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Abstract Research in perceptual decision making is domi-
nated by paradigms that tap the visual system, such as the
random-dot motion (RDM) paradigm. In this study, we
investigated whether the behavioral signature of perceptual
decisions in the auditory domain is similar to those observed
in the visual domain. We developed an auditory version of
the RDM task, in which tones correspond to dots and pitch
corresponds to motion (the random-tone pitch task, RTP). In
this task, participants have to decide quickly whether the
pitch of a “sound cloud” of tones is moving up or down.
Stimulus strength and speed–accuracy trade-off were ma-
nipulated. To describe the relationship between stimulus
strength and performance, we fitted the proportional-rate
diffusion model to the data. The results showed a close
coupling between stimulus strength and the speed and accu-
racy of perceptual decisions in both tasks. Additionally, we
fitted the full drift diffusion model (DDM) to the data and
showed that three of the four participants had similar speed–
accuracy trade-offs in both tasks. However, for the RTP task,
drift rates were larger and nondecision times slower,
suggesting that some DDM parameters might be dependent
on stimulus modality (drift rate and nondecision time), where-
as others might not be (decision bound). The results illustrate
that the RTP task is suitable for investigating the dynamics of
auditory perceptual choices. Future studies using the task

might help to investigate modality-specific effects on decision
making at both the behavioral and neuronal levels.

Keywords Perceptual decision making . Random-dot
motion task . Random-tone pitch task . Response time
models . Auditory

The field of perceptual decision making investigates how
decisions are made on the basis of noisy sensory informa-
tion (see Summerfield & Tsetsos, 2012, for a review). When
people make perceptual decisions, it is generally assumed
that sensory evidence for each of the alternatives is collected
until a boundary is reached and a course of action is chosen.
Typically, experiments designed to study perceptual deci-
sion making involve a two-alternative forced choice para-
digm. A popular example of such a paradigm is the random-
dot motion (RDM) task (e.g., Britten, Shadlen, Newsome, &
Movshon, 1992; Forstmann et al., 2008; Gold, 2003; Gold
& Shadlen, 2000; Hanks, Ditterich, & Shadlen, 2006;
Heekeren, Marrett, Ruff, Bandettini, & Ungerleider, 2006;
Morgan & Ward, 1980; Mulder et al., 2010; Mulder,
Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012;
Newsome & Paré, 1988; Palmer, Huk, & Shadlen, 2005;
Roitman & Shadlen, 2002; van Ravenzwaaij, Mulder,
Tuerlinckx, & Wagenmakers, 2012; Watamaniuk &
Sekuler, 1992). In this task, participants have to decide as
quickly and accurately as possible whether a “cloud” of dots
appear to move to the left or the right. The paradigm has
proven to be extremely useful for the study of perceptual
decisions, since manipulations of the decision process can
be implemented easily. For example, difficulty can be ma-
nipulated on a continuous scale by simply changing the
number of coherently moving dots (e.g., Palmer et al.,
2005). Another example involves a manipulation of the time
period in which the participant is allowed to decide. Such a
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manipulation is associated with the typical signatures of
changes in the response time (RT) and accuracy of the per-
ceptual choice: By stressing the importance of speed, choices
will be faster, but more prone to errors (a speed–accuracy
trade-off; e.g., Forstmann et al., 2008; Palmer et al., 2005).

Sequential-sampling models can describe the underlying
mechanism of the decision process. These models, including
the drift diffusion model (DDM; Ratcliff, 1978), are based
on the assumption that noisy sensory evidence accumulates
until a boundary is reached (Fig. 1A; for reviews, see
Bogacz, 2007; Gold & Shadlen, 2007; Ratcliff & McKoon,
2008; Wagenmakers, 2009). The model permits data to be
decomposed into parameters that map onto latent psycho-
logical processes. For example, the rate of evidence accu-
mulation (drift rate) depends on the quality of the stimulus
and reflects the difficulty of a choice, whereas the boundary
separation reflects the trade-off between the speed and accu-
racy of the perceptual decision. Furthermore, the DDM has
proven to be neurobiologically plausible, as studies with hu-
man and nonhuman primates have shown neural correlates of
the different components of the model (see Gold & Shadlen,
2007; Heekeren, Marrett, & Ungerleider, 2008). For instance,
the firing rates of neurons in the monkey lateral intraparietal

area reflect the accumulation process prior to the actual
choice, which is initiated when the neurons reach a critical
firing rate (Gold & Shadlen, 2007).

