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a b s t r a c t

One of the main challenges facing potential users of Bayes factors as an inferential tech-
nique is the difficulty of computing them. We highlight a useful relationship that allows
certain order-restricted and sign-restricted Bayes factors, such as one-sided Bayes factor
tests, to be computed with ease.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider an encompassing model Me with nuisance parameters θ and parameter of interest δ of length K with marginal
prior distribution p(δ). Two restrictions of Me can be considered: the null hypothesis M0 states that δ = 0, and Mr is an
order-restricted hypothesis that the δ parameters have a specific ordering. If R is the set of all vectors δ that meet the spec-
ified restriction, then Mr states that δ ∈ R. If K = 1 and δ is a scalar parameter, then Mr is a sign hypothesis that δ is either
positive or negative. We use the general term ‘‘order-restriction’’ to refer both the K = 1 case and the K > 1 case. Suppose
that p(δ) is such that all orderings are equally-likely a priori, as will occur if the prior distributions on the Kδ parameters
are identical and mutually conditionally independent. The Bayes factor Br0 = p(y | Mr)/p(y | M0) quantifies the evidence
that the data y provide for Mr versus M0 (Jeffreys, 1961; Kass and Raftery, 1995). This Bayes factor is of practical interest
because researchers often have strong prior expectation about the direction of an effect or the ordering of means under the
assumption that the null hypothesis is false. Unfortunately, Br0 is often not available in closed form because almost all tests
have been developed for the two-sided scenario Be0. In addition, the computation of Br0 is made difficult by the fact that the
prior and posterior distributions under model Mr are bounded at 0 and therefore may not be members of familiar families
of distributions. Hence, the calculation of p(y | Mr) can be a non-trivial task that appears to require general procedures such
as reversible jump Markov chain Monte Carlo (Green, 1995) that applied researchers may find challenging to implement.

However, Pericchi et al. (2008) proposed a general and simple solution to the computation of the one-sided Bayes factor
Br0, avoiding the need for integration over the parameter space when the two-sided Bayes factor Be0 is already in hand.
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Theorem 1. Let L be

L =


2 K = 1
K ! K > 1.

Then

Br0 = Lp(δ ∈ R | y, Me)Be0.

Proof of Theorem 1. There are L specific order-restricted hypotheses on δ. Under a proper prior p(δ) in which all orderings
on K means are equally likely, each ordering has an a priori probability of 1/L. Because the total prior probability of all
orderings is 1, the prior odds ofMr against the encompassingmodelMe are thus (1/L)/1 = 1/L. The corresponding posterior
odds are p(δ ∈ R | y, Me) (Klugkist et al., 2005). Because the Bayes factor is the ratio of the posterior odds to the prior odds,

Bre =
p(δ ∈ R | y, Me)

1/L
= Lp(δ ∈ R | y, Me).

Bayes factors are ratios of the corresponding marginal likelihoods, and thus

Br0 =
p(y | Mr)

p(y | M0)

=
p(y | Mr)

p(y | Me)
×

p(y | Me)

p(y | M0)

= BreBe0

and the result follows. �

The term Be0 is from the familiar two-sided test, and the term Bre equals the ratio between themarginal posterior and the
marginal prior mass consistent with the restriction (Klugkist et al., 2005). If Bre is not available analytically, it can be easily
obtained to any desired degree of approximation using numerical methods such as Markov chain Monte Carlo (e.g., Morey
et al., 2011).

One application of Theorem 1 is the one-sided tests that arise when K = 1. In such one-sided tests, Theorem 1 implies
that the one-sided test Br0 equals the two-sided test Be0 only when the posterior p(δ | y, Me) is symmetric around 0. In
addition, the use of a one-sided test can increase the evidence against M0 by a factor of 2 at most, which happens when
almost the entire posterior distribution is consistent with the order-restriction. When the data are inconsistent with the
sign-restriction δ > 0 this means that p(δ > 0 | y, Me) is lower than 0.5, and the use of a one-sided test increases the ev-
idence for M0. In fact, when the data are wildly inconsistent with the order-restriction it may happen that Br0 is extremely
low (indicating that M0 should be retained) and that, at the same time, Be0 is extremely high (indicating that M0 should be
rejected). This underscores the relative nature of the Bayes factor as a measure of evidence.

