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Abstract Models of decision making differ in how they treat
early evidence as it recedes in time. Standard models, such as
the drift diffusion model, assume that evidence is gradually
accumulated until it reaches a boundary and a decision is
initiated. One recent model, the urgency gating model, has
proposed that decision making does not require the accumu-
lation of evidence at all. Instead, accumulation could be re-
placed by a simple urgency factor that scales with time. To
distinguish between these fundamentally different accounts of
decision making, we performed an experiment in which we
manipulated the presence, duration, and valence of early ev-
idence. We simulated the associated response time and error
rate predictions from the drift diffusion model and the urgency
gating model, fitting the models to the empirical data. The
drift diffusion model predicted that variations in the evidence
presented early in the trial would affect decisions later in that
same trial. The urgency gating model predicted that none of
these variations would have any effect. The behavioral data
showed clear effects of early evidence on the subsequent
decisions, in a manner consistent with the drift diffusion
model. Our results cannot be explained by the urgency gating
model, and they provide support for an evidence accumulation
account of perceptual decision making,.
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All across the animal kingdom, survival directly depends on
the adequacy of decision making under time pressure. For
instance, animals often need to judge in a split second whether
an approaching object is predator or prey. Mistaking predator
for prey is costly, and hence it pays to analyze as much
perceptual information as possible. On the other hand, the
analysis of perceptual information takes valuable time—a
correct classification (i.e., “yes, this is definitely a predator”)
is not worth much when one is in the process of being
devoured. Hence, perceptual decision making involves a
trade-off between speed and accuracy, and every decision is
therefore determined by at least two factors: the quality of
information that has been collected, and the level of caution
displayed by the decision maker.

In order to understand and quantify the latent processes that
drive simple decisions, several mathematical models have been
formulated (Brown & Heathcote, 2008; Cisek, Puskas, & El-
Murr, 2009; Ratcliff, 1978; Usher & McClelland, 2001). These
models provide a formal account of how a decision is generated.
In such models, evidence (such as perceptual information) is
collected until a certain threshold is reached, indicating that
enough confidence has been attained to commit to a particular
alternative. Such accumulation models have proven to be instru-
mental in interpreting electrophysiological data related to the
decision process (Churchland et al., 2011; Drugowitsch,
Moreno-Bote, Churchland, Shadlen, & Pouget, 2012; Gold &
Shadlen, 2007; Rangel & Hare, 2010). In addition to providing a
framework for the interpretation of neuroscientific findings, the
ability to estimate model parameters on an individual level also
provides a powerful analysis tool for the study of both behavior
and its neural correlates, at the group level, the individual level, or
even the single-trial level (Forstmann et al., 2008; Mansfield,
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Karayanidis, Jamadar, Heathcote, & Forstmann, 2011; Mulder,
Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012;
Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011;
van Maanen et al., 2011; Wenzlaff, Bauer, Maess, & Heekeren,
2011; Winkel et al., 2012). Importantly, these models vary in a
number of ways, including the influence of early evidence on
later decisions. When fundamental differences exist between
models, it is of great relevance to determine which model
correctly represents the processes underlying decisions.

In most models of decision making, evidence is collected
until it reaches a decision threshold, at which time a decision
has been made. Sequential-sampling models, such as the drift
diffusion model (DDM; Ratcliff, 1978) or the linear ballistic
accumulator model (LBA; Brown & Heathcote, 2008), pro-
pose that all evidence is retained to inform the decision. The
leaky competing accumulator model (Teodorescu & Usher,
2013; Usher & McClelland, 2001) includes a leak factor that
causes early activation to decay over time. Another class of
models implements a decision boundary that decreases with
processing time (Ditterich, 2006; Drugowitsch et al., 2012).
Despite their diversity, these models all share one assumption:
Evidence is accumulated over time.

In stark contrast to such sequential-sampling models, howev-
er, one recent model has proposed that evidence need not be
retained at all, but rather that the accumulation of evidence can be
replaced entirely by an urgency factor. This urgency factor
simply represents the increasing time pressure as the trial pro-
gresses, and it scales linearly with time (Cisek, Puskas, & El-
Murr, 2009; see Eq. 2 in the Materials and Method section).
Cisek et al. pointed out that under conditions in which evidence
presentation is constant, a model with a multiplicative gain factor
that increases linearly with time (i.e., an urgency factor) is
mathematically equivalent to a model in which a constant level
of evidence accumulates over time. From their behavioral data,
Cisek et al. proposed that this urgency gating model (UGM) can
account for the way that decisions are made better than various
implementations of the DDM. The removal of the evidence
accumulation process provides a fundamentally different account
of decision making. The difference between the models can be
clearly seen when evidence presentation is not constant during a
trial. In that situation, the UGM and DDM predict different
behavior. Most importantly, the DDM predicts that early evi-
dence will also affect later decisions, whereas the UGM predicts
that early evidence will be ignored if it is not immediately acted
upon. This is illustrated in Fig. 1, which shows how constant or
conflicting evidence is processed by the UGM, an accumulation
model with incoming boundaries, and the DDM.