However, research applying such a model-based ap-
proach seems to be dominated by tasks that tap the visual
system. Although some studies have investigated perceptual
decision processes in other domains as well (e.g., for olfac-
tion, see Uchida & Mainen, 2003; for haptics, see Luna,
Hernandez, Brody, & Romo, 2005; Mountcastle, Steinmetz,
& Romo, 1990; Pleger et al., 2006; Preuschhof, Schubert,
Villringer, & Heekeren, 2010; van Ede, de Lange, & Maris,
2012), research on perceptual choices in the auditory domain
is relatively scarce (but see Binder, Liebenthal, Possing,
Medler, & Ward, 2004; Cudahy, 1975; De Lucia, Tzovara,
Bernasconi, Spierer, & Murray, 2012; Flanagan & Saslow,
1958; Harris, 1952; Klatt, 1973; Russ, Orr, & Cohen, 2008).

In this study, we developed an auditory random-tone
pitch (RTP) task to investigate the behavioral signature of
auditory perceptual choices. In this task, participants were
asked to decide whether a mixture of randomly changing
tones moved up or down a pitch scale.

Our main goal was to develop an auditory version of the
RDM paradigm that would allow for flexible adaptation of
stimulus strength on a continuous scale. As such, the psy-
chophysical features of the auditory stimulus were closely
related to those used in the RDM task. In addition, we
applied a speed manipulation to illustrate how the task could
be used to study changes in the decision process that might
or might not be modality specific. The results of the auditory
RTP task will be described with respect to performance on
the visual RDM task. To this end, we fitted two versions of
the DDM to the behavioral data. First, we fitted the
proportional-rate diffusion model (Palmer et al., 2005) to
the data, to show that the descriptive results (mean RT and
accuracy) could be described by a model that has strong
theoretical restrictions. Second, we fitted the full DDM
(Ratcliff, 1978) to the data and measured the effect of the
experimental conditions on the model parameters.

For both tasks, we expected participants to show a smaller
boundary separation in the speed than in the accuracy condi-
tion (i.e., a speed–accuracy trade-off). Furthermore, we
expected higher drift rates for easier stimuli. In addition, we
explored the extent to which task modality moderates the
speed–accuracy trade-off and the effects of stimulus difficulty.

Method

Procedure

Four of the authors [MK, WB, LM and MM.; mean (SD) age
= 29.5 (6.8) years] participated in the experiment. All four
participants had already undergone substantial training in both
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Fig. 1 Model and tasks. (A) The drift diffusion model assumes that
noisy information is accumulated until a boundary is reached (a). Drift
rate (v) reflects the quality of the sensory evidence, and nondecision
time (Ter) reflects the time other than the decision time (e.g., processing
of sensory information and/or execution of a motor response). (B) The
classic version of the random-dot motion (RDM) task, in which
participants have to decide whether a cloud of dots appears to move
to the left or to the right. (C) The auditory random-tone pitch (RTP)
task, in which participants have to decide whether a sound cloud of
random tones moves up or down a pitch scale
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paradigms, minimizing contamination from practice effects.
In the RDM paradigm, the participants were asked to indicate
the direction of motion of a cloud of randomly moving white
dots on a black background (Fig. 1B). In the RTP paradigm,
they were asked to indicate the direction of a “sound cloud” of
random tones on a pitch scale (Fig. 1C). All four participants
had an additional session of ∼1 h of practice on both tasks
before participating in the experiment.

In both the RDM and RTP tasks, both difficulty and
speed–accuracy trade-off (SAT) were manipulated.
Difficulty was manipulated by changing the quality of the
perceptual stimulus. For the RDM task, this was done by
manipulating the number of coherently moving dots. For the
RTP task, this was done by manipulating the number of
coherently changing tones on a pitch scale. For both tasks,
we used six levels of difficulty, represented by six levels of
coherence (0 %, 5 %, 10 %, 20 %, 40 %, and 80 %). For the
SAT manipulation, each participant performed three blocks
of each task in which they were instructed to be as accurate
as possible. To determine a participant-specific time limit,
we fitted the proportional-rate diffusion model to the data of
the accuracy session and estimated the halfway time
threshold from the chronometric curve (predicted by the
proportional-rate diffusion model; Palmer et al., 2005).
This threshold was then used as a time limit in the following
speed session (three blocks). Across all sessions, the partici-
pants received one point for each correct choice. No points
were given for incorrect choices. In the speed session, the
feedback “too slow” was given when a response exceeded the
time limit. In the auditory version, the participants additionally
received a buzz sound. In each block, the participants
performed 600 trials for eachmodality (100 trials per difficulty
level), resulting in 1,800 trials for the accuracy condition and
1,800 trials for the speed condition (the total number of trials
was 7,200, which lasted about 5 h). The order of the modalities
was interleaved within sessions (i.e., a block of one modality
was followed by a block of the other modality) and
counterbalanced across participants (i.e., for two participants,
the session started with an auditory block, whereas for the
other two participants, the session started with a visual block).