The relevance of order-restricted tests is particularly acute for the replication research and for clinical trials, where
compelling evidence forM0 maybe obtainedwhen the effect goes in the direction opposite towhatwas expected. The effects
becomemore pronouncedwhenmore parameters are subject to test. SupposeMe is a one-waymodel with K = 4 condition
means for which the analyst has a strong a priori commitment to the orderings of the K means, if the null hypothesis were
false. For instance, if the conditions arose from amanipulation of a single independent variable, such as dosage or difficulty,
then the analyst may wish to test the specific ordering that implies a monotone relationship. If the posterior probability
p(δ ∈ R | y, Me) in favor of the restriction is maximal, then increase in the evidence from Be0 to Br0 from properly restricting
the test will be 4! = 24, a substantial change in the evidence.

In special caseswhere the posterior probability can be easily approximated by the p value, such as in one- and two-sample
tests, the correction factor can be easily computed using the output of a standard classical analysis. In the one-sample case,
L = 2 and the correction needed to obtain the sign-restricted test equals 2× p(δ > 0 | y, Me) if the desired sign restriction
is that δ > 0. Exploiting the fact that for the test of location parameters the classical one-sided p value approximates
p(δ < 0 | y, Me) = 1 − p(δ > 0 | y, Me) (Casella and Berger, 1987; Lindley, 1965; Pratt, 1965), we obtain:

Br0 ≈


(2 − p) × Be0 if δ̂ > 0,
p × Be0 if δ̂ ≤ 0,

(1)

where p is two-sided, and δ̂ > 0 indicates that the observed effect is consistent with the sign-restriction.When δ̂ > 0, Br0 >

Be0, with a maximum of Br0 = 2 × Be0 when p → 0. When δ̂ < 0 (i.e., the observed effect goes in the opposite direction),
Br0 < Be0. In sum, (1) shows how the sign-restricted Bayes factor can be approximated by the product of two familiar terms,
one involving the two-sided p value, and one involving the two-sided Bayes factor.

The p value approximation is particularly usefulwhen the posterior probability p(δ < 0 | y, Me) is not immediately avail-
able. For instance, not allmethods of estimating Bayes factors involveMCMC chains that can be used to estimate the required
posterior probability, and even when they do the software may not report the chains. The widely-used JZS Bayes factor web
calculator (Rouder et al., 2009; http://pcl.missouri.edu/bayesfactor), for instance, does not return posterior probabilities.

http://pcl.missouri.edu/bayesfactor
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Table 1
Inference for three ESP replication attempts by Ritchie et al. (2012). DR% stands for differential recall percentage (for details see Bem, 2011); a positive DR
indicates evidence for ESP. p> stands for the one-sided p value. Bp

r0 = 2 × (1 − p>) × BJZS
e0 .

Mean DR% (SD) t p> BJZS
e0 BJZS

r0 Bp
r0

Repl. 1 (n = 50) 0.19% (12.63) 0.1100 0.4564 0.1547 0.1679 0.1682
Repl. 2 (n = 50) −2.72% (12.23) −1.5700 0.9386 0.4835 0.0640 0.0594
Repl. 3 (n = 50) −0.58% (14.27) −0.2900 0.6135 0.1601 0.1246 0.1238

With improper uniform prior distributions on the location parameters from the exponential family, the p value estimate
of the posterior probability p(δ < 0 | y, Me) is exact, see Lindley (1965), pp. 9–10, 13–15, 31–33 and Jaynes (1976), pp. 193,
199–200, 206. With non-uniform prior distributions the p value only approximates the posterior probability. It is impor-
tant to emphasize, however, that we are not suggesting the use of an improper prior on δ; the p value is merely a useful
approximation to the true posterior probability, which assumes a proper prior on δ.

