australia is home to swans
that are black. Hence, inductive reasoning reflects the knowledge that we have gleaned from
experience. Such knowledge can be trivial (as in expecting the sun to rise in the morning)
or honed through years of training (as for expert Go players) – the bottom line is that
inductive knowledge is generated from experience or experiments, not from mathematical
proof.

Bayesian statistics can be viewed as a formalization of inductive reasoning; Bayesian
statistics provides a normative account of how rational agents update their beliefs as they
are confronted with new information. In order to update beliefs in a normative fashion,
these beliefs need to be formalized and changed within the framework of probability calculus.
As observed by the first real Bayesian statistician, Pierre-Simon Laplace (1829), “(...) the
theory of probabilities is basically just common sense reduced to calculus; it makes one
appreciate with exactness that which accurate minds feel with a sort of instinct, often
without being able to account for it.”

The axiomatic foundations of Bayesian inference have been outlined for instance in
Cox (1946), de Finetti (1974), and Jeffreys (1961). These and other works have shown how
the Bayesian framework rests on a few core statements or axioms. For instance, Jeffreys’
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second axiom says that “The theory must be self-consistent; that is, it must not be possible
to derive contradictory conclusions from the postulates and any given set of observational
data.” Indeed, one of the philosophical attractions of Bayesian statistics is that it avoids,
by its very construction, internal inconsistencies or incoherencies.

In order to update knowledge it first needs to be quantified. Bayesian statisticians
quantify knowledge (or uncertainty, or degree of belief) by means of probability distribu-
tions. Consider a one-euro coin that I just drew from my pocket, and ask yourself what
the probability if of it landing heads on the next toss. Perhaps your best guess is 1/2;
however, you might entertain a margin of uncertainty around the 1/2 mark to account for
the fact that the coin may not be perfectly balanced due to design or due to wear and
tear. If you are relatively certain that the coin is balanced then the probability distribution
that reflects your knowledge is highly peaked around 1/2 (i.e., a small interval around 1/2
contains the bulk of the probability distribution); If you are less certain then the probability
distribution will be less peaked and more broadly spread out (i.e., a large interval around
1/2 is needed to contain the bulk of the probability distribution). Note that you may use all
kinds of methods to quantify or enhance your knowledge: in particular, you may examine
other one-euro coins and see how often they land heads rather than tails. At any rate, by
quantifying knowledge through probability distributions the Bayesian statistician does not
single out one particular value as unique or special; instead a range of different values is
considered, and all of these are subsequently taken into account.

After quantifying knowledge by probability distributions, the data come in and the
distributions are updated. For instance, assume you were relatively certain that my one-
euro coin had a probability of 1/2 to fall heads. Now you observe the following sequence
of tosses: {H,H,H,H,H, T,H}. The information from these tosses is used to update your
knowledge about the propensity of the coin. The Bayesian framework ensures that this
updating is done in a manner that is rational and coherent. For instance, the ultimate
result does not depend on the order in which the data came in, nor does it depend on
whether the data came in all at once or one at a time.

In sum, Bayesian statistics has provided humankind with a formal theory of induc-
tion: it is common sense expressed in numbers. Bayesian statements are coherent, meaning
that they are internally consistent. Uncertainty is quantified through probability distribu-
tions. These probability distributions are updated by new information, using the laws of
probability calculus. The next two sections provide concrete illustrations of the general
principle.

Bayesian parameter estimation

At first consider a single statistical model or hypothesis, say M1. In the Bayesian
paradigm, the parameters of this model, θ, are assigned a prior distribution that reflect
our uncertainty or degree of belief about θ, denoted p(θ | M1). This prior distribution
for θ is updated after encountering data y to yield a posterior distribution p(θ | y,M1).
The posterior distribution represents all we know about θ (under the assumption that the
statistical model is correct).

Consider an example on the suicidality of adolescent sexual minority members (SMMs;
Plöderl et al., in press). Many studies have reported increased rates of suicide attempts
among SMMs; however, the picture is less clear for completed suicides. A methodologically
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Figure 1. Prior and posterior distributions for the reported proportion of sexual minority members
among living adolescents and adolescents who committed suicide. Data combined from Shaffer et al.
(1995) and Renaud et al. (2010).

strong procedure to study completed suicides is the autopsy method. In the autopsy method,
sexual orientation is determined by informants, both for a group of individuals who died
by suicide and for a matched control group of individuals who did not commit suicide. The
autopsy method therefore yields two proportions: the proportion of SMMs in the group
whose members died by suicide and the proportion of SMMs in the matched control group.
Collapsing the two autopsy studies performed so far (i.e., Shaffer, Fisher, Hicks, Parides,
& Gould, 1995; Renaud, Berlim, Begolli, McGirr, & Turecki, 2010) the data show that out
of the 175 adolescents who committed suicide, 7 were classified as SMM; out of the 202
matched controls, none was classified as SMM. Hence, the crucial comparison is between
the SMM rate of 7/175 or 4% in the suicide group and 0/202 or 0% in the matched control
group.

