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Abstract
Decision-making deficits in clinical populations are often studied

using the Iowa gambling task (IGT). Performance on the IGT can

be decomposed in its constituent psychological processes by means

of cognitive modeling analyses. However, conclusions about the

hypothesized psychological processes are valid only if the model

provides an adequate account of the data. In this article, we

systematically assessed absolute model performance of the Expectancy

Valence (EV) model, the Prospect Valence Learning (PVL) model, and

a hybrid version of both models –the PVL-Delta model– using two

different methods. These methods assess (1) whether a model provides

an acceptable fit to an observed choice pattern, and (2) whether the

parameters obtained from model fitting can be used to generate the

observed choice pattern. Our results show that all models provided

an acceptable fit to two stylized data sets; however, when the model

parameters were used to generate choices, only the PVL-Delta model

captured the qualitative patterns in the data. These findings were

confirmed by fitting the models to five published IGT data sets. Our

results highlight that a model’s ability to fit a particular choice pattern

does not guarantee that the model can also generate that same choice

pattern. Future applications of RL models should carefully assess

absolute model performance to avoid premature conclusions about the

psychological processes that drive performance on the IGT.

Keywords: Decision making, Expectancy Valence Model, Prospect

Valence Learning Model, Bayesian Hierarchical Analysis
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The Iowa gambling task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994) is

arguably the most popular neuropsychological paradigm to assess decision-making deficits

in clinical populations. Originally, the IGT was developed to assess decision-making deficits

of patients with lesions to the ventromedial prefrontal cortex (vmPFC), but in the last two

decades the task has been applied to a variety of clinical populations, such as patients with

Asperger’s disorder (e.g., Johnson, Yechiam, Murphy, Queller, & Stout, 2006), attention-

deficit-hyperactivity disorder (e.g., Agay, Yechiam, Carmel, & Levkovitz, 2010; Toplak,

Jain, & Tannock, 2005), bipolar disorder (e.g., Brambilla et al., 2012), obsessive-compulsive

disorder (e.g., Cavedini, Riboldi, D’Annucci, et al., 2002), pathological gambling disorder

(e.g., Cavedini, Riboldi, Keller, D’Annucci, & Bellodi, 2002), psychopathic tendencies (e.g.,

Blair, Colledge, & Mitchell, 2001), and schizophrenia (e.g., Martino, Bucay, Butman, &

Allegri, 2007; Premkumar et al., 2008). In addition, the IGT has been applied to cocaine

addicts (e.g., Stout, Busemeyer, Lin, Grant, & Bonson, 2004), chronic cannabis users

(e.g., Fridberg et al., 2010), heavy drinkers (e.g., Gullo & Stieger, 2011), inmates (e.g.,

Yechiam et al., 2008), and traffic offenders (e.g., Lev, Hershkovitz, & Yechiam, 2008).

Impaired performance on the IGT may be caused by several factors, such as only focusing

on immediate rewards, avoidance of immediate losses, poor memory for past payoffs, or

underweighting of rare events (e.g., Barron & Erev, 2003; Yechiam & Busemeyer, 2005).

In order to isolate and identify the psychological processes that drive performance

on the IGT, behavioral analyses of IGT data need to be complemented with cognitive

modeling analyses. To further this goal, several reinforcement-learning (RL) models have

been proposed, and here we focus on the two most popular exemplars –the Expectancy

Valence model (EV; Busemeyer & Stout, 2002) and the Prospect Valence Learning model

(PVL; Ahn, Busemeyer, Wagenmakers, & Stout, 2008; Ahn, Krawitz, Kim, Busemeyer,

& Brown, 2011)– and the hybrid PVL-Delta model (Ahn et al., 2008; Fridberg et al.,

2010; a detailed description of the three models can be found in section 1.2). The

Correspondence concerning this article should be addressed to: Helen Steingroever, Ph: +31 20525 8869,
E-mail: helen.steingroever@gmail.com.
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parameters of these models correspond to psychological processes such as motivation,

learning/memory, and response consistency (Busemeyer, Stout, & Finn, 2003); hence, the

purpose of fitting these models to empirical data is to allow applied researchers to draw

conclusions about the latent psychological processes that drive performance on the IGT.

Yechiam, Busemeyer, Stout, and Bechara (2005), for instance, fit the EV model to data

of 10 groups of people suffering from various neuropsychological disorders (e.g., Asperger’s

syndrome, vmPFC lesions, chronic cannabis abuse), and mapped these groups according

to the differences between their model parameters and those of their control group. The

purpose of this analysis was to characterize the decision-making deficits of each clinical

group in terms of underlying psychological processes, and to examine whether differences

in neuropsychological disorders can be explained by differences in psychological processes

underlying decision-making deficits (i.e., differences in the model parameters).

A prerequisite for drawing valid conclusions from RL model parameters is that the

model provides an adequate account for the IGT data. However, systematic and detailed

evaluations of model performance are virtually absent from the applied literature (see

section 1.3 for more details on previous methods that applied studies used to assess model

performance). This state of affairs makes it difficult to determine whether researchers can

draw valid conclusions from parameters of RL models.

Here we outline two methods for the assessment of absolute model performance (i.e.,

the degree to which the choice behavior produced by a certain model matches the observed

choice behavior). One method, the post hoc absolute fit, assesses a model’s ability to fit

an observed choice pattern when provided with information on the observed choices and

payoffs. The other method, the simulation method, assesses a model’s ability to generate

the observed choice pattern with parameter values obtained from model fitting. The crucial

difference between the two methods is that the first method is guided by information on

the observed choices and payoffs, whereas the second method makes predictions using new,

unobserved payoff sequences.

To anticipate our main result, the post hoc absolute fit method revealed that all
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models provided an acceptable fit to two stylized data sets (i.e., constructed data sets

that consist of homogeneous participants with small individual differences). In contrast,

the simulation method revealed that the EV and PVL models failed to generate both

types of choice patterns present in the two stylized data sets. However, the PVL-Delta

model adequately generates all choice patterns. These results were confirmed by fitting

five complete data sets. Our findings show that a model’s ability to fit a particular choice

pattern does not guarantee that the model is also able to generate that same choice pattern.

This indicates that a good post hoc absolute fit performance may be caused by choice

mimicry (see also Ahn et al., 2008; Erev & Haruvy, 2005; Yechiam & Ert, 2007; Yechiam

& Busemeyer, 2008, and see Lewandowsky, 1995, for a similar phenomenon).

The outline of this article is as follows. In the first section we explain the IGT,

outline the three RL models, and review methods to assess performance of RL models. In

the second section, we compare the absolute performance of the three RL models using the

post hoc absolute fit method and the simulation method. In particular, we compare the

ability of the three RL models to fit and generate choice patterns present in two stylized

IGT data sets, and investigate whether our results generalize to five IGT data sets from the

review article of Steingroever, Wetzels, Horstmann, Neumann, and Wagenmakers (2013). In

the last section, we summarize our findings and discuss their ramifications. Readers already

familiar with the IGT, the RL models, and their Bayesian hierarchical implementation may

skip the corresponding parts of the first and second section below.

1. The Iowa Gambling Task and Three Reinforcement-Learning Models

1.1. The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Wetzels, & Wagenmakers,

2013). The purpose of the IGT is to measure decision-making deficits of clinical populations

in an experimental setting. In the traditional IGT, participants are initially given

$2000 facsimile money and are presented with four decks of cards with different payoffs.

Participants are instructed to choose cards in order to maximize their long-term net outcome



STEINGROEVER, WETZELS, AND WAGENMAKERS 5

Table 1
Payoff scheme of the traditional IGT as developed by Bechara et al. (1994).

Deck A Deck B Deck C Deck D
Bad deck Bad deck Good deck Good deck
with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses
Reward/trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards −1250 −1250 −250 −250
Net outcome/10 cards −250 −250 250 250

(Bechara et al., 1994; Bechara, Damasio, Tranel, & Damasio, 1997). Unbeknownst to the

participants, the task typically contains 100 trials. After each choice, participants receive

feedback on the rewards and the losses (if any) associated with that card, and the running

tally.