In contrast to the UGM’s assumptions, previous experi-
ments with monkeys have shown that early evidence can have
profound effects on later decisions. In one experiment, a noisy
stimulus was presented continuously (i.e., without obviously
discrete trials) to each of two monkeys. A 100-ms burst of
coherently moving dots was presented prior to the main
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motion stimulus, influencing the monkeys’ decisions 200 to
800 ms later (Huk & Shadlen, 2005). In another experiment,
two monkeys had to withhold their responses during stimulus
presentation, and coherent motion was present either at the
beginning or the end of the presentation period. The results
showed that motion energy early in the trial contributed more
strongly toward the decision than did motion energy late in the
trial (Kiani, Hanks, & Shadlen, 2008). The substantial impact
of early motion energy is consistent with integration models of
decision making and goes against leak-dominant models of
decision making, in which the contribution of early evidence
wanes as time progresses.

We designed an experiment to test the different predictions
made by the DDM and the UGM, allowing us to adjudicate
between these two qualitatively different models of decision
making. We used a behavioral paradigm in which the amount of
evidence changed over time, much like in the experiment by
Cisek et al. (2009; see also Tsetsos, Chater, & Usher, 2012;
Tsetsos, Gao, McClelland, & Usher, 2012; Tsetsos, Usher, &
McClelland, 2011). One important difference, though, was that
previously presented evidence did not remain visible through-
out the trial. Using this experiment, we directly tested the
predictions that early evidence would be incorporated in the
later decision (DDM) or that it would be dismissed (UGM).

Materials and method
Participants

A group of 22 healthy participants (18 female, four male;
mean age = 28.14 years, SD = 10.34) performed a calibration
test and a random-dot-motion experiment during a single
behavioral session. Three of the participants did not meet
our inclusion criteria (i.e., >80% correct in the calibration task
and <10% nonresponsive trials in the main task) and were
excluded from further analyses. The experiment was approved
by the local ethics committee of the University of Amsterdam.
Participants were recruited from the University of Amsterdam
student population and received either monetary compensa-
tion or research participation credits. The participants had
normal or corrected-to-normal vision and did not have a
history of neurological or psychiatric disorders, as assessed
through self-report.

Stimuli

The experiment began with a calibration session to estimate
each participant’s sensitivity to the stimulus. This estimate
determined the coherence (i.e., percentage of dots moving
coherently) used in the experiment. Specifically, the coher-
ence in the experiment was set so that it corresponded with an
80% accuracy level in the calibration session (as interpolated
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Fig.1 Three ways to model decision processes. This figure illustrates the
difference between modeling decision making as an urgency process, as
accumulation with incoming boundaries, or as simple accumulation to a
static boundary. The black and dark gray traces show the levels of
evidence that each model represents during two sample trials. In the
“normal” trace (black), evidence is directed upward continually. In the
“down—up” trace (dark gray), evidence is directed first downward, and
then upward. When the level of evidence meets the (light gray) decision
threshold, a decision is made. The urgency gating model (UGM) has no
accumulation factor and is driven by urgency only. The incoming-

from the psychometric curve produced by the proportional-
rate diffusion model; Mulder et al., 2012; Palmer, Huk, &
Shadlen, 2005). The calibration session was performed on a
MacBook Pro (version 7.1, Apple), using custom software as
well as the Psychophysics Toolbox for MATLAB (version
2007B, MathWorks). The actual behavioral task was a custom
script implemented using the Presentation software
(Neurobehavioral Systems), and it was presented on an LCD
monitor with a 60-Hz refresh rate. In this task, participants
applied continuous light pressure to two custom-built force
sensors with their thumbs (van Campen, Keuken, van den
Wildenberg, & Ridderinkhof, in press). Whenever participants
released this baseline pressure, the experiment was paused.
Responses were made by increasing the pressure on the thumb
corresponding to the direction in which motion was perceived.
In the experiment (but not in the calibration session), we
manipulated the course of evidence presentation within a trial,
varying the presence or absence of early and late evidence, the
correspondence of direction between the early and late evidence,
and the length of the early evidence. When early evidence was
presented, it lasted either 67 ms (short) or 117 ms (long),
followed by a period with 0% coherence, the length of which
was either 133 or 83 ms, chosen in such a way that the early
evidence and the 0%-coherence sections always summed to 200
ms. When both early and late evidence was presented, the late
evidence could be in the same direction as or the opposite
direction from the early evidence. This resulted in nine different
trial types. These trial types are described in full in Table 1, and
the time course of stimulus presentation is illustrated in Fig. 2.
The experiment featured a total of 1,000 trials. Each trial
was preceded by a 250-ms intertrial interval, during which a
fixation cross was presented. During the trial, a random-dot-
motion stimulus was presented for 2,000 ms or until the
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boundary model has both an accumulation and an urgency factor. The
drift diffusion model has no urgency factor and is driven by accumulation
only. For ease of comparison, we have visualized the gain parameter of
the UGM as a decrease with time of the decision boundary. In the UGM, a
decision is initiated when tN > a (where N is the normal distribution
representing the evidence, ¢ is time, and a is threshold). With an incoming
decision boundary, a decision is made when N > a/t, which is identical to
the UGM decision rule (also see Drugowitsch et al., 2012). Note that the
“down—up” trace in the left panel is shifted slightly in order to allow the
overlapping traces both to be visible