Apparatus

Visual and auditory stimuli were generated on a personal com-
puter (Intel Core 2 Quad 2.66-GHz processor, 3 GB RAM,
running MS Windows XP SP3) using the Psychophysics
Toolbox, version 3.0.8 (Brainard, 1997; Pelli, 1997) for
MATLAB (version 2007b; MathWorks, Natick, MA).

Visual stimuli

In the RDM paradigm, participants were asked to decide
whether a cloud of white dots on a black background appeared

to move to the left or the right. Responses were given by
pressing a left (the letter “Z”) or right (the letter “M”) key on
a keyboard. Themotion stimuli were similar to those described
elsewhere (e.g., Gold & Shadlen, 2000; Mulder et al., 2010;
Mulder et al., 2012; Palmer et al., 2005) and were created by
changing the locations of dots at each successive video frame
(monitor refresh rate = 60 Hz, resulting in 16.7 ms per frame).
On the first three frames of the motion stimulus, dots were
located in random positions. For each of these frames, the dots
were repositioned after two subsequent frames (i.e., the dots in
Frame 1 were repositioned in Frame 4, the dots in Frame 2
were repositioned in Frame 5, etc.). For each dot, the new
location was either random or at a fixed distance from its
former location, in the current direction of themotion stimulus.
The probability that a dot would move in line with the motion
direction was defined as the coherence (see also Britten et al.,
1992; Gold & Shadlen, 2003; Palmer et al., 2005).

Auditory stimuli

In the RTP paradigm, participants were asked to decide the
direction of a “sound cloud” of random tones moving up or
down a pitch scale. Responses were given by pressing a left
key (the letter “Z”) for “up” or a right key (the letter “M”)
for “down” on a keyboard. To keep the psychophysical
features of the stimuli similar to their visual counterparts,
we used the locations of the moving dots to calculate the
locations on the pitch scale: The x position of each dot was
translated to a location on a pitch scale, and both the x and y
positions were used to determine the volume on a ramping
scale, with 0 being outside the aperture of the motion stim-
ulus and 1 in the middle (see Fig. 2). The rationale behind
using both the x and y positions to set the volume was to
mimic the circular visual border of the RDM stimulus: The
closer a dot was to the aperture, the lower the additive effect
it had on the stimulus. At the first, and at each subsequent
third frame, the different tones were added together and
played for a duration of three frames (∼50 ms). The resulting
“sound cloud” was a set of bleeps that either increased or
decreased in pitch. The stimulus strength again depended on
coherence—the probability that a tone moved coherently
with the pitch direction (see Fig. 2; for examples, go to
http://martijnmulder.wordpress.com/stuff/). For each tone,
the pitch frequency could vary between 261.63 and
16744 Hz (which is equal to the audio frequency range
between C4 and C10). Each successive step on the x-axis
resulted in an auditory change of 200 cents, which is equal to a
whole tone on a musical scale (C4, D4, E4, F#4 . . . C10).

Behavioral analyses

First, we fitted the proportional-rate diffusion model
(Palmer et al., 2005) to the mean RT and accuracy data for
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each task separately. This model has strong theoretically
motivated constraints and is able to adequately describe
the relationship between coherence and behavioral perfor-
mance on a continuous scale. The proportional-rate model
predicts (1) a close coupling between mean RT, accuracy,
and stimulus strength; (2) a linear scaling between stimulus
strength and mean drift rate; and (3) equal RTs for correct
and incorrect choices (Palmer et al., 2005). These restric-
tions result in a model that is less complex than the full
DDM, while showing an intuitive relationship between
stimulus strength and performance. Psychometric and chro-
nometric functions of stimulus strength were fitted to the
mean RT and accuracy data using a maximum likelihood
procedure (see Palmer et al., 2005, for details).