The task aims to determine whether participants learn to prefer the good, safe decks

over the bad, risky decks because this is the only choice pattern that maximizes the long-

term net outcomes. The good, safe decks are typically labeled as decks C and D, whereas

the bad, risky decks are labeled as decks A and B. Table 1 presents the traditional payoff

scheme as developed by Bechara et al. (1994). This table illustrates that decks A and B

yield high immediate, constant rewards, but even higher unpredictable, occasional losses:

hence, the long-term net outcome is negative. Decks C and D, on the other hand, yield low

immediate, constant rewards, but even lower unpredictable, occasional losses: hence, the

long-term net outcome is positive. In addition to the different payoff magnitudes, the decks

also differ in the frequency of losses: Two decks yield frequent losses (decks A and C) and

two decks yield infrequent losses (decks B and D).

1.2. The EV, PVL, and PVL-Delta Models

In this section, we describe the EV, PVL, and PVL-Delta models (see also

Steingroever, Wetzels, & Wagenmakers, 2013). Table 2 contains the model equations, the

psychological interpretation of the free parameters, and their ranges. In the following, we

describe each model separately; the general idea, however, is that each model describes the
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Table 2
Formalization of the EV, PVL, and PVL-Delta models.
Concept Model(s) Model equation Free parameters Range
Utility
function

EV uk(t) = (1− w) ·W (t) + w · L(t) w: Attention
weight

[0, 1]

PVL &
PVL-Delta

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0 A: Shape

w: Loss aversion
[0, 1]
[0, 5]

Learning
rule

EV &
PVL-Delta

Evk(t) = Evk(t− 1) + a · (uk(t)− Evk(t− 1)) a: Updating [0, 1]

PVL Evk(t) = a · Evk(t− 1) + δk(t) · uk(t) a: Recency [0, 1]

Choice
rule

All P [Sk(t+ 1)] = eθ(t)Evk∑4
j=1 e

θ(t)Evj

Sensitivity EV θ(t) = (t/10)c c: Consistency [−2, 2]

PVL &
PVL-Delta

θ(t) = 3c − 1 c: Consistency [0, 5]

Note. W (t) and L(t) are the rewards and losses, respectively, on trial t. X(t)
is the net outcome on trial t, X(t) = W (t) − |L(t)|. δk(t) is a dummy
variable that takes the value 1 if deck k is chosen on trial t and 0 otherwise.

performance on the IGT through the interaction of distinct psychological processes captured

by the model parameters.

The EV, PVL, and PVL-Delta models share the assumption that, following each

choice, participants evaluate the rewards and losses (if any) associated with the just-

chosen card by means of a utility function. These momentary utilities are used to update

expectancies about the utilities of all decks. This updating process entails that, on every

trial, participants adjust their expected utilities of the decks based on the new utility they

just experienced, a process described by a learning rule. In the next step, the models assume

that the expected utilities of all decks are used to guide the participants’ choices on the next

trial. This assumption is formalized by the softmax choice rule, also known as the ratio-of-
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strength choice rule, that all models use to compute the probability of choosing a particular

deck on a particular trial (Luce, 1959). This rule contains a sensitivity parameter θ(t) that

indexes the extent to which trial-by-trial choices match the expected deck utilities. Values

of θ(t) close to zero indicate a random choice behavior (i.e., strong exploration), whereas

large values of θ(t) indicate a choice behavior that is strongly determined by the expected

deck utilities (i.e., strong exploitation). As is customary, for all analyses in this paper, we

scaled the traditional payoffs of the IGT as presented in Table 1 by dividing by 100 (cf. Ahn

et al., 2011).

1.2.1. The EV model. The EV model uses three parameters to formalize its

assumptions about participants’ performance on the IGT (Busemeyer & Stout, 2002). The

first model assumption is that after choosing a card from deck k, k ∈ {1, 2, 3, 4} on trial t,

participants compute a weighted mean of the experienced rewards W(t) and losses L(t) to

obtain the utility of deck k on trial t, uk(t). The weight that participants assign to losses

relative to rewards is the attention weight parameter w. A small value of w, that is, w < .5,

is characteristic for decision makers who put more weight on the immediate rewards and

can thus be described as reward-seeking, whereas a large value of w, that is, w > .5, is

characteristic for decision makers who put more weight on the immediate losses and can

thus be described as loss-averse (Ahn et al., 2008; Busemeyer & Stout, 2002).

The EV model assumes that decision makers use the utility of deck k on trial t, uk(t),

to update only the expected utility of deck k, Evk(t); the expected utilities of the unchosen

decks are left unchanged. This updating process is described by the Delta learning rule,

also known as the Rescorla-Wagner rule (Rescorla & Wagner, 1972). If the experienced

utility uk(t) is higher than expected, the expected utility of deck k is adjusted upward.

If the experienced utility uk(t) is lower than expected, the expected utility of deck k is

adjusted downward. This updating process is influenced by the second model parameter—

the updating parameter a. This parameter quantifies the memory for rewards and losses. A

value of a close to zero indicates slow forgetting and weak recency effects, whereas a value

of a close to one indicates rapid forgetting and strong recency effects. For all models, we
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initialized the expectancies of all decks to zero, Evk(0) = 0. This setting reflects an absence

of prior knowledge about the payoffs of the decks.

According to the EV model, the sensitivity θ(t) changes over trials depending on the

response consistency parameter c. If c is positive, successive choices become less random

and more determined by the expected deck utilities; if c is negative, successive choices

become more random and less determined by the expected deck utilities, a pattern that is

clearly non-optimal. We restricted the consistency parameter of the EV model to the range

[−2, 2] instead of the proposed range [−5, 5] (Busemeyer & Stout, 2002). This modification

improved the estimation of the EV model and prevented the choice rule from producing

numbers that exceed machine precision.

In sum, the EV model has three parameters: (1) The attention weight parameter w,

which quantifies the weight of losses over rewards, (2) the updating parameter a, which

determines the memory for past expectancies, and (3) the response consistency parameter

c, which determines the amount of exploration versus exploitation.

1.2.2. The PVL model. The PVL model uses four parameters to formalize its

assumptions about participants’ performance on the IGT (Ahn et al., 2008, 2011). The

PVL model assumes that decision makers only process the net outcome after choosing a

card from deck k on trial t, X(t) = W (t)− |L(t)|. In contrast to the linear utility function

of the EV model, the PVL model uses the Prospect Utility function—a non-linear utility

function from prospect theory (Tversky & Kahneman, 1992). The Prospect Utility function

contains the first two model parameters—the shape parameter A, that determines the shape

of the utility function, and the loss aversion parameter w. As A approaches zero, the shape

of the utility function approaches a step function. The implication of such a step function is

that given a positive net outcome X(t), all utilities are similar because they approach one,

and given a negative net outcome X(t), all utilities are also similar because they approach

−w. On the other hand, as A approaches one, the subjective utility uk(t) increases in direct

proportion to the net outcome, X(t). A value of w larger than one indicates a larger impact

of net losses than net rewards on the subjective utility, whereas a value of w of one indicates
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equal impact of net losses and net rewards. As w approaches zero, the model predicts that

net losses will be neglected.

Unlike the EV model, the PVL model assumes that, on every trial t, decision makers

update the expected utilities of every deck according to the Decay learning rule (Erev &

Roth, 1998). This rule discounts expectancies of every deck on every trial to an extent

depending on the recency parameter a. This means that, in contrast to the EV model, the

expectancies of the unchosen decks are discounted. The dummy variable contained in the

learning rule, δk, ensures that only the current utility of the chosen deck k is added to the

expectancy of that deck. A small value of a indicates rapid forgetting and strong recency

effects, whereas a large value of a indicates slow forgetting and weak recency effects.

The PVL model assumes a trial-independent sensitivity parameter θ, which depends

on the final model parameter: the response consistency c. Small values of c cause a random

choice pattern, whereas large values of c cause a deterministic choice pattern.