Figure 1 shows the result of one possible Bayesian analysis (see Plöderl et al., in press
for details). The dotted, flat distribution is the prior distribution for θ, where θ is the
SMM rate in both the suicide group and the matched control group. This prior distribution
quantifies our knowledge about θ before seeing the actual data. We chose a prior that is
uninformative, meaning that it assigns equal prior weight to all values from 0 to 1. This
prior may strike one as implausible, because the proportion of SMMs in the population is
generally believed to be smaller than 15%. One alternative therefore is to propose a uniform
prior distribution for θ that ranges from 0 to, say, .15. But because this alternative prior
distribution is also flat the main result is not affected.

Figure 1 also shows two posterior distributions; the first posterior distribution (solid
line) reflects what we know about the rate of SMMs in the suicide group (i.e., 7/175 or 4%).
This distribution assigns the highest plausibility to the value of .04 or 4%, but other values
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are likely as well; values exceeding 10%, however, are highly unlikely. For this posterior
distribution, a 95% credible interval extends from .02 to .08, meaning that it is 95% certain
that the true value of θ lies in this interval – in other words, 2.5% of the posterior mass
for θ is lower than .02, and another 2.5% is higher than .08. The probability that θ is in
between .05 and .10 equals the area of the posterior distribution from .05 to .10; here, this
probability is about 1/3. In addition, the posterior distribution shows that the value of
θ = .04 is about 4 times more likely than the value of θ = .02, because the posterior density
is about 4 times as high at θ = .04 as it is at θ = .02.

The second posterior distribution (dashed line) reflects what we know about the
rate of SMMs in the matched control group (i.e., 0/202 or 0%). Note that even though
the control group does not feature a single reported SMM among 202 adolescents, the
posterior distribution still has considerable mass away from zero, and the 95% credible
interval extends from 0 to .02. It is of course also possible to plot the posterior distribution
for the difference between the SMM rates, and to test whether or not this difference includes
zero (Plöderl et al., in press; see also the next section).

The updating from prior to posterior distribution proceeds via Bayes’ rule. This rule
states that the posterior distribution p(θ | y,M1) is proportional to the product of the prior
p(θ | M1) and the likelihood f(y | θ,M1):

p(θ | y,M1) =
p(θ | M1)f(y | θ,M1)

m(y | M1)
∝ p(θ | M1)f(y | θ,M1). (1)

In this equation, m(y | M1) is the marginal probability of the data, a normalizing constant
that does not involve θ. The ∝ symbol stands for “is proportional to”. The posterior
distribution p(θ | y,M1) is a rational compromise between prior knowledge p(θ | M1) and
the information coming from the data, f(y | θ,M1). Hence, the posterior distribution
contains all that we know about θ (under modelM1) after observing the data y. Note that
the posterior distribution is conditional on the data y that have been observed; data that
could have been observed, but were not, do not affect Bayesian inference.

Bayesian model selection

Bayesian parameter estimation focuses on determining the size of an effect, taking
its presence for granted. In contrast, Bayesian model selection focuses on testing for the
presence of an effect, regardless of its size. Consider for example the choice between models
M1 and M2. Bayes’ rule dictates how the prior probability of M1, p(M1), is updated
through the data to give the posterior probability of M1, p(M1 | y):

p(M1 | y) =
p(M1)m(y | M1)

p(M1)m(y | M1) + p(M2)m(y | M2)
. (2)

In the same way, one can calculate the posterior probability of M2, p(M2 | y). The ratio
of these posterior probabilities is given by

p(M1 | y)

p(M2 | y)
=
p(M1)

p(M2)

m(y | M1)

m(y | M2)
, (3)

which shows that the change from prior odds p(M1)/p(M2) to posterior odds p(M1 |
y)/p(M2 | y) is given by the ratio of marginal probabilities m(y | M1)/m(y | M2), a
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Bayes factor BF12 Interpretation