participant responded. Following the stimulus, a feedback
message was presented for 500 ms. This feedback read “too
fast” for RTs <200 ms and “too slow” for RTs >1,750 ms. Ifno
response was given by 2,000 ms following stimulus onset,
participants received the feedback “no response.” Otherwise,
the feedback message read “correct” or “incorrect.” In trials on
which late evidence was present, this feedback was deter-
mined on the basis of the late evidence. In trials without late
evidence, the feedback was determined randomly, whereas the
accuracy of the response was determined on the basis of the
early evidence, for analysis purposes.

Participants were not informed that the evidence might
change over the course of a trial. Following the experiment,
we asked participants whether they had noticed a change in
motion direction. The binary outcome of this exit interview was
included as a between-subjects factor in the statistical analyses.

Table 1 Mean response times (RTs) and error rates across trial types

Trial  Early Evidence  Late Evidence Correct Error
Type (0200 ms) (2002000 ms) RT (SD)  Rate (SD)
1 0 ms Absent 1,283 (97) .50 (.08)
2 67 ms Absent 1,268 (88) .45 (.06)
3 117 ms Absent 1,257 (75) .43 (.07)
4 117 ms Opposite 1,231 (68) .19 (.08)
5 67 ms Opposite 1,228 (60) .17 (.08)
6 0 ms Present 1,220 (66) .16 (.08)
7 67 ms Same 1,184 (75) .12 (.07)
8 117 ms Same 1,187 (70) .12 (.08)
9 200 ms Same 1,156 (67) .09 (.06)

This table describes the different trial types and shows participants’ mean
RT for correct decisions, as well as their error rate, for each of these trial
types. The trial types are ordered by the total level of evidence presented.
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Fig. 2 Time courses of evidence presentation per trial types. This figure
schematically illustrates how the presentation of evidence was varied
between the nine different trial types. The top row shows the trial types

Modeling

In order to show how the DDM and the UGM provide
different predictions for within-trial variation of evidence,
we fitted both models to the behavioral data (see Fig. 3). We
produced trials from the “pure DDM”—that is, a DDM with-
out trial-to-trial variability in model parameters (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Laming, 1968;
see Eq. 1) and the UGM without temporal filtering (Cisek
et al., 2009; see Eq. 2):

x(t 4 At) = x(t) + p(t) At + VAL, c~N(0,0),x(0) = a/2 (1)

Hlu(t) + ¢ +a/2,c~N(0,0).
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without late information (1-3), whereas the next two rows show the trial
types with late information (4-9). Note that the x-axis is discontinuous,
greatly shortening the visual representation of the late evidence

In these functions, x represents the current state of the
decision variable, ¢ is the time, the perceptual signal is drawn
from input vector 1 (¢), and the noise ¢ is drawn from a normal
distribution with a mean of 0 and standard deviation o. The
input vector varies with time in a manner dependent on the
trial type. In the DDM, the starting evidence x (0) is set to a/2,
so that there is no initial bias for one response over the other. A
decision is initiated when x < 0 or x > a. The response time
(RT) corresponding to that decision is the value of ¢ at the time
that the decision is initiated, plus a nondecision time #,. We
used a Az of .001, corresponding to a time step size of 1 ms.
We produced nine different input vectors, of which the timing
and valence corresponded to those of the trial types used in the
behavioral experiment. A SIMPLEX minimization routine
(Nelder & Mead, 1965) was used to minimize the root-mean
square error (RMSE) of the model predictions’ mean RTs per
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Fig.3 Predicted and measured response times (RTs) and error rates. This
figure shows the steady decrease in RTs and error rates as trial types
contain more evidence for the correct response direction. The RT (top
row) and error rate (bottom row) patterns are shown for the nine different
trial types. The trial types without late evidence (filled circles) are plotted
separately from those with late evidence (open circles). The x-axis
represents the duration of the early evidence. If the early evidence points

trial type and those of the behavioral data. Although the
models were fit to the mean RT values of the different trial
types, we let the models produce the corresponding accuracy
levels freely.