In sum, the PVL model has four parameters: (1) The shape parameter A, which

determines the shape of the utility function, (2) the loss aversion parameter w, which

quantifies the weight of net losses over net rewards, (3) the recency parameter a, which

determines the memory for past expectancies, and (4) the response consistency parameter

c, which determines the amount of exploitation versus exploration.

1.2.3. The PVL-Delta model. The PVL-Delta model is a hybrid version of the

EV and PVL models because it uses the Delta learning rule of the EV model (Rescorla &

Wagner, 1972), but all remaining equations of the PVL model (i.e., the Prospect Utility

function and the trial-independent sensitivity parameter; Ahn et al., 2008; Fridberg et al.,

2010). This construction results in a model with four parameters: (1) The shape parameter

A, which determines the shape of the utility function, (2) the loss aversion parameter w,

which quantifies the weight of net losses over net rewards, (3) the updating parameter

a, which determines the memory for past expectancies, and (4) the response consistency

parameter c, which determines the amount of exploitation versus exploration.
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1.3 Methods to Assess Performance of RL Models

In this section, we review methods that previous studies have used to assess

performance of RL models. We differentiate between applied studies (i.e., studies that

fit an RL model to IGT data to compare model parameters across groups) and model

comparison studies (i.e., studies that search for the best performing model among a set of

competitor models). First of all, it is evident that many applied studies take model adequacy

for granted; only about two thirds of the applied literature assessed model performance

at all (Steingroever, Wetzels, & Wagenmakers, 2013). The standard measure to assess

model performance has been the conventional fit index BIC or G2. This index is a relative

measure that compares the performance of two models (i.e., the accuracy of one-step-ahead

predictions when provided with intermediate feedback on the observed choices and payoffs);

the first model is an RL model that aims to explain trial-to-trial dependencies and learning

effects; the second model is a baseline model that assumes constant choice probabilities

across all trials (equal to the individual’s overall choice proportions from each deck). This

method is also called post hoc fit criterion or one-step-ahead prediction method (see for

example, Farah, Yechiam, Bekhor, Toledo, & Polus, 2008; Yechiam et al., 2005, 2008). We

call this measure post hoc relative fit criterion in the remainder of the article to stress the

comparison against a baseline model.

The disadvantage of the post hoc relative fit criterion is that it is a relative measure,

and thus provides no information on whether a given model is able to account for the

data; relative performance measures can only be used to investigate whether a given model

outperforms a reference model, but not to investigate whether it performs adequately in

absolute terms. Thus, it is possible that a particular model makes more accurate one-step-

ahead predictions than the reference model (i.e., a better performance according to the post

hoc relative fit criterion), but nonetheless provides a poor fit to the data.

In contrast, methods used by model comparison studies cover a wider range of

meticulous and sophisticated procedures of model checking. Nevertheless, they also used the

post hoc relative fit (see for example Ahn et al., 2008; Busemeyer & Stout, 2002; Fridberg
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et al., 2010; Worthy, Hawthorne, & Otto, 2013; Yechiam & Busemeyer, 2005; Yechiam &

Ert, 2007; Yechiam & Busemeyer, 2008). Since these studies used different RL models and

different tasks (i.e., the IGT, but also gambling tasks with only two or three alternatives),

it is difficult to draw strong conclusions from these studies, especially because the findings

are rather equivocal: The study of Busemeyer and Stout (2002) showed that, among two

competitor models, the EV model had the best post hoc relative fit. Fridberg et al. (2010),

on the other hand, showed that the PVL-Delta model had a better post hoc relative fit than

the EV model. In addition, Fridberg et al. (2010) mentioned that their main conclusions

were not affected by whether they used the PVL model with Decay learning rule (labeled

PVL model in this article) or the PVL-Delta model (see their footnote 1). Other studies,

however, showed that models with a Decay learning rule resulted in a better post hoc

relative fit than models with a Delta learning rule (Ahn et al., 2008; Worthy et al., 2013;

Yechiam & Busemeyer, 2005; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008).

Model comparison studies have also investigated whether RL models can make

generalizable predictions, that is, accurate predictions for experimental conditions that

differ from the original ones (i.e., a different payoff sequence or task; see Busemeyer &

Wang, 2000; Pitt, Kim, & Myung, 2003, for the importance of this type of tests). The least

demanding test, that is, the test with the smallest difference from the original experiment, is

the simulation method (e.g., Ahn et al., 2008; Fridberg et al., 2010; see also Laud & Ibrahim,

1995). This method assesses a model’s ability to generate the observed choice pattern with

parameter values obtained from model fitting. More specifically, the parameter estimates

from model fitting are used to generate predictions for another payoff sequence that could

have been observed (i.e., the underlying payoff structure remains the same, but the exact

ordering of immediate wins and losses may differ). Typically, simulation performance is

assessed by comparing the predicted choice probabilities from each deck averaged across all

trials to the observed choice proportions from each deck averaged across all trials (Ahn et al.,

2008; Fridberg et al., 2010; Worthy et al., 2013; but see Yechiam & Busemeyer, 2005). All

studies that used the simulation method have shown that the EV model has poor simulation
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performance. In particular, Fridberg et al. (2010), Worthy et al. (2013), and Yechiam and

Busemeyer (2005) pointed out that the EV model fails to generate a preference for the

decks with infrequent losses over the decks with frequent losses (see also the parameter

space partitioning study of Steingroever, Wetzels, & Wagenmakers, 2013). The PVL-Delta

model, on the other hand, seems to be a model with good simulation performance (Ahn et

al., 2008; Fridberg et al., 2010).

A more challenging test is the so called test of generalizability. This method assesses

a model’s predictions for a second, different task. This method can be implemented as a

relative assessment (i.e., compared to a baseline model that makes random predictions for

every trial; see Ahn et al., 2008; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008) or as

an absolute assessment (i.e., compared to the observed choice proportions on the second

task; see Ahn et al., 2008; Yechiam & Busemeyer, 2005).1 In addition, model comparison

studies also used parameter consistency tests (i.e., Yechiam & Busemeyer, 2008) –a method

that compares the correlations between model parameters estimated in different tasks– and

parameter space partitioning (PSP; Steingroever, Wetzels, & Wagenmakers, 2013). PSP

assesses all choice patterns that a given model can generate over its entire parameter space.

Unfortunately, the model comparison studies mentioned above failed to identify an

RL model that uniquely outperforms its competitors across the various methods and data

sets. First, method dependency is apparent in the studies of Ahn et al. (2008), Yechiam

and Ert (2007), and Yechiam and Busemeyer (2008): These studies showed that models

with the Decay learning rule produced a better post hoc relative fit, whereas models with

the Delta learning rule produced better long-term generalizability and higher parameter

consistency (see also Erev & Haruvy, 2005). According to Yechiam and Ert (2007) and

Yechiam and Busemeyer (2008), the better post hoc relative fit of the Decay learning rule

is due to mimicry of past choices. The Delta learning rule, on the hand, relies more on past

payoffs instead of past choices and therefore produces better generalizable predictions and
1Note that the procedure of Yechiam and Busemeyer (2005) cannot be considered as a strong test of

generalization because the two tasks are relatively similar (i.e., both tasks used an implementation of the
IGT, but the payoff scheme used in the second task differs by a constant factor of 1.5 from the payoff scheme
of the first task).
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parameter consistency. In line with our results below, this suggests that the Delta learning

rule measures stable characteristics of an individual more successfully than does the Decay

learning rule.

Second, data set dependency is apparent in the study of Fridberg et al. (2010): In

their control group of healthy participants, the PVL-Delta model resulted in a better post

hoc relative fit than the EV model and the Bernoulli baseline model; however, in the case

of their experimental group of chronic cannabis abusers, the baseline model outperformed

the EV model and the PVL-Delta model. Fridberg et al. (2010) explained the superiority

of the baseline model by arguing that the experimental group does not learn on the IGT

as indicated by a stable preference for the good decks across trials. However, a stable

preference for the good decks may hide changes in deck preferences that occur on the level

of individual decks; an inspection of the mean choice proportions from all decks separately

suggests substantial changes across trials in the popularity of decks B and D (see Figure 2

in Fridberg et al., 2010).