> 100 Extreme evidence for M1

30 – 100 Very Strong evidence for M1

10 – 30 Strong evidence for M1

3 – 10 Moderate evidence for M1

1 – 3 Anecdotal evidence for M1

1 No evidence
1/3 – 1 Anecdotal evidence for M2

1/10 – 1/3 Moderate evidence for M2

1/30 – 1/10 Strong evidence for M2

1/100 – 1/30 Very Strong evidence for M2

< 1/100 Extreme evidence for M2

Table 1: Evidence categories for the Bayes factor BF12 (after Jeffreys, 1961).

quantity known as the Bayes factor (Jeffreys, 1961). The log of the Bayes factor is often
interpreted as the weight of evidence provided by the data.

Thus, when the Bayes factor BF12 = m(y | M1)/m(y | M2) equals 5, this indi-
cates that the observed data y are 5 times more likely to occur under M1 than under
M2; when BF12 equals 0.1, this indicates that the observed data are 10 times more likely
under M2 than under M1. Even though the Bayes factor has an unambiguous and con-
tinuous scale, it is sometimes useful to summarize the Bayes factor in terms of discrete
categories of evidential strength. Jeffreys (1961, Appendix B) proposed the classification
scheme shown in Table 1. We replaced the labels “worth no more than a bare mention”
with “anecdotal”, “decisive” with “extreme”, and “substantial” with “moderate”. These
labels facilitate scientific communication but should be considered only as an approximate
descriptive articulation of different standards of evidence.

Bayes factors represent “the standard Bayesian solution to the hypothesis testing
and model selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool
used in Bayesian inference for hypothesis testing and model selection” (Berger, 2006, p.
378). Nevertheless, Bayes factors come with two important challenges. The first challenge
is computational: for many models, the marginal likelihoods m(y) from Equation 3 are
difficult to calculate. This happens because models are generally composite, meaning that
they have one or more free parameters, and each set of parameter values yields a different
likelihood. In order to combine these different likelihoods into a single number, the marginal
likelihood, one needs to consider the likelihood for all parameter values separately, and then
compute their weighted average. Formally, the marginal likelihood m(y) can be expressed
as

∫
Θ f(y | θ)p(θ) dθ: it is a weighted average across the parameter space, with the prior

distribution providing the averaging weights. The computational challenge grows with
the dimensionality of the parameter space. Nevertheless, modern computational methods
coupled with the ever-increasing power of desktop computers are currently overcoming the
computational challenge.

The second challenge is conceptual. For parameter estimation, the prior on the pa-



BAYESIAN ANALYSIS 7

rameters is generally overwhelmed by the data rather quickly. Intuitively, rational agents
may have different prior beliefs, but the influx of data drives them inexorably towards a
common opinion. Hence, the philosophical discussion on the subjectivity of the prior distri-
bution is not particularly worrisome to a Bayesian; for most data sets, the precise shape of
the prior distribution is practically irrelevant. For model selection, however, the prior on the
parameters does exert a lasting influence, particularly for parameters that are unique to the
models under consideration. This happens because the prior on the parameters is part and
parcel of the model specification. A model with a fixed value of θ (e.g., θ ∼ N(0, σ → 0))
is simpler than a model for which θ is free to vary (e.g., θ ∼ N(0, σ = 1)), just as a model
in which θ is allowed to vary only a little (e.g., θ ∼ N(0, σ = 0.1)) is simpler than a model
in which θ is allowed to vary a lot (e.g., θ ∼ N(0, σ = 10)).

In Bayesian model selection, the marginal likelihood is determined by the propor-
tion of the parameter space that yields a good fit to the observed data. Because the
marginal likelihood is an average across the entire parameter space, complex models with
high-dimensional parameter spaces are not necessarily desirable — large regions of the pa-
rameter space may yield a fit to the data that is very poor, dragging down the average.
Hence, a good model is a parsimonious model that uses only those parts of the parameter
space that are required to provide an adequate account of the data. In this sense the Bayes
factor can be viewed as an automatic Ockham’s razor, also known as Ptolemy’s principle of
parsimony.

The conceptual challenge can be met in several ways. Subjective Bayesians may
insist that the prior distribution for all parameters needs to be determined by a thorough
process of “prior elicitation” that extracts knowledge from subject-matter experts. On
the other hand, objective Bayesians seek to establish a set of prior distributions with good
properties for testing that can be used regardless of the subject-matter (e.g., Jeffreys, 1961).
For instance, one useful default is the unit-information prior, where the prior precision is
determined by the amount of information in a single observation — under this prior, an
approximation to the Bayes factor is known as BIC, the Bayesian Information Criterion.
The next example shows the Bayes factor with default priors in action.