We constrained the models in two ways. Models that
produced >15% of RTs >2,000 ms were penalized by
assigning an RMSE value of 10'° ms, as were models that
produced >5% of decision times <117 ms.

The complete R code for our simulations and fits is avail-
able as supplementary material to this article.

Analyses

We performed four repeated measures analyses of variance. We
analyzed RTs and error rates separately as dependent measures,
while using Trial Type as a within-subjects factor. This was
repeated separately for the three trial types without late evi-
dence and for the six trial types with late evidence. Consistent
with our modeling outcomes (see the Results—Modeling sec-
tion, below), we included a polynomial contrast to estimate the
linear component of trial type, ordered by the total amount of
evidence presented. In addition, we performed the same anal-
yses separately on the three trial types with no late evidence (in

in the opposite direction from the late evidence (and thus, away from the
correct response direction), it is given a negative value. The behavioral
data are shown in the middle column, the drift diffusion model (DDM)
fits are in the left column, and the urgency gating model (UGM) fits in the
right column. The error bars in the middle column correspond to the
standard errors of the means

which only noise was presented in the later part of the stimulus)
and the six trial types with late evidence (in which the later part
of the stimulus contained coherent motion). For all of these
analyses, we report degrees of freedom and p values following
the Greenhouse—Geisser correction for nonsphericity.

Results
Modeling

The DDM provided a better fit to the data (RMSE = 15 ms)
than the UGM did (RMSE = 23 ms). More importantly, the
DDM matched the qualitative pattern across trial types, which
the UGM does not (see Fig. 3). Although both models pre-
dicted differences between the trial types with and without late
evidence, the DDM predicted effects of the presence, duration,
and direction of the early evidence that the UGM did not.

Behavioral data

As can be seen in the upper middle panel of Fig. 3, RTs
continuously decreased as the trial types contained more
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consistent evidence. The analysis of the three trial types with-
out late evidence showed no significant difference [main
effect, F(1, 1.8) = 2.0, p = .15; linear contrast, F(1, 1) =
3.7, p =.07]. The six trial types with late evidence still showed
a continuous decrease in RTs with increasing early evidence
[F(1,2.7)=35.7, p <.001; linear contrast, F(1, 1) = 164.6,
p <.001], corresponding to the pattern predicted by the DDM.
Similar to RTs, the bottom row of Fig. 3 shows that error
rates continuously decreased with increasing early evidence.
This effect was found in the analysis of the three trial types
without late evidence [main effect, F(1, 1.7) = 4.4, p =.027;
linear contrast, F(1, 1) = 6.2, p = .022], as well as in the six
trial types with late evidence [main effect, F(1, 3.4) = 20.0,
p < .001; linear contrast, F(1, 1) = 50.6, p < .001], again
corresponding to the pattern predicted by the DDM.

Exit interview

Out of the 19 participants, seven reported that they saw a
change in motion direction. Including this measure of aware-
ness as a between-subjects factor did not change the pattern of
results. In addition, the awareness factor was not statistically
significant in any analysis of RTs or error rates. The results
reported above represent analyses including this factor.

Discussion

In this experiment, we tested the predictions from the drift
diffusion model and the urgency gating model. The DDM
assumes that evidence is accumulated over time. This leads to
the prediction that increasing levels of early evidence will
cause later decisions to be both faster and more accurate.
The UGM assumes that evidence is not accumulated. The
leads to the prediction that trial types that have the same late
evidence should have the same speed and accuracy, regardless
of early information. Our behavioral data clearly showed that
both speed and accuracy improved with the presence of early
evidence. Consequently, the specific predictions made by the
UGM were falsified by our behavioral data. Our data are
qualitatively consistent with those predicted by the DDM.
Together with earlier findings that also showed a strong influ-
ence of early evidence on later decisions (Huk & Shadlen,
2005; Kiani et al., 2008), these findings strongly suggest that
an accurate account of perceptual decision making requires
the gradual accumulation of evidence.