Other examples of data set dependency include the studies of Ahn et al. (2008) and

Yechiam and Busemeyer (2005). Participants of the former study showed a preference for

the good decks on the IGT, whereas participants of the latter study showed a preference for

the decks with infrequent losses. Yechiam and Busemeyer (2005) found that models with

the Decay-RL rule and softmax choice rule predicted performance on a second task better

than models with the Delta-RL rule and softmax choice rule. However, Ahn et al. (2008)

used a similar test for a different data set and found the opposite result.2

Data set dependency has also been confirmed by the PSP study of Steingroever,

Wetzels, and Wagenmakers (2013) showing that the EV model, PVL model, and a modified

version of the EV model (i.e., the EV model with Prospect Utility function) all fail to
2It may be argued that Yechiam and Busemeyer (2005)’s implementation of the generalizability test is

rather a simulation method because the two tasks resemble each other strongly (i.e., both tasks used an
implementation of the IGT, but the payoff scheme used in the second task differs by a constant factor of 1.5
from the payoff scheme of the first task). However, the question whether Yechiam and Busemeyer (2005)’s
method should be classified as a test of generalizability or as a simulation method does not affect our point
that results of previous model comparison studies may depend on the data set analyzed because Ahn et al.
(2008) showed that models with Delta-RL rule performed better than models with Decay-RL rule on both
the simulation method and test of long-term generalizability.
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generate the entire spectrum of choice patterns that are typically observed in experiments.

In particular, the EV model fails to generate a pronounced preference for the decks with

infrequent losses (see also Fridberg et al., 2010; Yechiam & Busemeyer, 2005)—a choice

pattern that is often observed in healthy participants (e.g., Caroselli, Hiscock, Scheibel,

& Ingram, 2006; Dunn, Dalgleish, & Lawrence, 2006; MacPherson, Phillips, & Della Sala,

2002; Lin, Chiu, Lee, & Hsieh, 2007; Steingroever, Wetzels, Horstmann, et al., 2013; Wilder,

Weinberger, & Goldberg, 1998; Yechiam & Busemeyer, 2005). Such a dependency of the

models’ performance on the observed choice pattern presents a crucial limitation because a

good RL model for the IGT should be able to generate choice patterns present in all groups

that are typically tested on the IGT.

To sum up, previous applied studies and model comparison studies used a wide

variety of methods to assess performance of RL models. Applied studies typically focused

on relative measures, even though assessing absolute model performance is essential to

confirm model adequacy and to legitimize inferences drawn from model parameters. We will

therefore propose two straightforward and general methods that allow a relatively thorough

assessment of absolute model performance. In addition, we will shed light on why results

of previous model comparison studies may depend on the method and data set used.

2. Performance of the EV, PVL, and PVL-Delta Models

2.1. Methods

We fit the EV, PVL, and PVL-Delta models using a Bayesian hierarchical estimation

procedure (detailed in section 2.1.1) to two data sets that were constructed from our IGT

data pool of healthy participants (Steingroever, Wetzels, Horstmann, et al., 2013).3 For the

first data set, we selected 31 healthy participants with a pronounced preference for the good

decks (i.e., participants with at least 75% choices from the good decks, (C +D) ≥ .75); for
3See Steingroever, Wetzels, Horstmann, et al. (2013) for a description of the data sets. Note that we did

not use the data of Fernie and Tunney (2006), Fridberg et al. (2010), Rodríguez-Sánchez et al. (2005), and
Toplak et al. (2005) to construct the stylized data sets because we have received their data either only in
bins of several trials, because we did not receive information on the payoff of each participant, or because
fewer than 100 IGT trials were recorded.
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the second data set, we selected 31 healthy participants with a pronounced preference for

the decks with infrequent losses (i.e., participants with at least 75% choices from the decks

with infrequent losses, (B +D) ≥ .75).4 All participants completed a 100-trial IGT.

We chose these two types of choice patterns because the first type is in line with

Bechara et al. (1994)’s assumptions about the performance of healthy participants on the

IGT. The second type goes against Bechara et al. (1994)’s assumptions, but it is frequently

observed in healthy participants (see for example, Caroselli et al., 2006; Chiu & Lin, 2007;

Chiu et al., 2008; Dunn et al., 2006; Fridberg et al., 2010; MacPherson et al., 2002; Lin

et al., 2007; Steingroever, Wetzels, Horstmann, et al., 2013; Wilder et al., 1998; Yechiam

& Busemeyer, 2005). Since healthy participants are typically used as a control group, it is

important that the models can account for these two types of choice patterns.

By using the cutoff of .75 to construct the two groups (i.e., (C+D) ≥ .75 or (B+D) ≥

.75), we ensured that participants within each of these groups have similar deck preferences.

This procedure minimizes the impact of individual differences within each group, creating

optimal conditions for precise parameter estimation in the Bayesian hierarchical framework.

To visualize the representativeness of our two stylized data sets, Figure 1 displays

the proportions of choice patterns shown by participants in our IGT data pool considered

for this article (total N = 359). For this figure, we defined five different types of choice

patterns based on the deck rank order: (1) Preference for the decks with infrequent losses

(i.e., {B,D} � {A,C}); (2) preference for the good decks (i.e., {C,D} � {A,B}); (3)

preference for the bad decks (i.e., {A,B} � {C,D}); (4) preference for the decks with

frequent losses (i.e., {A,C} � {B,D}); (5) remaining choice patterns. From the figure it

is evident that the choice patterns “preference for the decks with infrequent losses” and

“preference for the good decks” are most central in our IGT data pool considered for this

article. Even though we chose an arbitrary cutoff value of .75 to construct the two groups,

Figure 1 suggests that the construction of the two groups is empirically well founded (i.e.,

32.6% (N = 31) and 38.3% (N = 57) of the participants with a preference for the decks with
4These participants were selected at random out of all participants showing a pronounced preference for

the decks with infrequent losses.
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Figure 1 . Proportions of choice patterns shown by participants of our IGT data pool
considered for this article (total N = 359). The shaded areas represent the proportions of
participants with pronounced deck preferences (i.e., (B +D) ≥ .75 or (C +D) ≥ .75).

infrequent losses and for the good decks, respectively, show a pronounced deck preference).

To assess the models’ performance in absolute terms, we used two different methods:

the post hoc absolute fit method and the simulation method. These two methods allow

us to assess the models’ ability to fit and generate the choice patterns present in the two

stylized data sets. Our implementation of both methods relies on visually contrasting –

separately for each deck as a function of 10 bins– the observed mean choice proportions

from the experiment against the mean choice probabilities from a particular model. For the

data sets at hand a visual inspection is sufficient; a more formal approach is provided by

posterior predictive p-values (Gelman, Meng, & Stern, 1996; Meng, 1994; but see Bayarri

& Berger, 1999, 2000).

The difference between the two methods lies in how the choice probabilities from a

particular model were obtained (see Appendix for detailed recipes). Both methods start

by sampling parameter values from the joint posterior distributions over the individual-

level parameters (hereafter individual-level joint posteriors). For a given participant i, this
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sample represents a parameter value combination {wi, ai, ci} in the case of the EV model,

and {Ai, wi, ai, ci} in the case of the PVL and PVL-Delta models. This parameter value

combination is then provided to the model. In the case of the post hoc absolute fit method,

the model is also provided with the actual choices and payoffs of participant i. Based on

the information on the observed choices and payoffs up to and including the current trial,

the post hoc absolute fit method computes the probability of choosing each deck on the

next trial. The simulation method, on the other hand, relies on generating choices for

another sequence of payoffs that could have been observed.5 In particular, on each trial,

the simulation method generates a choice based on the predicted choice probabilities. The

model then uses the payoff that corresponds to the generated choice to compute the utility of

the chosen deck, it updates the expected utilities of the decks, and computes the probability

of choosing each deck on the next trial. These probabilities are then used to generate the

next choice. Thus, the simulation method spawns synthetic participants who are confronted

with the IGT just as the human participants. For both methods and for each participant,

we repeated the process of obtaining the predicted choice probabilities 100 times to account

for uncertainty in the individual-level joint posteriors.