Consider the possibility of a linear relation between scores on the Penn State Worry
Questionnaire (PSWQ; Meyer, Miller, Metzger, & Borkovec, 1990) and the Anhedonic
Depression scale of the Mood And Anxiety Symptom Questionnaire (MASQ.AD; Watson
& Clark, 1991). PSWQ and MASQ.AD scores were obtained from a group of 40 first-year
psychology students at the University of Amsterdam (data courtesy of Maurice Topper).
Figure 2 suggests that there is a positive correlation, r = .55, between scores on PSWQ and
scores on MASQ.AD. But how confident can we be that the correlation is in fact present?
Wetzels and Wagenmakers (2012) describe a default test for the presence of a correlation
that is based on the linear regression framework outlined in Liang, Paulo, Molina, Clyde,
and Berger (2008). This framework allows us to obtain peace of mind by doing a little
arithmetic to verify the extent of the interocular trauma conveyed by Figure 2.

In fact, little if any arithmetic is needed here. The default prior distributions have
been specified as detailed in Liang et al. (2008), and an accompanying R function requires
only that we enter the observed correlation (i.e., r = .55) and the number of participants
(i.e., n = 40). The result is BF10 ≈ 107, indicating that the data are over one hundred times
more likely to occur under the alternative hypothesis H1 than under the null hypothesis H0;
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Figure 2. Scores on the Penn State Worry Questionnaire and the Anhedonic Depression scale of
the Mood And Anxiety Symptom Questionnaire for a group of 40 first-year psychology students at
the University of Amsterdam. Data collected in 2012, courtesy of Maurice Topper.

this constitutes “extreme evidence” in favor of the presence of a correlation (cf. Table 1).

This example can be extended to highlight one of the practical advantages of Bayesian
analysis for clinical psychology. The concept that underlies this advantage is the stopping
rule principle which states that “(...) the reason for stopping experimentation (the stopping
rule) should be irrelevant to evidentiary conclusions about θ.” (Berger & Wolpert, 1988,
p. 74). This means that evidence, quantified by the Bayes factor, may be monitored as
the data accumulate – data collection may stop whenever the evidence is conclusive, be it
in favor of H0 or in favor of H1. As pointed out by Edwards et al. (1963, p. 193), “(...)
the rules governing when data collection stops are irrelevant to data interpretation. It is
entirely appropriate to collect data until a point has been proven or disproven, or until the
data collector runs out of time, money, or patience.”

Hence the stopping rule principle allows us to monitor the Bayes factor for the presence
of a correlation between scores on PSWQ and scores on MASQ.AD. Figure 3 shows the
result. Note that after the first 11 participants, the Bayes factor provides modest support
in favor of the null hypothesis; also note that after 30 participants the evidence is still only
anecdotal.

Markov chain Monte Carlo

For a long time, researchers could only proceed with Bayesian inference when the
posterior distribution was available in closed form. As a result, practitioners interested
in models of realistic complexity did not much use Bayesian inference. This situation
changed dramatically with the advent of computer-driven sampling methodology generally
known as Markov chain Monte Carlo (i.e., MCMC). Using MCMC techniques such as
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Figure 3. A Bayesian sequential hypothesis test for the presence of a correlation between PSWQ
and MASQ.AD scores. The Bayes factor BF10 compares two hypotheses: the null hypothesis H0

postulates the absence of a correlation, and the alternative hypothesis H1 postulates its presence.
Note that the evidence may be monitored as the data accumulate, and that it is possible to quantify
evidence in favor of H0.

Gibbs sampling or the Metropolis-Hastings algorithm, researchers can now directly sample
sequences of values from the posterior distribution of interest, foregoing the need for closed
form analytic solutions. The current adage is that Bayesian models are limited only by the
user’s imagination.

In order to visualize the increased popularity of Bayesian inference, Figure 4 plots the
proportion of articles published in the Journal of the American Statistical Association that
contain the words “Bayes” or “Bayesian”. The JASA time line in Figure 4 confirms that
Bayesian methods have become increasingly mainstream. Also shown is the time line for
one of the flagship journals in clinical psychology, the Journal of Consulting and Clinical
Psychology. The JCCP time line suggests that clinical psychology has yet to take advantage
of the recent developments in Bayesian statistics.