Additionally, we used the DMAT toolbox to fit the full
DDM to the data, in order to obtain parameter values for
each condition separately, without the theoretical restrictions

of the proportional-rate diffusion model. The full DDM
consists of seven parameters: three for the decision process
(i.e., boundary separation a, mean starting point z, and mean
drift rate v), a parameter for nondecision processes (i.e.,
nondecision time Ter), and three parameters for across-trial
variability (i.e., variability in starting point sz, variability in
nondecision time st, and variability in stimulus quality η;
Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff &
Tuerlinckx, 2002). The DDM assumes that sensory evi-
dence in favor of one or the other alternative starts to
accumulate at a drift rate v from a starting point z, until a
boundary is reached. We assume that the effects of difficulty
(i.e., the stimulus quality or coherence) are reflected by
changes in the drift rate v, whereas the speed–accuracy
trade-off is controlled by the height of the boundary separation
a. However, the nondecision time Ter might be affected
by the speed manipulation as well (Mulder et al., 2010;
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Fig. 2 The psychophysical
features of the auditory stimuli
were kept similar to those of the
visual stimuli. For each visual
stimulus, and each moving dot,
the position on the horizontal
axis (x) was translated to a
position on a pitch scale. In
addition, both the x and y
positions were used to
determine the volume for each
tone. This resulted in a “sound
cloud” of tones that moved
coherently or randomly on the
pitch scale. When dots moved
to the right, the resulting pitch
of the sound cloud went up.
When dots moved to the left,
the resulting pitch went down
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Osman et al., 2000; Rinkenauer, Osman, Ulrich, Muller-
Gethmann, & Mattes, 2004; Voss, Rothermund, & Voss,
2004). As such, when fitting the DDM to the data, we
allowed the boundary separation and nondecision time to
fluctuate across the speed and accuracy conditions, whereas
drift rate was allowed to vary across difficulty conditions. All
other parameters were held fixed across conditions.

We used the Diffusion Model Analysis Toolbox (DMAT)
to fit the DDM to the individual data (Vandekerckhove &
Tuerlinckx, 2007, 2008). For this analysis, the easiest
coherence level (80 % coherence) was discarded from the
data, because the number of incorrect trials required by
DMAT was not reached, due to a ceiling effect (see Fig. 3).

Furthermore, for each condition we excluded outlier trials, as
defined by an RT that exceeded the conditional average RT
plus three times the standard deviation. We used the DMAT
Nelder–Mead SIMPLEX optimization algorithm (Nelder &
Mead, 1965) to maximize the likelihood of observing a
proportion of responses within a given number of RT bins
(10th, 30th, 50th, 70th, and 90th percentiles). Quantile prob-
ability plots were generated in order to display the quality of
the model’s fits to the data (see Fig. 4).

Parameter permutations

To obtain confidence intervals for the DDM parameters, we
used the nonparametric bootstrap (Efron & Tibshirani,
1993). The DDM was fitted to 1,000 resampled data sets,
and the resulting histogram of best-fitting parameter values
was used to obtain confidence intervals to test specific
differences across conditions.

Results

Below, we will first describe the effects of stimulus difficulty
and SAT for both the RTP and RDM tasks. Then we will show
the results of the full-DDM analyses, comparing parameter
changes across different modalities.