We consider a model fit adequate whenever the observed choice proportions match

the choice probabilities calculated from the model with access to the observed sequence

of choices and payoffs (i.e., an adequate post hoc absolute fit). Similarly, we consider a

model’s predictions adequate whenever the observed choice proportions match the choice

probabilities generated by the model without access to the observed sequence of choices and

payoffs (i.e., an adequate simulation performance).

Our implementation of the post hoc absolute fit method and the simulation method

differ from previously used tests in the following ways. First, our post hoc absolute fit

method entails an absolute comparison to the data instead of a relative comparison to a

baseline model (i.e., the post hoc relative fit; but see Busemeyer & Stout, 2002; Wood,

Busemeyer, Koling, Cox, & Davis, 2005, for an absolute presentation featuring only the

5Note that we used the same payoff schedule as in the corresponding experiment.
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good decks). Second, our implementation of the simulation method considers the choice

probabilities for each deck and trial separately, instead of averaging across all trials (see

Ahn et al., 2008; Fridberg et al., 2010; Worthy et al., 2013). Yechiam and Busemeyer (2005)

also used this implementation, but they did not account for uncertainty in the parameter

estimates.

To investigate whether our conclusions hold more generally, we also fit the EV, PVL,

and PVL-Delta models to five complete data sets presented in the IGT review article of

Steingroever, Wetzels, Horstmann, et al. (2013; see therein for further details on the data

sets). These data sets were received from the authors upon request.6

2.1.1. Bayesian hierarchical estimation procedure. To fit the EV, PVL,

and PVL-Delta models to the data, we used a Bayesian hierarchical estimation procedure

(see Ahn et al., 2011; Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010, for

advantages of the Bayesian hierarchical approach). The Bayesian graphical PVL (and PVL-

Delta) model for a hierarchical analysis is shown in Figure 2. The Bayesian graphical

EV model looks very similar; the only difference is that the EV model has one fewer

parameter, that parameter wi is immediately drawn from a group-level distribution instead

of being obtained from w′
i, and that the sensitivity parameter is trial-dependent (i.e., θi,t).

Figure 2 shows that the graphical model consists of two plates: The inner plate expresses the

replications of the choices on t = 1, . . . , T trials of the IGT, and the outer plate expresses the

replications for i = 1, . . . , N participants. For the sake of clarity, we omitted the notation

that indexes the deck number k. The quantities Wi,t (rewards of participant i on trial t),

Li,t (losses of participant i on trial t), and Chi,t+1 (choice of participant i on trial t+1) can

directly be obtained from the data, and the quantities ui,t, Evi,t+1, and θi can be calculated

with the equations presented in Table 2. Each individual-level parameter vector zi, that is

{wi, Ai, ai, ci} in the case of the PVL and PVL-Delta models, and {wi, ai, ci} in the case of

6Note that we did not fit the models to the data sets of Fernie and Tunney (2006), Rodríguez-Sánchez et
al. (2005), and Toplak et al. (2005) because we received their data only in bins of several trials or because
we did not receive information on the payoff of each participant. The data set labeled as “own data set” in
Steingroever, Wetzels, Horstmann, et al. (2013) is here labeled as “Horstmann” because Annette Horstmann
collected the data.
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the EV model, is assumed to be drawn from a group-level beta distribution, Beta(αz, βz).

Since beta distributions are restricted to the [0, 1] interval, we transformed parameters with

different ranges (see Table 2) to the [0, 1] interval, and only transformed them back to their

correct ranges after the analysis was complete. Beta distributions are typically defined by

two shape parameters α and β. Here we reparameterize the two shape parameters in terms

of the group-level mean µz and group-level precision λz as follows:

αz = µzλz (1)

βz = λz(1− µz) (2)

We assigned a uniform prior to the group-level means, µz ∼ U
(
0, 1
)
, and to the

logarithm of the group-level precisions, log(λz) ∼ U
(
log(2), log(600)

)
. Setting the lower

limit of the prior on log(λz) to log(2) prevents the beta group-level distributions from

being bimodal (Beta distribution, n. d.). However, to prevent numerical problems in the

estimation program we had to increase this lower limit to a maximum of 21 for the most

challenging stylized data set and to a maximum of 31 for the most challenging complete data

set—a modification that can reduce the variance of the group-level distributions; here this

increase had little effect on our inferences as the posterior distributions of the group-level

precision parameters were not cut off at their lower limit.

We implemented the EV, PVL, and PVL-Delta models in the WinBUGS Development

Interface (WBDev, Lunn, 2003)—an add-on program to WinBUGS (BUGS stands for

Bayesian inference Using Gibbs Sampling; Lunn, Jackson, Best, Thomas, & Spiegelhalter,

2012). The advantage of WBDev over WinBUGS is that WBDev allows the implementation

of user-defined functions and distributions, and requires less computational time (Wetzels,

Lee, & Wagenmakers, 2010). The code for the fitting procedures of the EV, PVL, and

PVL-Delta models in WBDev is available on http://www.helensteingroever.com.

For each parameter, we collected posterior samples using three Markov chain Monte
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Chi,t+1

P [St+1]

Wi,t

Li,t

ui,t Evi,t+1 θi

w′
i c′i

Ai wi ai ci

µA λA µw′ λw′ µa λa µc′ λc′

t = 1, ..., T

i = 1, ..., N

µz ∼ Beta(1, 1)

log(λz) ∼ Uniform(log(2), log(600))

w′
i ∼ Beta(µw′λw′, (1− µw′)λw′)

c′i ∼ Beta(µc′λc′, (1− µc′)λc′)

Ai ∼ Beta(µAλA, (1− µA)λA)

ai ∼ Beta(µaλa, (1− µa)λa)

Figure 2 . Bayesian graphical PVL (and PVL-Delta) model for a hierarchical analysis.

Carlo (MCMC) chains that were run simultaneously. To assess whether the chains of

all parameters had converged successfully from their starting values to their stationary

distributions, we visually inspected the MCMC chains. In addition, we used the R̂ statistic

(Gelman & Rubin, 1992), a formal diagnostic measure of convergence that compares the

between-chain variability to the within-chain variability. As a rule of thumb, values of R̂

close to 1.0 indicate adequate convergence to the stationary distribution, whereas values

greater than 1.1 indicate inadequate convergence.

We initialized all chains with different starting values that were generated from

uniform distributions covering a wide range of possible parameter values (i.e., randomly

overdispersed starting values). Fitting the PVL and PVL-Delta models with three chains
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often resulted in convergence difficulties: for instance, two chains may appear to have

converged to their stationary distributions and gave the appearance of “hairy caterpillars”

that are randomly intermixed, whereas the third chain behaved differently, often seemingly

stuck at either the lower or upper parameter bound and consequently producing a much

larger deviance (i.e., an inferior goodness of fit). In such situations we decided to run at least

five chains simultaneously and to base inferences on three chains with the smallest deviance.7

However, even this procedure resulted in convergence problems for a few participants (e.g.,

bimodal posterior distributions). We therefore excluded participants with such convergence

issues and repeated the fitting procedure. This explains why the sample sizes presented in

Table 3 are slightly smaller than stated earlier and than those reported by Steingroever,

Wetzels, Horstmann, et al. (2013).

Table 3 also contains, for each data set separately, the number of samples we discarded

as burn-in and the number of posterior samples that we collected for each chain. These

specifications differ across data sets to ensure that all chains reached convergence. We based

our inferences on these posterior samples.