Comparison to Frequentist Statistics

Frequentist inference is based on the idea that probability is a limiting frequency.
This means that frequentists feel comfortable assigning probability to a repeatable event
in which the uncertainty is due to randomness, such as getting a full house in poker (i.e.,
aleatory uncertainty, O’Hagan, 2004). But a frequentist must refuse to assign probability
to an event where uncertainty is also due to lack of knowledge, such as the event of Andy
Murray ever winning Wimbledon (i.e., epistemic uncertainty, O’Hagan, 2004).

Because uncertainty about parameters is epistemic, frequentist inference does not
allow probability statements about the parameters of a statistical process. For instance,
the fact that a frequentist 95% confidence interval for the normal mean µ is [-0.5, 1.0] does
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Figure 4. Change over time in the proportion of articles containing the words “Bayes” or
“Bayesian”, separately for the Journal of the American Statistical Association and the Journal
of Consulting and Clinical Psychology.

not mean that there is a 95% probability that µ is in [-0.5, 1.0]. Instead, what it means is
that if the same procedure to construct confidence intervals was repeated very many times,
for all kinds of different data sets, then in 95% of the cases would the true µ lie in the 95%
confidence interval.

Discussion of frequentist inference is complicated by the fact that current practice
has become an unacknowledged amalgamation of the p value approach advocated by Fisher
(Fisher, 1958) and the α-level approach advocated by Neyman and Pearson (Neyman &
Pearson, 1933). Hubbard and Bayarri (Hubbard & Bayarri, 2003) summarize and contrast
the paradigms as follows:

“The level of significance shown by a p value in a Fisherian significance test
refers to the probability of observing data this extreme (or more so) under a
null hypothesis. This data-dependent p value plays an epistemic role by pro-
viding a measure of inductive evidence against H0 in single experiments. This
is very different from the significance level denoted by α in a Neyman-Pearson
hypothesis test. With Neyman-Pearson, the focus is on minimizing Type II,
or β, errors (i.e., false acceptance of a null hypothesis) subject to a bound on
Type I, or α, errors (i.e., false rejections of a null hypothesis). Moreover, this
error minimization applies only to long-run repeated sampling situations, not
to individual experiments, and is a prescription for behaviors, not a means of
collecting evidence.” (Hubbard & Bayarri, 2003, p. 176)

Clearly then, Fisher’s approach differs from that of Neyman and Pearson, and only
the latter approach is truly frequentist. Here we perpetuate the confusion and refer to both
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the Fisherian and the Neyman-Pearson procedure as “frequentist”.
Thus, the most fundamental differences between Bayesian and frequentist methods

are the following:

1. For Bayesians, probability reflects their uncertainty or degree of belief; for frequentists,
probability is the frequency of occurrence when the number of replications grows
infinitely large.

2. For Bayesians, inference is conducted over the parameter space, conditional on the ob-
served data; for frequentists, inference is conducted over the sample space of alterna-
tive outcomes, whereas the model parameters are considered fixed but unknown.

3. For Bayesians, all inference is conditional on pre-experimental information about the
model parameters (i.e., the prior distribution); for frequentists, all inference is con-
ditional on the sampling plan (i.e., the intention with which the data were collected,
without which it is impossible to define the sample space). Both elements have a
distinct subjective flavor.

Frequentist Statistics, Bayesian Conclusions

Many authors have written about the limitations of Bayesian statistics, and many
more have discussed the shortcomings of frequentist statistics. A different perspective is
motivated by Gigerenzer’s Freudian analogy of an applied researcher’s statistical psyche
(Gigerenzer, 1993). In this analogy, the applied researcher has a Superego that wants to
follow the Neyman-Pearson tradition; it seeks to contrast two well-defined hypotheses (i.e.,
the null hypothesis and an alternative hypothesis), it operates using concepts of α-level
and power, and it is generally concerned with procedures that will work well in the long
run. In contrast, the applied researcher’s Ego follows the Fisherian tradition; it does not
posit a specific alternative hypothesis, it ignores power, and it computes a p value that
is supposed to indicate the statistical evidence against the null hypothesis. Finally, the
applied researcher’s Id is Bayesian, and it desperately wants to attach probabilities to
hypotheses. However, this wish is suppressed by the Superego and Ego. In its continual
struggle to obtain what it desires, the Id—although unable to change the statistical analysis
procedures that are used—wields its influence to change and distort the interpretations that
these analysis procedures afford. In other words, many applied researchers use frequentist
methods to draw Bayesian conclusions. Two examples follow.