What remains is to explain the findings in Cisek et al.
(2009), suggesting that the UGM can account for the behav-
ioral data better than the DDM. Ceritically, the paradigm used
in the Cisek et al. study differed from the paradigms common-
ly used in perceptual decision making (Mulder et al., 2012;
Roitman & Shadlen, 2002; Ruff, Marrett, Heekeren,
Bandettini, & Ungerleider, 2010; van Maanen et al., 2011;

@ Springer

Winkel et al., 2012; see Bogacz, Wagenmakers, Forstmann, &
Nieuwenhuis, 2010; Gold & Shadlen, 2007; Heekeren,
Marrett, & Ungerleider, 2008, for reviews) in an important
way. Specifically, in the Cisek et al. paradigm, all evidence
presented remained visible throughout the entire trial,
resulting in a stimulus that displayed the integral of the pre-
sented evidence. This integral was then used as the “current
level of evidence,” which was provided as the input evidence
to both the UGM and the DDM. By providing the models with
the integral of the evidence, Cisek et al. effectively used the
UGM as an accumulator model with an added urgency term.
Although this is not problematic in itself, it does not support
the claim that urgency can replace accumulation, as was
originally proposed by Cisek et al.

Since its original publication, the UGM has been adapted to
account for more continuous evidence presentation (Thura,
Beauregard-Racine, Fradet, & Cisek, 2012). This adaptation
no longer uses the level of current information directly, but
rather integrates the history of changes in evidence strength.
Thus, the adapted version of the model can predict behavior in
a random-dot-motion task, because the accumulated changes
in evidence strength can now be represented as the net motion
direction, rather than as a visibly represented number of dots.
However, the revised model still predicts that neither the
duration nor the valence of early evidence should contribute
to a later decision, if they do not directly lead to a decision.
The behavioral findings published along with these model
revisions do indeed lack any effect of the variation in early
evidence, which is in direct contradiction with our present
findings.

Although the UGM proposes that all previous information
is forgotten, other models, such as the LCA, propose that the
represented evidence level gradually decays. Our data do not
allow us to rule out the presence of a small leak. However, a
large leak seems unlikely, considering that the first 67 ms of
evidence have pronounced effects 1,100 ms later. Both the
optimal level of leak and the level of leak exhibited by human
participants vary depending on task contingencies (see, €.g.,
Ossmy et al., 2013).

Although our data showed that urgency cannot replace
accumulation, we do not wish to deny that urgency can
sometimes play an important role in decision making. It is
quite possible that a constant decision threshold such as the
one assumed by the DDM cannot accurately account for all of
the observed data in decision-making experiments. Evidence
for this notion comes from a time-variant effect of prior
evidence (Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011;
but see van Ravenzwaaij, Mulder, Tuerlinckx, &
Wagenmakers, 2012). Ditterich (2006) also argued for a gain
that increased over time during the decision process. It is
important to note that unlike Cisek et al. (2009), Ditterich
does not propose to replace evidence accumulation with this
gain. Ditterich’s model scales presented evidence with a gain
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factor that increases over time, but it still accumulates
resulting evidence in a manner similar to the DDM. The
addition of an urgency factor makes sense from an optimal
decision-making standpoint, if a cost is associated with addi-
tional observation (Drugowitsch et al., 2012). This optimality
assumes that the quality of the incoming evidence is known. If
it is unknown, the shape of the decision boundary should be
determined by the quality of the evidence sampled so far
(Deneve, 2012). Note that, although all three of these models
argue against a static decision boundary, they differ funda-
mentally from the UGM in that they supplement evidence
accumulation with urgency, rather than replacing it. Incoming
boundaries may be needed to explain why, in Cisek et al.’s
study, decisions were made at different total evidence levels
(see their Fig. 7, column 3). Such incoming bounds are also
consistent with findings of increased overall activation levels
across groups of neurons with different response selectivities
(Churchland, Kiani, & Shadlen, 2008; Drugowitsch et al.,
2012).

One reason why it is important to correctly formulate
decision-making models is that they help to assign a function-
al role to activity found in electrophysiological experiments
(Gold & Shadlen, 2007; Rangel & Hare, 2010). One example
of this concerns the seminal electrophysiological findings by
Shadlen and Newsome (2001), demonstrating that during
decision making, directionally sensitive neurons in the lateral
intraparietal area of the macaque show a steady increase in
firing toward a fixed threshold (Roitman & Shadlen, 2002;
Shadlen & Newsome, 2001). Cisek et al. (2009) interpreted
these finding not as representing an increasing level of gath-
ered evidence, but rather as a static level of evidence com-
bined with an increasing level of urgency. This interpretation
has since been acknowledged (Domenech & Dreher, 2010;
Simen, 2012; van Vugt, Simen, Nystrom, Holmes, & Cohen,
2012; Zhang, 2012) and supported (Rangel & Hare, 2010;
Standage, You, Wang, & Dorris, 2011). The feasibility of such
an interpretation has recently been tested by examining its
predictions for the correlation and variance structure of the
neural firing rates in lateral intraparietal area across time
(Churchland et al., 2011). As in the present article, the results
of'that study are consistent with evidence accumulation, rather
than a time-dependent scaling of the currently presented
evidence.