Descriptive results

Fitting the proportional-rate diffusion model to the data
clearly showed a coupling between stimulus difficulty and
the speed and accuracy of perceptual choices in both the
RTP and RDM tasks (see the supplementary materials for
the parameter values). More specifically, for each partici-
pant, RTs decreased and accuracy increased as a function of
coherence (see Fig. 3). Furthermore, for both modalities we
observed decreases in accuracy and RT for all difficulty
levels when speed was stressed. This effect on accuracy
was less apparent for participant MM in the RTP task, in
whose data the accuracy levels of the speed-and-accuracy
manipulation seemed to overlap (see Fig. 3). Interestingly,
when comparing RTs between the visual and auditory tasks,
most of the participants showed slower RTs for the auditory
stimuli, reflected in the upward vertical shifts of the chro-
nometric curves in Fig. 3. In addition, for participants
LM and MM, the upper bounds of the psychometric curves
of the auditory task did not reach an accuracy level of
100 %, suggesting perhaps a larger lapse rate for the audi-
tory as opposed to the visual stimuli for these participants.
Taken together, both the RTP and RDM tasks showed a
close relationship between stimulus strength and perfor-
mance on a continuous scale. However, the observed differ-
ences in the chronometric and psychometric curves reflected
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Fig. 3 Descriptive results for each participant, with accuracy (upper
graphs) and response time (RT, lower graphs) as functions of stimulus
strength (% coherence). Data points are shown for the speed (open) and
accuracy (closed) conditions in the auditory (left panels) and visual
(right panels) tasks. The continuous lines represent predictions of the
proportional-rate diffusion model showing psychometric curves (upper
panels) and chronometric curves (lower panels). Error bars represent
SEMs. For the parameter values, see Tables S1, S2, and S3 in the
supplementary materials
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subtle differences in RTs and accuracy between the two
tasks. To elaborate these findings, we fitted the full DDM
to the data and investigated the differences in the underlying
decision parameters between the auditory and visual task
domains.

DDM fits

For each experimental modality (visual vs. auditory), the
proportions of correct choices and the RT distributions are
presented in quantile probability plots for the speed and
accuracy conditions separately (Ratcliff & McKoon, 2008;
see Fig. 4). These plots show the empirical data together
with the quantile probability functions that indicate the fit
from the diffusion model. Overall, the quantile probability
functions adequately describe the data. However, the

functions do deviate from the data at some points.
Specifically, the fits are worse for the higher quantiles in
the accuracy sessions (see participants WB and MM). This
is possibly due to the relatively low number of incorrect
trials for these sessions. The misfit was most apparent for
participant WB, for whom the model deviated from the data
for most quantiles in the accuracy session. A possible ex-
planation for this deviation might be that the RTs were
somewhat unusually long for the visual accuracy trials
(see Fig. 3).

DDM parameters

Fitting the DDM to the data revealed that, for both tasks,
manipulations of the speed–accuracy trade-off affected both
boundary separation and nondecision time (see Fig. 5 and
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axis, representing response probabilities. Overall, the quantile proba-
bility functions sufficiently describe the data. Fits are worse for the
higher quantiles in the accuracy sessions, possibly due to the lower
number of incorrect trials for the accuracy sessions. This effect was
most apparent for participant WB, for whom the model deviated from
the data for most quantiles in the accuracy session
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Tables 1 and 2). For three of the four participants (MK,
LM, and MM), the change in the speed–accuracy trade-off
(typically measured as the decrease in boundary separation
from the accuracy to the speed sessions) does not differ

between modalities (see Fig. 6 for results and bootstrap
estimates of the 95 % confidence intervals). For nondecision
time (Ter), we found an effect of speed stress as well,
showing shorter nondecision times for the speed sessions
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Table 1 Drift diffusion model parameters (with 95 % confidence intervals) for the auditory stimuli in each participant

MK WB LM MM

Boundary Separation (a)

Accuracy .099 (.093–.105) .203 (.196–.216) .124 (.120–.133) .092 (.089–.101)

Speed .056 (.051–.061) .081 (.075–.087) .058 (.051–.061) .059 (.057–.067)

Nondecision Time (Ter)

Accuracy .510 (.501–.528) .835 (.785–.881) .393 (.373–.405) .715 (.697–.726)

Speed .427 (.412–.437) .596 (.574–.622) .411 (.402–.426) .548 (.532–.556)

Drift Rate (v)

0 % coherence .004 (−.026 to .033) –.012 (−.027 to .002) –.003 (−.021 to .016) –.002 (−.034 to .032)

5 % coherence .108 (.077–.145) .037 (.024–.052) .055 (.035–.078) .135 (.096–.177)

10 % coherence .213 (.174–.267) .081 (.066–.098) .119 (.095–.147) .247 (.202–.306)

20 % coherence .319 (.268–.395) .179 (.158–.204) .216 (.181–.264) .398 (.328–.479)

40 % coherence .401 (.342–.504) .226 (.198–.263) .275 (.234–.332) .495 (.413–.596)
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(see Fig. 5 and Tables 1 and 2). In addition, we found a
difference between the visual and auditory modalities, with
longer nondecision times for the auditory task (Fig. 6). Finally,
for both tasks we found an effect of difficulty on drift rates,
with larger drift rates for trials with higher coherence.
However, for three of the four participants (MK, WB, and
LM), the drift rates were higher for visual than for auditory
stimuli, especially when stimulus strength increased (see
Figs. 3 and 5). These results suggest that for these participants,
the quality of the sensory evidence was lower for easy auditory
than for easy visual stimuli, possibly reflecting an individual
difference in modality-specific processing.