Case 1: From a significant p value it is concluded that the null hypothesis is false

Consider the following hypotheses from the field of experimental psychology:

1. Stereotypic movements activate the corresponding stereotype. Hence, “participants who
were unobtrusively induced to move in the portly way that is associated with the
overweight stereotype ascribed more stereotypic characteristics to the target than did
control participants, t(18) = 2.1, p < .05” (Mussweiler, 2006, p.18).

2. Increased conception risk is positively associated with several measures of race bias,
particularly for those women who are vulnerable to sexual coercion. The critical
two-way interaction yielded p = .04 (Navarrete, Fessler, Fleischman, & Geyer, 2009).
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3. Concepts and word meanings are based partly on implicit simulations of our own
actions—hence, the reading of action verbs (e.g., to throw) should result in the pref-
erential activation of left premotor cortex in right-handers, and right premotor cortex
in left-handers. For the critical three-way interaction p = .04, and for the critical
two-way interaction p = .02 (Willems, Hagoort, & Casasanto, in press).

No doubt, these hypotheses are interesting and daring—daring in part because many
people will find them surprising or even counterintuitive. Given the p values reported
above, it is customary to conclude that evidence has been collected in favor of the specified
hypotheses, and that the associated null hypotheses can be rejected.

This reasoning does not hold, however, for two reasons. First, the p value is not a pos-
terior probability of the null hypothesis (with equal prior probability onH0 andH1). In fact,
many researchers have shown that p values (when misinterpreted as a posterior probability)
tend to overestimate the evidence against the null hypothesis, sometimes dramatically so
(e.g., (Berger & Sellke, 1987)). Second, extraordinary claims require extraordinary evi-
dence. Thus, a Bayesian might well argue that an implausible hypothesis H1 should receive
relatively little prior weight. Consequently, the data (i.e., the Bayes factor) would have
to be particularly compelling in order for H1 to overcome the prior odds that are stacked
against it (see Equation 3).

Case 2: From a non-significant p value it is concluded that the null hypothesis is true

In the Fisherian paradigm, p values can only be used to reject the null hypothesis.
The APA task force on statistical inference stressed this point by issuing the warning “Never
use the unfortunate expression ‘accept the null-hypothesis’.” (Wilkinson & the Task Force
on Statistical Inference, 1999, p. 599). But applied researchers are often interested in
demonstrating the absence of an effect, making it easy to draw premature conclusions.
Consider the following examples, taken again from the field of experimental psychology:

1. “Participants in the memory condition were as likely to retrospectively judge a short
sequence to be random as they were to retrospectively judge a long sequence to be
random [χ2 = 0.07, p > .79]” (Olivola & Oppenheimer, 2008, p. 995).

2. “(...) there was no difference in hit rates [.782 vs. .771; t(35) = 0.740, p = .464, prep =
.57]” (Gomez, Shutter, & Rouder, 2008).

3. “(...) the emotional significance of the stimuli did not result in a bias effect (...) Neither
the main effect of foil valence nor the interaction between target and foil valence
reached significance, both Fs < 1” (Zeelenberg, Wagenmakers, & Rotteveel, 2006,
p.289).

In the above cases, it is entirely possible that there was an effect, but that the power
of the experiment was too low for it to be detected. Again, the crucial mistake is to interpret
the p value as a posterior probability of the null hypothesis. Therefore, the claims above
are not warranted, and the only way to quantify the evidence in favor of the null hypothesis
rigorously is by means of a Bayesian hypothesis test.
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Concluding Comments

Bayesian analysis presents a coherent theory of inductive reasoning and thereby al-
lows researchers to attach probabilities to hypotheses and parameters. Although Bayesian
analysis has greatly increased in popularity in the field of statistics proper, its use in clinical
psychology is still limited. Indeed, in clinical psychology (and other empirical sciences) the
standard statistical analyses are frequentist. However, the desired conclusions are Bayesian,
and, as a result, frequentist findings are often interpreted as if they were Bayesian. Applied
researchers should be aware of the philosophical and practical differences between Bayesian
and frequentist inference, and take special care to use a method of inference that is in line
with the conclusions that they wish to draw.

SEE ALSO: Bayes Theorem; Clinical Mathematical Psychology; Null hypothesis sig-
nificance testing debate; Theories of Truth
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