2.3. Results

Visual inspection of the MCMC chains and consideration of the R̂ statistics for all

parameters suggested that all chains converged successfully (i.e., all parameters of the two

stylized data sets and complete data sets had R̂ values below 1.04 and 1.05, respectively). To

illustrate how we assessed convergence visually, Figure 3 shows the chains of one individual-

level parameter. From the figure it is evident that the chains have converged to their

stationary distribution, giving the appearance of “fat hairy caterpillars” that are randomly
7Our convergence difficulties with the PVL and PVL-Delta models are not unique. Ahn et al. (2011)

made available online two alternative fitting routines for the PVL model, and also reported convergence
difficulties for their first code. They propose two solutions for the convergence difficulties: The first solution
is the same as we proposed here, that is, basing inferences on chains that have converged successfully. The
second solution is to use their second code that uses a different prior specification and model formulation in
which the individual-level parameters are assumed to be drawn from truncated normal distributions. Also,
Ahn et al. (2011) needed a large amount of burn-in samples and iterations to fit their data set with their first
code, that is, they based their inferences on 25,000 samples that were drawn after 70,000 burn-in samples.
The necessity of such a large amount of burn-in samples and iterations indicates the presence of convergence
difficulties.
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Table 3
Sample size of the two stylized and five complete data sets, number of samples discarded as
burn-in, and number of posterior samples collected for each chain.
Data set Sample EV model PVL model PVL-Delta model

size Burn-in Posterior Burn-in Posterior Burn-in Posterior
samples samples samples samples samples samples

Good decks 30 2,000 2,000 1,000 5,000 3,000 2,000
Infrequent losses 31 1,000 3,000 1,000 2,333 12,000 2,000

Fridberg et al. (2010) 15 1,000 1,000 12,000 7,000 13,000 5,000
Horstmann 147 32,000 6,000 16,000 5,000 15,000 3,000
Kjome et al. (2010) 18 3,000 2,000 5,000 5,000 9,000 2,000
Premkumar et al. (2008) 25 1,000 1,000 4,000 3,800 12,000 4,333
Wood et al. (2005) 147 12,000 8,000 16,000 5,000 3,000 2,000

intermixed.

Figure 3 . MCMC chains of the individual-level PVL parameter c of the third participant in
the stylized data set featuring a pronounced preference for the good decks. We inspected this
type of plot for every parameter to assess convergence visually, in addition to quantifying
convergence through the formal diagnostic measure R̂.

2.3.1. Ability to fit. Figure 4 presents the post hoc absolute fit of the three RL

models with respect to the two stylized data sets. The first column presents the observed

choice proportions from each deck as a function of 10 bins; the second, third, and fourth

column present the mean probabilities of choosing each deck on each trial as calculated

with the EV, PVL, and PVL-Delta models, respectively. The participants from the first
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Figure 4 . Post hoc absolute fit performance of the three RL models with respect to the two
stylized data sets. The first column presents the observed mean proportions of choices from
each deck within 10 blocks. Each block contains 10 trials. The second, third, and fourth
column present the mean probabilities of choosing each deck on each trial as calculated with
the EV, PVL, and PVL-Delta model, respectively.

data set show a pronounced preference for the good decks (first panel of the first row);

the participants from the second data set show a pronounced preference for the decks with

infrequent losses (first panel of the second row).8

It is evident from Figure 4 that all models provide an acceptable fit to the observed

data. All models capture the qualitative choice patterns (i.e., the rank order of the decks)

shown by the two stylized data sets. In addition, the models also adequately capture the

size of the choice proportions. Nonetheless, the EV model seems to fit the two stylized data

sets slightly worse than the PVL and PVL-Delta models: According to the EV model, it

takes a few trials at the beginning of the IGT until participants start learning and develop
8The deck selection profiles of all 61 participants included in the two stylized data sets can be downloaded

here: https://dl.dropbox.com/u/12798592/DeckSelectionProfilesFit.zip. In these profiles, filled dots
indicate the occurrence of rewards and losses together, whereas unfilled dots indicate the occurrence of
rewards only.
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the pronounced deck preferences—a pattern that is inconsistent with the observed data.

But altogether, Figure 4 suggests that only small qualitative differences exist in the models’

ability to fit the two stylized data sets.

To ascertain that our results generalize to other data sets, Figure 5 shows the post hoc

absolute fit performance of the three RL models with respect to the five complete data sets.

The first column presents the observed choice proportions from each deck as a function of 10

bins; the second, third, and fourth column present the mean probabilities of choosing each

deck on each trial as calculated with the EV, PVL, and PVL-Delta models, respectively. At

the behavioral level, Figure 5 illustrates that only the data set of Premkumar et al. (2008)

shows a preference for the good decks. The remaining four data sets show a frequency-of-

losses effect (i.e., a preference for the decks with infrequent losses)—an effect that differs in

its extent across the four data sets: The data sets of Fridberg et al. (2010) and Horstmann

show a pronounced frequency-of-losses effect with a clear preference for both decks with

infrequent losses (i.e., decks B and D) over both decks with frequent losses, whereas the

remaining two data sets show a less pronounced frequency-of-losses effect, indicating that,

at the end of the IGT, participants choose about equally often from decks B, C, and D,

while clearly avoiding deck A (i.e., Kjome et al., 2010; Wood et al., 2005). In general, it is

evident that the choice patterns shown by the five complete data sets are less pronounced

than those of the two stylized data sets presented in Figure 4.

It is evident that Figure 5 corroborates the conclusions from Figure 4: All models

provide an acceptable fit to the data, but the EV model fits the five complete data sets

slightly worse than the PVL and PVL-Delta models.

In addition to visually assessing the models’ ability to fit the two stylized and five

complete data sets, we also compared the deviance measure provided by WinBUGS of all

models and data sets (Table 4). The deviance is defined as D(θ) = −2 log p(y|θ), where

p(y|θ) is the likelihood of the data y given the parameters θ. Thus, the smaller the deviance,

the better the fit. In line with Figures 4 - 5, Table 4 shows that the EV model provides the

worst fit to the two stylized and five complete data sets. In addition, the PVL model has



STEINGROEVER, WETZELS, AND WAGENMAKERS 25

Fridberg
P

ro
p

o
rt

io
n

 o
f 

C
h

o
ic

e
s

1 3 5 7 9

0.0

0.2

0.4

0.6

Horstmann

P
ro

p
o

rt
io

n
 o

f 
C

h
o

ic
e

s

1 3 5 7 9

0.0

0.2

0.4

0.6

Kjome

P
ro

p
o

rt
io

n
 o

f 
C

h
o

ic
e

s

1 3 5 7 9

0.0

0.2

0.4

0.6

Premkumar

P
ro

p
o

rt
io

n
 o

f 
C

h
o

ic
e

s

1 3 5 7 9

0.0

0.2

0.4

0.6

Wood

Block

P
ro

p
o

rt
io

n
 o

f 
C

h
o

ic
e

s

1 3 5 7 9

0.0

0.2

0.4

0.6

EV 

P
ro

b
a

b
ili

ty
 o

f 
C

h
o

ic
e

s
0 95

0.0

0.2

0.4

0.6

EV 

P
ro

b
a

b
ili

ty
 o

f 
C

h
o

ic
e

s

0 100

0.0

0.2

0.4

0.6

EV 

P
ro

b
a

b
ili

ty
 o

f 
C

h
o

ic
e

s

0 100

0.0

0.2

0.4

0.6

EV 

P
ro

b
a

b
ili

ty
 o

f 
C

h
o

ic
e

s

0 100

0.0

0.2

0.4

0.6

EV 

Trial

P
ro

b
a

b
ili

ty
 o

f 
C

h
o

ic
e

s

0 100

0.0

0.2

0.4

0.6

PVL

0 95

0.0

0.2

0.4

0.6

PVL

0 100

0.0

0.2

0.4

0.6

PVL

0 100

0.0

0.2

0.4

0.6

PVL

0 100

0.0

0.2

0.4

0.6

PVL

Trial

0 100

0.0

0.2

0.4

0.6

PVL−Delta

0 95

0.0

0.2

0.4

0.6

PVL−Delta

0 100

0.0

0.2

0.4

0.6

PVL−Delta

0 100

0.0

0.2

0.4

0.6

PVL−Delta

0 100

0.0

0.2

0.4

0.6

PVL−Delta

Trial

0 100

0.0

0.2

0.4

0.6 Deck A
Deck B
Deck C
Deck D

Figure 5 . Post hoc absolute fit performance of the three RL models with respect to the five
complete data sets. The first column presents the observed mean proportions of choices from
each deck within 10 blocks. Each block contains 10 trials, except the last block of Fridberg
et al. (2010, 5-trials). The second, third, and fourth column present the mean probabilities
of choosing each deck on each trial as calculated with the EV, PVL, and PVL-Delta model,
respectively.
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Table 4
Deviance measures provided by WinBUGS of all models and data sets. For each data set,
we printed in bold the lowest deviance value to identify the model with the best fit.
Data set EV PVL PVL-Delta
Good decks 5,905 4,667 5,213
Infrequent losses 6,823 5,450 5,757

Fridberg et al. (2010) 3,545 3,368 3,356
Horstmann 37,210 33,510 32,830
Kjome et al. (2010) 4,597 4,010 4,258
Premkumar et al. (2008) 5,915 5,223 5,653
Wood et al. (2005) 38,390 34,690 35,820

a smaller deviance (i.e., a better fit) than the PVL-Delta model for five out of seven data

sets.