Discussion

Research in perceptual decision making is dominated by
paradigms that tap the visual system. Here, we investigated

whether the behavioral signature of perceptual decisions in
the auditory domain is similar to those observed in the
visual domain. We developed an auditory version of the
RDM task, in which tones correspond to dots and pitch
corresponds to motion (the random-tone pitch task, RTP)
and manipulated stimulus difficulty and speed–accuracy
trade-off. We showed that the relationship between stimulus
strength and performance on the RTP task followed a
pattern similar to the one observed for the RDM task. By
fitting the full drift diffusion model to the data, we showed
that the effects of modality mainly affected drift rate and
nondecision time, with lower drift rates and longer
nondecision times for the auditory task. In contrast, bound-
ary separation seems to be less sensitive to modality-specific
effects, as shown by the similar boundary separation values
across both tasks for three of the four participants. Similar
results were found for the proportional-rate model parameter
values (see Table S3 in the supplementary materials). These

Table 2 Drift diffusion model parameters (with 95 % confidence intervals) for the visual stimuli in each participant

MK WB LM MM

Boundary Separation (a)

Accuracy .097 (.091–.104) .255 (.247–.268) .125 (.121–.135) .087 (.083–.094)

Speed .057 (.053–.061) .091 (.088–.096) .064 (.062–.069) .054 (.050–.060)

Nondecision Time (Ter)

Accuracy .363 (.356–.371) .268 (.253–.280) .329 (.318–.339) .435 (.425–.446)

Speed .335 (.328–.340) .349 (.338–.355) .342 (.332–.346) .342 (.334–.348)

Drift Rate (v)

0 % coherence –.009 (−.038 to .020) .005 (−.005 to .015) –.003 (−.022 to .014) –.019 (−.057 to .012)

5 % coherence .153 (.118–.188) .071 (.058–.085) .095 (.072–.123) .123 (.092–.160)

10 % coherence .297 (.235–.348) .131 (.116–.146) .190 (.161–.227) .234 (.189–.282)

20 % coherence .461 (.393–.542) .307 (.281–.330) .326 (.291–.392) .388 (.336–.464)

40 % coherence .762 (.655–.868) .489 (.455–.530) .491 (.437–.564) .601 (.506–.688)
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Fig. 6 Differences in
speed–accuracy trade-offs
(SAT), nondecision times, and
drift rates between the visual
and auditory tasks. Error bars
represent bootstrap 95 %
confidence intervals
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results might indicate that some components of the decision
process might be inherent to the participant rather than
the task.

Remarkably, the boundary separations for participant
WB in the accuracy conditions were much higher than
those for the other three participants. One explanation might
be that participant W.B. was overly cautious (e.g., Bogacz,
Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Forstmann
et al., 2008; Ratcliff & McKoon, 2008; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008). Indeed, this participant
reported that he focused specifically on performing accurately,
and therefore was deliberately very cautious. This explanation
is in line with the RTs for the accuracy session, which were
relatively slow, as compared also to those from other studies
using the RDM task (Forstmann et al., 2008; Mulder et al.,
2010; Mulder et al., 2012; Palmer et al., 2005; Ratcliff &
McKoon, 2008; van Maanen, Grasman, Forstmann, Keuken,
et al., 2012a; van Maanen, Grasman, Forstmann, &
Wagenmakers, 2012b).