The quality of the p value approximation depends on the data, the extent to which the prior distribution is non-uniform,
and the number of observations. The default priors often used for Bayes factor hypothesis testing (e.g., unit-information
priors, Cauchy priors) are relatively wide and symmetric around zero; in such cases, the data quickly overwhelm the prior.
Hence, the posterior distribution is relatively robust to the prior specification (in this case, uniform priors versus default
priors for hypothesis testing) and consequently the p value approximation to the posterior probability p(δ < 0 | y, Me)will
be very good. The example below illustrates this point.

2. Example: the t test

As an example, consider three experiments on extrasensory perception (ESP) conducted by Ritchie et al. (2012). These
experiments were direct replications of an experiment by Bem (2011), in which participants were shown lists of words for
later recall. Critically, some of the words from the study list were also presented after the test phase. According to Bem
(2011), people can look into the future and take advantage of these additional post-test presentations to boost their recall
performance. Hence, the crucial statistical analysis involves a t test between the control words, presented only during the
study phase, and the post-test words, presented both during the study phase and also later, following the test phase.

Table 1 shows the results. Recall performance was quantified by differential recall percentage (DR; for details see Bem,
2011); a positive DR indicates evidence for ESP. Rouder et al. (2009) suggest a Bayes factor for one-sample designs, based on
the g prior setting of Liang et al. (2008). UnderM0, the t statistic has a Student t distribution with N −1 degrees of freedom:

M0 : t ∼ Student tN−1.

Under the alternative Me, t has a noncentral t distribution:

Me : t ∼ Noncentral tN−1(δ
√
N)

where δ is the standardized effect size δ = µ/σ and thus δ
√
N is the noncentrality parameter. A scaled Cauchy prior distri-

bution is placed on the effect size δ:

δ ∼ Cauchy(r)

where r is the scale parameter. Model M0 is thus a restriction of Me in which δ = 0. Rouder et al. (2009) dub the resulting
Bayes factor, the JZS Bayes factor, after Jeffreys (1961) and Zellner and Siow (1980). The two-sided Bayes factor BJZS

e0 , calcu-
lated using the R package BayesFactor (using Gaussian quadrature; Morey and Rouder, 2014) and shown in the fourth
column, indicates that the evidence in each replication attempt favors the null hypothesis that δ = 0 over an unrestricted
alternative. Note that we used the BayesFactor R package’s default scale r =

√
2/2 for the Cauchy prior on δ. The evi-

dence ranges from a factor of 2 (Replication 2) to a factor of about 6.5 (Replication 1). The one-sided Bayes factor BJZS
r0 , shown

in the fifth column, is arguably more appropriate in this situation, as it more closely reflects the directional hypothesis of
retroactive facilitation of recall. The data from Replications 2 and 3, however, have the effect going slightly in the opposite
of the predicted direction; consequently, the one-sided BJZS

r0 provides more evidence for the null hypothesis than did the
two-sided BJZS

e0 . The evidence for the null hypothesis 1/Br0 now ranges from a factor of 6 (Replication 1) to a factor of about
16.6 (Replication 2). Replication 2, which provides the least evidence for the null when the alternative is unrestricted (Be0),
provides the most evidence for the null when the alternative is properly restricted (Br0).

The sixth column in the table, labeled Bp
r0, contains the one-sided JZS Bayes factors computed using the p value approx-

imation to the posterior probability p(δ < 0 | y, Me). The approximation is quite good, as expected.