An important future question is whether the addition of an
urgency factor accounts for sufficient additional variance to
warrant its inclusion. The answer to this question can be found
using model comparison methods, and it may not universally
apply to all tasks and participants. Although an urgency factor
is a plausible mechanism for decision making, its necessity
may well depend on task parameters such as response dead-
lines, reward rates, and intertrial intervals, as well as individ-
ual or species differences. Much recent discussion has focused
on the shape of the decision boundary. Studies have provided

conflicting answers, suggesting either that an additional ur-
gency parameter is warranted (Drugowitsch et al., 2012) or
that it is not (Milosavljevic, Malmaud, Huth, Koch, & Rangel,
2010). Although our experiment does not directly address that
issue, it does demonstrate that urgency cannot replace accu-
mulation when modeling decision making.

Author Note This work was supported by VENI and by an open
competition grant (BUF) from the Netherlands Organization for Scientific
Research (NWO). The authors thank Mascha Kraak, Eline Scheper,
Monique Mendriks, and Josien Stam for their help in running the
experiment.

References

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006).
The physics of optimal decision making: a formal analysis of models
of performance in two-alternative forced-choice tasks.
Psychological Review, 113, 700-765. doi:10.1037/0033-295X.
113.4.700

Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., & Nieuwenhuis, S.
(2010). The neural basis of the speed—accuracy tradeoff. Trends in
Neurosciences, 33, 10-16. doi:10.1016/].tins.2009.09.002

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of
choice response time: Linear ballistic accumulation. Cognitive
Psychology, 57, 153—178. doi:10.1016/j.cogpsych.2007.12.002

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., &
Shadlen, M. N. (2011). Variance as a signature of neural computa-
tions during decision making. Neuron, 69, 818-831. doi:10.1016/].
neuron.2010.12.037

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making
with multiple alternatives. Nature Neuroscience, 11, 693—702. doi:
10.1038/nn.2123

Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing
conditions: The urgency-gating model. Journal of Neuroscience,
29, 11560-11571. doi:10.1523/INEUROSCI.1844-09.2009

Deneve, S. (2012). Making decisions with unknown sensory reliability.
Frontiers in Decision Neuroscience, 6, 75. doi:10.3389/fnins.2012.
00075

Ditterich, J. (2006). Evidence for time-variant decision making.
European Journal of Neuroscience, 24, 3628-3641. doi:10.1111/j.
1460-9568.2006.05221.x

Domenech, P., & Dreher, J.-C. (2010). Decision threshold modulation in
the human brain. Journal of Neuroscience, 30, 14305-14317. doi:
10.1523/INEUROSCI.2371-10.2010

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N., &
Pouget, A. (2012). The cost of accumulating evidence in perceptual
decision making. Journal of Neuroscience, 32, 3612-3628. doi:10.
1523/JNEUROSCL4010-11.2012

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon,
D. Y., Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008).
Striatum and pre-SMA facilitate decision-making under time
pressure. Proceedings of the National Academy of Sciences,
105, 17538-17542. doi:10.1073/pnas.0805903105

Forstmann, B. U., Brown, S., Dutilh, G., Neumann, J., & Wagenmakers,
E.-J. (2010). The neural substrate of prior information in perceptual
decision making: A model-based analysis. Frontiers in Human
Neuroscience, 4, 40. doi:10.3389/fnhum.2010.00040

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making.
Annual Review of Neuroscience, 30, 535-574. doi:10.1146/annurev.
neuro.29.051605.113038

@ Springer


http://dx.doi.org/10.1037/0033-295X.113.4.700
http://dx.doi.org/10.1037/0033-295X.113.4.700
http://dx.doi.org/10.1016/j.tins.2009.09.002
http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://dx.doi.org/10.1038/nn.2123
http://dx.doi.org/10.1523/JNEUROSCI.1844-09.2009
http://dx.doi.org/10.3389/fnins.2012.00075
http://dx.doi.org/10.3389/fnins.2012.00075
http://dx.doi.org/10.1111/j.1460-9568.2006.05221.x
http://dx.doi.org/10.1111/j.1460-9568.2006.05221.x
http://dx.doi.org/10.1073/pnas.0805903105
http://dx.doi.org/10.1523/JNEUROSCI.4010-11.2012
http://dx.doi.org/10.1523/JNEUROSCI.4010-11.2012
http://dx.doi.org/10.1073/pnas.0805903105
http://dx.doi.org/10.3389/fnhum.2010.00040
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038

784

Psychon Bull Rev (2014) 21:777-784

Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., & Shadlen, M. N.
(2011). Elapsed decision time affects the weighting of prior proba-
bility in a perceptual decision task. Journal of Neuroscience, 31,
6339-6352. doi:10.1523/INEUROSCI.5613-10.2011

Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural
systems that mediate human perceptual decision making. Nature
Reviews Neuroscience, 9, 467—479. doi:10.1038/nrn2374

Huk, A. C., & Shadlen, M. N. (2005). Neural activity in macaque parietal
cortex reflects temporal integration of visual motion signals during
perceptual decision making. Journal of Neuroscience, 25, 10420—
10436. doi:10.1523/JNEUROSCI.4684-04.2005

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded integration in
parietal cortex underlies decisions even when viewing duration is
dictated by the environment. Journal of Neuroscience, 28, 3017—
3029. doi:10.1523/INEUROSCI1.4761-07.2008

Laming, D. R. J. (1968). Information theory of choice-reaction times.
London, UK: Academic Press.

Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., &
Forstmann, B. U. (2011). Adjustments of response threshold during
task switching: A model-based functional magnetic resonance im-
aging study. Journal of Neuroscience, 31, 14688-14692. doi:10.
1523/JNEUROSCI.2390-11.2011

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., & Rangel, A.
(2010). The Drift Diffusion Model can account for the accuracy
and reaction time of value-based choices under high and low time
pressure. Judgment and Decision Making, 5, 437-449. doi:10.2139/
ssr. 1901533

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., &
Forstmann, B. U. (2012). Bias in the brain: A diffusion model
analysis of prior probability and potential payoff. Journal of
Neuroscience, 32, 2335-2343. doi:10.1523/INEUROSCI.4156-11.
2012

Nelder, J. A., & Mead, R. (1965). A simplex method for function
minimization. Computer Journal, 7, 308-313. doi:10.1093/
comjnl/7.4.308

Ossmy, O., Moran, R., Pfeffer, T., Tsetsos, K., Usher, M., & Donner, T. H.
(2013). The timescale of perceptual evidence integration can be
adapted to the environment. Current Biology, 23, 1-6. doi:10.
1016/j.cub.2013.04.039

Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus
strength on the speed and accuracy of a perceptual decision. Journal
of Vision, 5(5):1, 376-404. doi:10.1167/5.5.1

Philiastides, M. G., Auksztulewicz, R., Heekeren, H. R., & Blankenburg,
F. (2011). Causal role of dorsolateral prefrontal cortex in human
perceptual decision making. Current Biology, 21, 980-983. doi:10.
1016/j.cub.2011.04.034

Rangel, A., & Hare, T. (2010). Neural computations associated with goal-
directed choice. Current Opinion in Neurobiology, 20, 262-70. doi:
10.1016/j.conb.2010.03.001

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85, 59-108. doi:10.1037/0033-295X.85.2.59

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination
reaction time task. Journal of Neuroscience, 22, 9475-9489.

Ruff, D. A., Marrett, S., Heekeren, H. R., Bandettini, P. A., &
Ungerleider, L. G. (2010). Complementary roles of systems
representing sensory evidence and systems detecting task difficulty
during perceptual decision making. Frontiers in Decision
Neuroscience, 4, 190. doi:10.3389/fnins.2010.00190

@ Springer

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual
decision in the parietal cortex (area LIP) of the rhesus monkey.
Journal of Neurophysiology, 86, 1916-1936.

Simen, P. (2012). Evidence accumulator or decision threshold—Which
cortical mechanism are we observing? Frontiers in Psychology, 3,
183. doi:10.3389/fpsyg.2012.00183

Standage, D., You, H., Wang, D.-H., & Dorris, M. C. (2011). Gain
modulation by an urgency signal controls the speed—accuracy trade-
off in a network model of a cortical decision circuit. Frontiers in
Computational Neuroscience, 5, 7. doi:10.3389/fncom.2011.00007

Teodorescu, A. R., & Usher, M. (2013). Disentangling decision models:
From independence to competition. Psychological Review, 120, 1—
38. doi:10.1037/a0030776

Thura, D., Beauregard-Racine, J., Fradet, C.-W., & Cisek, P. (2012).
Decision making by urgency gating: Theory and experimental sup-
port. Journal of Neurophysiology, 108, 2912-2930. doi:10.1152/jn.
01071.2011

Tsetsos, K., Chater, N., & Usher, M. (2012a). Salience driven value
integration explains decision biases and preference reversal.
Proceedings of the National Academy of Sciences, 109, 9659—
9664. doi:10.1073/pnas.1119569109

Tsetsos, K., Gao, J., McClelland, J. L., & Usher, M. (2012b). Using time-
varying evidence to test models of decision dynamics: bounded
diffusion vs. the leaky competing accumulator model. Frontiers in
Decision Neuroscience, 6, 79. doi:10.3389/fnins.2012.00079

Tsetsos, K., Usher, M., & McClelland, J. L. (2011). Testing multi-
alternative decision models with non-stationary evidence.
Frontiers in Decision Neuroscience, 5, 63. doi:10.3389/fnins.
2011.00063