In contrast to boundary separation, drift rate and
nondecision time showed considerable variability across
participants and modalities. Overall, we found that easy
auditory stimuli had lower drift rates than did easy visual
stimuli (see Fig. 6). Typically, drift rate reflects the speed of
the accumulation process, and therefore indicates the quality
of the sensory evidence. Hence, the drift rates suggest that
the RTP task is more difficult than the RDM task. This
assertion is confirmed by an inspection of the behavioral
results. Accuracy levels for the easy trials (20 % and 40 %
coherence) were higher for the visual than for the auditory
task (note that the 80 %-coherence trials were discarded
from the DDM analyses, as participants made very few
incorrect choices for this stimulus strength). Furthermore,
RTs seem to be longer for the auditory than for the visual
modality. Together, these results strongly suggest that the
discrimination between auditory stimuli was harder than the
discrimination between visual stimuli. One explanation of
the differences in auditory performance across participants
might be that they could have different experiences within
the auditory domain, such as musical development (Foster
& Zatorre, 2010; Kishon-Rabin, Amir, Vexler, & Zaltz,
2001; Micheyl, Delhommeau, Perrot, & Oxenham, 2006;
Schön, Magne, & Besson, 2004; Spiegel & Watson, 1984;
Tervaniemi, Just, Koelsch, Widmann, & Schröger, 2005).
Musical experience might enhance the processing of the
auditory stimuli used in the RTP task, which in turn could
increase drift rate.

In addition to drift rate, effects of nondecision time can
account for modality-specific differences in RTs as well. As
is shown in Fig. 6, three of the four participants had longer
nondecision times for the auditory than for the visual deci-
sions. Typically, nondecision time is associated with sensory-
encoding and/or motor processes (Ratcliff & McKoon, 2008;

Vandekerckhove & Tuerlinckx, 2008; Voss et al., 2004;
Zylberberg, Ouellette, Sigman, & Roelfsema, 2012).
However, it has been shown that the encoding of audi-
tory information is usually faster than the encoding of
visual information (Brebner & Welford, 1980; Green &
Vongierke, 1984). This suggests that the difference in
nondecision times may be due primarily to effects at the
motor level. One explanation is that the stimulus–response
mapping might be different for the auditory than for the
visual task. For the visual task, the direction of the motion
stimulus is compatible with the response, resulting in pre-
paratory effects in favor of that particular response (Buetti &
Kerzel, 2008; Lien & Proctor, 2002). For the auditory task,
however, the “vertical” direction of the tones might result in
a longer RT, as the stimulus has to be associated with the
particular response first. As such, stimulus-mapping effects
might result in a delay (Zhang & Kornblum, 1998), resulting
in prolonged nondecision times for auditory stimuli. In
addition to the sensory modality effect, some participants
showed effects of the speed manipulation on nondecision
time, as well. Other studies have also shown effects of speed
instructions on nondecision times (Mulder et al., 2010;
Osman et al., 2000; Rinkenauer et al., 2004; Voss et al.,
2004), suggesting effects of speed instructions on (pre)
motor processes that occur after the decision process
(Rinkenauer et al., 2004).

Taken together, the differences in drift rates and
nondecision times between the two tasks suggest that sen-
sory and motor processes are modality specific, whereas the
boundary separation might be less sensitive to the type of
information that is accumulated.

This study demonstrated how both the RTP and RDM
tasks can be used to study perceptual decision making for
different sensory modalities. Furthermore, the tasks illus-
trate the convenience of using stimuli on a continuous scale.
For example, by fitting both the psychometric and chrono-
metric functions (e.g., through the proportional-rate diffu-
sion model), one is able to interpolate participant-specific
speed and accuracy levels. This may be useful in experi-
ments in which one wants to keep task difficulty similar
across participants (e.g., Mulder et al., 2010; Mulder et al.,
2012). Instead of using a fixed level of stimulus strength,
one could interpolate the stimulus strength from the
psychometric curve for a specific performance level
(e.g., 80 % correct responses). Similarly, for a speed–
accuracy trade-off paradigm, one may choose to interpo-
late a participant-specific time limit by using the chro-
nometric curve, to make sure that the underlying effort to
speed up is similar across participants. Such experimental
controls might be particularly useful for neuroimaging
studies in which one is interested in measuring the brain
correlates of a specific decision mechanism. Furthermore,
combining the RDM with the RTP task might be
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especially useful for investigating the neural correlates of
perceptual decision making within and across different
sensory modalities.

Conclusion

We developed the RTP task, an auditory version of the
random-dot motion task to investigate the dynamics of
auditory perceptual choices on a continuous stimulus scale.
Manipulations of difficulty and the speed–accuracy trade-
off illustrated that some parameters might be independent of
stimulus modality (i.e., boundary separation), whereas
others are not (i.e., drift rate and nondecision time). Future
studies on perceptual decision making using the RTP
task will allow a more systematic investigation of these
modality-specific effects on both the behavioral and
neuronal levels.
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