2.3.2. Ability to generate. Figure 6 illustrates how the three models perform on

the simulation method with respect to the two stylized data sets. The first column presents

the observed choice proportions from each deck as a function of 10 bins (i.e., identical to

the first column of Figure 4); the second, third, and fourth column present the probabilities

of choosing each deck on each trial as generated with the EV, PVL, and PVL-Delta models,

respectively. From the figure it is evident that neither the EV nor the PVL model succeeds

to generate both observed choice patterns. Specifically, the EV model fails to generate a

choice pattern featuring a pronounced preference for the decks with infrequent losses (second

stylized data set), whereas the PVL model fails to generate a choice pattern featuring a

pronounced preference for the good decks (first stylized data set).

In the case of the first stylized data set, the EV model correctly generates the

empirical rank order of the decks. However, the model strongly overestimates the mean

choice proportions from deck C. In addition, the EV model predicts that the probability of

choosing deck D increases until trial 50, but then decreases to chance level—a prediction

that is not in line with the data; the observed choice proportions from deck D are above

chance level across all trials. The PVL model, on the other hand, performs acceptably on

the simulation method in the case of the second stylized data set; it correctly generates

that the decks with infrequent losses are preferred over the decks with frequent losses, but
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Figure 6 . Simulation performance of the three RL models with respect to the two stylized
data sets. The first column presents the observed mean proportions of choices from each
deck within 10 blocks. Each block contains 10 trials. The second, third, and fourth column
present the mean probabilities of choosing each deck on each trial as generated with the
EV, PVL, and PVL-Delta model, respectively.

it fails to generate that deck D is on average preferred over deck B.

The PVL-Delta model, on the other hand, is the only model considered in this article

that adequately generates the qualitative choice patterns of both stylized data sets. Yet,

a few discrepancies exist between the observed and generated choice patterns: In the case

of the first stylized data set, the PVL-Delta model slightly underestimates the mean choice

proportions from deck D, and slightly overestimates the mean choice proportions from deck

B. Just as the EV model, the PVL-Delta model predicts that the mean probability of

choosing deck D increases until trial 50 and then decreases, even though the observed data

do not show this decrease. In the case of the second stylized data set, the PVL-Delta model

–just as the PVL model– fails to generate that deck D is on average preferred over deck B.

To ascertain that our results generalize to other data sets, Figure 7 shows how the
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three models perform on the simulation method with respect to the five complete data sets.

The first column presents the observed choice proportions from each deck as a function of

10 bins (i.e., identical to the first column of Figure 5); the second, third, and fourth column

present the probabilities of choosing each deck on each trial as generated with the EV, PVL,

and PVL-Delta models, respectively.

It is evident that Figure 7 corroborates the conclusions from Figure 6: The EV model

fails to generate choice patterns featuring a preference for the decks with infrequent losses as

shown by four data sets; for these data sets the EV model makes almost random predictions.

Interestingly, the EV model makes very similar predictions for the data sets of Fridberg et

al. (2010) and Horstmann, and the data sets of Kjome et al. (2010) and Wood et al. (2005),

even though there are pronounced differences in the choice patterns at the behavioral level.

In the case of the choice pattern featuring a preference for the good decks as shown by

the data set of Premkumar et al. (2008), the EV model correctly predicts a preference for

the good decks over the bad decks, but –as in the case of the stylized data set with a

preference for the good decks– the EV model underestimates the preference for deck D and

overestimates the preference for deck A.

As already suggested by Figure 6, Figure 7 underscores that the PVL model fails to

generate a choice pattern featuring a preference for the good decks (i.e., as present in the

data set of Premkumar et al., 2008). However, the PVL model makes acceptable predictions

for the four data sets with a frequency-of-losses effect; for all four data sets the PVL model

correctly generates that the decks with infrequent losses are preferred over the decks with

frequent losses. Yet, it is evident that, for the data sets of Fridberg et al. (2010) and Wood

et al. (2005), the PVL model fails to generate that deck D is on average preferred over

deck B—a discrepancy between the data and the predictions that was already apparent

in Figure 6. In addition, both Figures 6 and 7 illustrate that the PVL model generates

learning curves that are relatively flat.

Moreover, as already suggested by Figure 6, the PVL-Delta model demonstrates

adequate simulation performance: Figure 7 illustrates that the PVL-Delta model correctly
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Figure 7 . Simulation performance of the three RL models with respect to the two stylized
data sets. The first column presents the observed mean proportions of choices from each
deck within 10 blocks. Each block contains 10 trials, except the last block of Fridberg et
al. (2010, 5-trials). The second, third, and fourth column present the mean probabilities of
choosing each deck on each trial as generated with the EV, PVL, and PVL-Delta model,
respectively.
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generates the choice patterns shown by most data sets. Only in the case of the data set of

Fridberg et al. (2010) does the PVL-Delta model slightly underestimate the mean choice

proportions from deck D and slightly overestimate the choice proportions from deck C.

Overall, the results of this section showed that the simulation method –in contrast

to the post hoc absolute fit method– allows for a good discrimination between the models.

In addition, a comparison of the two methods resulted in conflicting findings: Even though

all models provided an adequate fit to the observed choice patterns, only the PVL-Delta

model was able to also generate these choice patterns.

4. General Discussion

In this article, we compared two methods that assess absolute model performance:

the post hoc absolute fit method and the simulation method. We used these methods to

investigate whether three RL models of the IGT –the popular EV and PVL models, and a

hybrid version of both models, the PVL-Delta model– can fit and generate choice patterns

present in two stylized and five complete data sets.

Our results showed that all models provided an acceptable fit to all data sets

and that only small differences existed in the models’ ability to fit the different choice

patterns. Thus, our results suggest that the post hoc absolute fit method allows for limited

qualitative discrimination between the models. The simulation method, on the other hand,

revealed important performance differences between the models: When provided with no

intermediate feedback on the observed choices and payoffs, the EV model failed to generate

a choice pattern featuring a preference for the decks with infrequent losses, whereas the

PVL model failed to generate a choice pattern featuring a preference for the good decks.

Only the PVL-Delta model adequately generated the choice patterns shown by the two

stylized and five complete data sets.

Our results clearly illustrate that a model’s ability to fit a particular choice pattern

does not guarantee that the model is also able to generate that same choice pattern. This

conflicting finding is supported by findings from previous model comparison studies (e.g.,



STEINGROEVER, WETZELS, AND WAGENMAKERS 31

Ahn et al., 2008; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008, see Lewandowsky,

1995, for a similar phenomenon). Specifically, Yechiam and Ert (2007) and Yechiam and

Busemeyer (2008) compared two RL models that only differed in the learning rule (i.e.,

either the Delta learning rule or the Decay learning rule) using post hoc relative fit, a long-

term generalization test, and a parameter consistency test. In both studies, the model with

the Decay learning rule had a better post hoc relative fit, but the model with the Delta

learning rule performed better on the latter two tests. The authors explain these conflicting

findings by arguing that the Decay learning rule produces a better post hoc relative fit

because it relies more on past choices (i.e., mimicry of past choices), whereas the Delta

learning rule relies more on past payoffs. According to these authors, the increased reliance

on past payoffs explains why the Delta learning rule is superior in producing predictions that

generalize to other tasks, and parameters that are consistent across different tasks. These

results relate to ours because post hoc relative fit and post hoc absolute fit share the same

foundation; both methods assess the accuracy of an RL model for the exact sequences of

observed choices and payoffs. The only difference is that the post hoc relative fit compares

the model’s accuracy to that of a baseline model, whereas the post hoc absolute fit features

an absolute comparison to the observed choice proportions from each deck.