3. Concluding comments

We have outlined a straightforward and general method to derive one-sided Bayes factors from their two-sided counter-
parts. We integrate three earlier contributions; first, the Bayes factor product factorization by Pericchi et al. (2008); second,
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the encompassing prior technique by Klugkist et al. (2005); and third, the work by Lindley (1965) and others, showing that
the one-sided p value closely approximates the mass of the posterior distribution on one side of zero. In the present paper,
we combined these disparate ideas to form a simple expression for a one-sided test.

The expression for the one-sided test using the two-sided p value is simple and straightforward, yet has not been pro-
posed previously. This is possibly due to the fact that the p value and Bayes factor are often seen as competitors: the p value
as a classical measure of the evidence against M0, and the Bayes factor as the Bayesian measure of the relative evidence for
M0 compared to an alternative M1. Those who find the p value useful generally do not report Bayes factors, and those who
report Bayes factors have no use for p values (but see Berger, 2003). Thanks to the interpretation of the p value as a poste-
rior probability, however, the two can be combined into a single, easy-to-compute measure of evidence for order-restricted
hypotheses.

The present approach to calculate one-sided Bayes factors is very general. For instance, it also applies to a comparison
of nonnested models, such as when we already have a Bayes factor between models Mα and Mβ , but we seek a Bayes
factor between models Mα and a version of Mβ in which one or more parameters are subject to order-restrictions. More
importantly, the approach allows immediate one-sided extensions for model comparison methods such as BIC (Raftery,
1995; Schwarz, 1978), fractional Bayes factors (O’Hagan, 1995), intrinsic Bayes factors (Berger and Pericchi, 1996; Berger
and Mortera, 1999), and Bayes factors calculated from test statistics (Johnson, 2005). The correction for order-restrictions
through 2×p(δ > 0 | y, Me)may even prove useful for model comparisonmethods such as AIC and DIC that are not related
to the Bayes factor. Note that the correction factor for the addition of order-restrictions is based on the posterior distribution;
changes to the prior distributions that do not substantially affect the posterior distribution will also not substantially affect
the correction factor. The ease with which the correction factor suggested here can be used to obtain one-sided model
comparison statistics will hopefully encourage practical researchers to test statistical models that more accurately reflect
substantive theories about the processes under investigation.

Finally, a note of caution. Bayes factors quantify only relative model adequacy; when the Bayes factor strongly supports
the inclusion of a predictor in a regression model, for instance, this does not mean that this model can be relied on to
provide a satisfactory fit to the data. In order to draw valid conclusions from a model it is important to assess both relative
and absolute model adequacy (Morey et al., 2013).

Acknowledgments

Wewish to thank the action editor and an anonymous referee for their helpful comments during the review process. The
R code for the examples can be found at http://drsmorey.org/oneSidedBF/. This research was supported by a consolidator
grant from the European Research Council (ERC) Grant number: 283876.

References

Bem, D.J., 2011. Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. J. Personality Soc. Psychol. 100,
407–425.

Berger, J.O., 2003. Could Fisher, Jeffreys and Neyman have agreed on testing? Statist. Sci. 18, 1–32.
Berger, J.O., Mortera, J., 1999. Default Bayes factors for nonnested hypothesis testing. J. Amer. Statist. Assoc. 94, 542–554.
Berger, J.O., Pericchi, L.R., 1996. The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91, 109–122.
Casella, G., Berger, R.L., 1987. Reconciling Bayesian and frequentist evidence in the one–sided testing problem. J. Amer. Statist. Assoc. 82, 106–111.
Green, P.J., 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.
Jaynes, E.T., 1976. Confidence intervals vs Bayesian intervals. In: Harper, W.L., Hooker, C.A. (Eds.), Foundations of Probability Theory, Statistical Inference,

and Statistical Theories of Science, vol. II. D. Reidel Publishing Company, Dordrecht, Holland, pp. 175–257.
Jeffreys, H., 1961. Theory of Probability, third ed.. Oxford University Press, New York.
Johnson, V.E., 2005. Bayes factors based on test statistics. J. R. Statist. Soc., Ser. B 67, 689–701.
Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Amer. Statist. Assoc. 90, 773–795.
Klugkist, I., Laudy, O., Hoijtink, H., 2005. Inequality constrained analysis of variance: a Bayesian approach. Psychol. Methods 10, 477–493.
Liang, F., Paulo, R., Molina, G., Clyde, M.A., Berger, J.O., 2008. Mixtures of g-priors for Bayesian variable selection. J. Amer. Statist. Assoc. 103, 410–423.