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological
Review, 108, 550-592. doi:10.1037/0033-295X.111.3.757

van Campen, A. D., Keuken, M. C., van den Wildenberg, W. P. M., &
Ridderinkhof, K. R. (in press). TMS over M1 reveals expression and
selective suppression of conflicting action impulses. Journal of
Cognitive Neuroscience. doi:10.1162/jocn_a 00482

van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E.-J., Ho, T.,
Serences, J., & Forstmann, B. U. (2011). Neural correlates of trial-
to-trial fluctuations in response caution. Journal of Neuroscience,
31, 17488-17495. doi:10.1523/INEUROSCI.2924-11.2011

van Ravenzwaaij, D., Mulder, M. J., Tuerlinckx, F., & Wagenmakers,
E.-J. (2012). Do the dynamics of prior information depend on task
context? An analysis of optimal performance and an empirical test.
Frontiers in Psychology, 3, 132. doi:10.3389/fpsyg.2012.00132

van Vugt, M. K., Simen, P., Nystrom, L. E., Holmes, P., & Cohen, J. D.
(2012). EEG oscillations reveal neural correlates of evidence accu-
mulation. Frontiers in Decision Neuroscience, 6, 106. doi:10.3389/
fnins.2012.00106

Wenzlaff, H., Bauer, M., Maess, B., & Heekeren, H. R. (2011). Neural
characterization of the speed—accuracy tradeoff in a perceptual
decision-making task. Journal of Neuroscience, 31, 1254—1266.
doi:10.1523/INEUROSCI.4000-10.2011

Winkel, J., van Maanen, L., Ratcliff, R., van der Schaaf, M. E., van
Schouwenburg, M. R., Cools, R., & Forstmann, B. U. (2012).
Bromocriptine does not alter speed—accuracy tradeoff. Frontiers in
Decision Neuroscience, 6, 126. doi:10.3389/fnins.2012.00126

Zhang, J. (2012). The effects of evidence bounds on decision-making:
Theoretical and empirical developments. Frontiers in Psychology,
3, 263. doi:10.3389/fpsyg.2012.00263


http://dx.doi.org/10.1523/JNEUROSCI.5613-10.2011
http://dx.doi.org/10.1038/nrn2374
http://dx.doi.org/10.1523/JNEUROSCI.4684-04.2005
http://dx.doi.org/10.1523/JNEUROSCI.4761-07.2008
http://dx.doi.org/10.1523/JNEUROSCI.2390-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2390-11.2011
http://dx.doi.org/10.2139/ssrn.1901533
http://dx.doi.org/10.2139/ssrn.1901533
http://dx.doi.org/10.1523/JNEUROSCI.4156-11.2012
http://dx.doi.org/10.1523/JNEUROSCI.4156-11.2012
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/j.cub.2013.04.039
http://dx.doi.org/10.1016/j.cub.2013.04.039
http://dx.doi.org/10.1167/5.5.1
http://dx.doi.org/10.1016/j.cub.2011.04.034
http://dx.doi.org/10.1016/j.cub.2011.04.034
http://dx.doi.org/10.1016/j.conb.2010.03.001
http://dx.doi.org/10.1037/0033-295X.85.2.59
http://dx.doi.org/10.3389/fnins.2010.00190
http://dx.doi.org/10.3389/fpsyg.2012.00183
http://dx.doi.org/10.3389/fncom.2011.00007
http://dx.doi.org/10.1037/a0030776
http://dx.doi.org/10.1152/jn.01071.2011
http://dx.doi.org/10.1152/jn.01071.2011
http://dx.doi.org/10.1073/pnas.1119569109
http://dx.doi.org/10.3389/fnins.2012.00079
http://dx.doi.org/10.3389/fnins.2011.00063
http://dx.doi.org/10.3389/fnins.2011.00063
http://dx.doi.org/10.1162/jocn_a_00482
http://dx.doi.org/10.1162/jocn_a_00482
http://dx.doi.org/10.1523/JNEUROSCI.2924-11.2011
http://dx.doi.org/10.3389/fpsyg.2012.00132
http://dx.doi.org/10.3389/fnins.2012.00106
http://dx.doi.org/10.3389/fnins.2012.00106
http://dx.doi.org/10.1523/JNEUROSCI.4000-10.2011
http://dx.doi.org/10.3389/fnins.2012.00126
http://dx.doi.org/10.3389/fpsyg.2012.00263

	bbbb
	Early evidence affects later decisions: Why evidence accumulation is required to explain response time data
	Abstract
	Materials and method
	Participants
	Stimuli
	Modeling
	Analyses

	Results
	Modeling
	Behavioral data
	Exit interview

	Discussion
	References