However, in contrast to earlier work (Yechiam & Ert, 2007; Yechiam & Busemeyer,

2008), our results suggest that a model’s generalizability is determined not only by the

learning rule but rather by the combination of different model equations. In particular,

even though both the EV and the PVL-Delta model use the Delta learning rule, only the

PVL-Delta model adequately generated all choice patterns considered in this article (see

Fridberg et al., 2010; Yechiam & Busemeyer, 2005; Worthy et al., 2013, for studies that

also report poor simulation performance of the EV model).

It should be noted that, in this article, we did not rule out the possibility that

other parameter combinations may result in better simulation performance: to assess

simulation performance, we used parameter values that were obtained with a likelihood-

based estimation procedure that optimizes the fit for the exact sequences of observed choices
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and payoffs. Nevertheless, at least in the case of the EV model, we can be certain that

no matter which parameter combination we choose the EV model will never generate a

frequency of losses effect (see the PSP study of Steingroever, Wetzels, &Wagenmakers, 2013,

and the simulation performance of the EVmodel reported by Fridberg et al., 2010, Worthy et

al., 2013, and Yechiam & Busemeyer, 2005). However, instead of searching a model’s entire

parameter space for those parameter values that produce the best simulation performance,

it is conventional to assess simulation performance with parameter values obtained from a

likelihood-based estimation procedure because researchers typically base their inferences on

these parameter values when they wish to draw conclusions about psychological processes

underlying performance on the IGT.

Our results suggest that, among the two methods compared in this article, the

simulation method is more indicative of whether or not a model captures psychological

processes underlying the IGT: “the goal of model selection is to choose the model that

generalizes best across all samples, because the one that does has probably captured the

cognitive process of interest, and not the random fluctuations (i.e., error) that any one

sample will exhibit. This is the essence of generalizability, and a model should be judged

on its ability to generalize correctly, not on its adeptness (i.e., flexibility) in fitting only

the data in hand.” (Pitt et al., 2003, p. 31). Thus, the risk is that a good descriptive

adequacy (i.e., a good post hoc absolute fit) is caused by choice mimicry; it is possible

that a model strongly relies on past choices instead of past payoffs when making one-step-

ahead predictions. Thus, our results suggest that models can fine-tune their parameters to

obtain an accurate fit for the exact sequences of observed payoffs and choices, but a model’s

ability to make accurate one-step-ahead predictions cannot be taken as sufficient evidence

to decide whether or not the model has successfully estimated psychological processes that

drive performance on the IGT—an ambition that applied studies typically have. This

also means that the conventional BIC or G2 fit index is insufficient to decide whether model

parameters are a valid reflection of psychological processes (see also Laud & Ibrahim, 1995).

Instead of using the conventional fit index as the standard measure of model
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performance in applied studies, our results suggest that applied researchers should carefully

assess absolute model performance to avoid premature conclusions about the psychological

processes that drive performance on the IGT. In particular, the simulation method seems

to represent a more stringent and challenging test of absolute model performance than

the post hoc absolute fit method because the simulation method relies on predicting the

entire sequence of choices for another payoff sequence that could have been observed. Since

one assumes that participants show a similar choice pattern on the IGT independently of

the exact ordering of the payoffs, a model for the IGT should be able to make accurate

predictions for a new payoff sequence, especially because the changes in the payoff sequence

are trivial (i.e., the underlying payoff structure remains the same, but the exact ordering of

immediate wins and losses differs): “It seems clear that good models, among those under

consideration, should make predictions close to what has been observed for an identical

experiment.” (Laud & Ibrahim, 1995; p. 249). A requirement for accurate predictions is

that the model is sensitive to the payoff—not to previous choices. Our advice for future

applications of RL models to IGT data is therefore that both proposed tests should pass a

minimum threshold of adequacy.

It stands to reason that model performance cannot be summarized with only one

measure. Previous model comparison studies proposed other sophisticated and sound

methods to assess model performance; in particular, to investigate whether a given

model captures the underlying decision-making processes (e.g., parameter consistency,

generalization to another task, test of specific influence; see for example Ahn et al., 2008;

Wetzels, Vandekerckhove, et al., 2010; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008).

Even though we support these additional methods, they require data from another task

and hence it may be not be realistic to advocate their use in applied work. Thus, we

recommend applied researchers to choose a model based on results from previous model

comparison studies that used these tests, and then to use the post hoc absolute fit method

and the simulation method to assess absolute model performance. If both methods pass a

minimum threshold of adequacy, we can be relatively confident that conclusions from model
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parameters are trustworthy.

Our results suggest that in future applications of the RL models to IGT data,

researchers should carefully assess absolute model performance using the post hoc absolute

fit method and especially the simulation method. Only a careful assessment of absolute

model performance will help prevent applied researchers from drawing conclusions that

may be unwarranted and premature. Our results also suggest that future studies should

consider applying the PVL-Delta model instead of the popular EV and PVL models.
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Appendix

Recipe for obtaining choice probabilities according to the post hoc absolute fit

method

1. For a given participant i, take a random draw from the individual-level joint posterior

(i.e., use a random chain and iteration). This random draw results in a parameter

value combination (i.e., {wi, Ai, ai, ci} for the PVL and the PVL-Delta models, and

{wi, ai, ci} for the EV model) that is then provided to the model. Alternatively, use

the maximum likelihood estimates.

2. Initialize the expectancies of all decks to zero, Evk(0) = 0. Therefore, P [Sk(1)] = 0.25

for each deck k, k ∈ {1, 2, 3, 4} (i.e., on the first trial, all decks are equally likely to

be chosen).

3. Execute steps 4 − 7 for trial t = 1 up to and including t = T − 1 where T is the

maximum number of trials used in the corresponding experiment.

4. Provide the model with the observed choice Sk(t), and payoff on trial t, W (t) and

L(t).

5. Use the payoff observed on trial t to compute the utility of the chosen deck.

6. Update the expected utility of all decks (or only of the chosen deck, in the case of the

EV and PVL-Delta models).

7. Compute the probability that deck k will be chosen on the next trial

P [Sk(t+ 1)]. Save the probabilities.

8. Repeat steps 1−7 for each subject 100 times to account for the posterior uncertainty.

This step is omitted if maximum likelihood estimates were used.

Recipe for obtaining choice probabilities according to the simulation method

1. For a given participant i, take a random draw from the individual-level joint posterior

(i.e., use a random chain and iteration). This random draw results in a parameter
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value combination (i.e., {wi, Ai, ai, ci} for the PVL and the PVL-Delta models, and

{wi, ai, ci} for the EV model) that is provided to the model. Alternatively, use the

maximum likelihood estimates.

2. Initialize the expectancies of all decks to zero, Evk(0) = 0. Therefore, P [Sk(1)] = 0.25

for each deck k, k ∈ {1, 2, 3, 4} (i.e., on the first trial, all decks are equally likely to

be chosen).

3. Execute steps 4 − 7 for trial t = 1 up to and including t = T − 1 where T is the

maximum number of trials used in the corresponding experiment.

4. Generate a choice on trial t using P [Sk(t)].

5. Use the payoff corresponding to the choice on trial t to compute the utility of the

chosen deck. Make sure to use the same payoff schedule as in the corresponding

experiment.

6. Update the expected utility of all decks (or only of the chosen deck, in the case of the

EV and PVL-Delta models).

7. Compute the probability that deck k will be chosen on the next trial

P [Sk(t+ 1)]. Save the probabilities.

8. Repeat steps 1−7 for each subject 100 times to account for the posterior uncertainty.

This step is omitted if maximum likelihood estimates were used.