http://pubs.amstat.org/doi/pdf/10.1198/016214507000001337.
Lindley, D.V., 1965. Introduction to Probability & Statistics from a Bayesian Viewpoint. Part 2. Inference. Cambridge University Press, Cambridge.
Morey, R.D., Romeijn, J.-W., Rouder, J.N., 2013. The humble Bayesian: model checking from a fully Bayesian perspective. British J. Math. Statist. Psych. 66,

68–75. http://dx.doi.org/10.1111/j.2044-8317.2012.02067.x.
Morey, R.D., Rouder, J.N., 2014. BayesFactor 0.9.6. Comprehensive R Archive Network. http://cran.r-project.org/web/packages/BayesFactor/index.html.
Morey, R.D., Rouder, J.N., Pratte, M.S., Speckman, P.L., 2011. Using MCMC chain outputs to efficiently estimate Bayes factors. J. Math. Psychol. 55, 368–378.
O’Hagan, A., 1995. Fractional Bayes factors for model comparison. J. R. Stat. Soc. B 57, 99–138.
Pericchi, L.R., Liu, G., Torres, D., 2008. Objective Bayes factors for informative hypotheses: ‘‘completing’’ the informative hypothesis and ‘‘splitting’’ the

Bayes factor. In: Hoijtink, H., Klugkist, I., Boelen, P.A. (Eds.), Bayesian Evaluation of Informative Hypotheses. Springer Verlag, New York, pp. 131–154.
Pratt, J.W., 1965. Bayesian interpretation of standard inference statements. J. R. Statist. Soc. Ser. B 27, 169–203.
Raftery, A.E., 1995. Bayesian model selection in social research. In: Marsden, P.V. (Ed.), Sociological Methodology. Blackwells, Cambridge, pp. 111–196.
Ritchie, S.J., Wiseman, R., French, C.C., 2012. Failing the future: three unsuccessful attempts to replicate Bem’s ‘retroactive facilitation of recall’ effect. PLoS

ONE 7, e33423.
Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G., 2009. Bayesian t-tests for accepting and rejecting the null hypothesis. Psychon. Bull. & Rev.

16, 225–237. http://dx.doi.org/10.3758/PBR.16.2.225.
Schwarz, G., 1978. Estimating the dimension of a model. Ann. Statist. 6, 461–464.
Zellner, A., Siow, A., 1980. Posterior odds ratios for selected regression hypotheses. In: Bernardo, J.M., DeGroot, M.H., Lindley D.V., Smith A.F.M. (Eds.),

Bayesian Statistics: Proceedings of the First International Meeting held in Valencia (Spain), University of Valencia, pp. 585–603.

http://drsmorey.org/oneSidedBF/
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref1
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref2
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref3
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref4
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref5
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref6
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref7
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref8
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref9
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref10
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref11
http://pubs.amstat.org/doi/pdf/10.1198/016214507000001337
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref13
http://dx.doi.org/10.1111/j.2044-8317.2012.02067.x
http://cran.r-project.org/web/packages/BayesFactor/index.html
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref16
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref17
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref18
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref19
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref20
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref21
http://dx.doi.org/10.3758/PBR.16.2.225
http://refhub.elsevier.com/S0167-7152(14)00186-2/sbref23

	Simple relation between Bayesian order-restricted and point-null hypothesis tests
	Introduction
	Example: the  t  test
	Concluding comments
	Acknowledgments
	References


