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THEORETICAL NOTE

Optimal Decision Making in Neural Inhibition Models

Don van Ravenzwaaij, Han L. J. van der Maas, and Eric-Jan Wagenmakers
University of Amsterdam

In their influential Psychological Review article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006)
discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors
showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the
feedforward inhibition model (FFI), can mimic the DDM and accomplish optimal decision making. Here
we show that these conclusions depend on how the models handle negative activation values and (for
the LCA) across-trial variability in response conservativeness. Negative neural activations are undesir-
able for both neurophysiological and mathematical reasons. However, when negative activations are
truncated to 0, the equivalence to the DDM is lost. Simulations show that this concern has practical
ramifications: The DDM generally outperforms truncated versions of the LCA and the FFI, and the parameter
estimates from the neural models can no longer be mapped onto those of the DDM in a simple fashion. We
show that for both models, truncation may be avoided by assuming a baseline activity for each accumulator.
This solution allows the LCA to approximate the DDM and the FFI to be identical to the DDM.
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From the end of the 19th century until the present day, exper-
imental psychology has been dominated by the choice response
time, or choice RT, paradigm. In this paradigm, researchers seek to
draw substantive conclusions about psychological processes from
the measurement of response speed and accuracy in relatively
simple tasks. Traditionally, performance in these tasks is summa-
rized by two straightforward measures: mean RT and proportion
correct responses. While these measures are intuitively appealing,
they ignore important findings such as the shape of the RT distri-
bution and the speed—accuracy tradeoff. Also, measures such as
mean RT and proportion correct do not allow a direct estimation of
the latent psychological processes that drive performance. In an
attempt to examine the underlying psychological processes of
performance, a number of choice RT models have been developed
(Luce, 1986; Ratcliff, 1978; Townsend & Ashby, 1983).

One of the most popular choice RT models is the drift diffusion
model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008). In the
DDM, a decision process with two response alternatives is con-
ceptualized as the gradual accumulation of noisy evidence. The
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DDM has been successfully applied to a wide range of experimen-
tal paradigms and subject populations. For example, Ratcliff,
Thapar, Gomez, and McKoon (2004) applied the DDM to RT data
from a recognition memory task in order to assess the cognitive
components affected by aging. In line with earlier research, Rat-
cliff, Thapar, et al. found that older participants responded more
slowly than college-age participants. A DDM analysis revealed
that this difference in performance was due to two factors: Older
participants were relatively cautious, and they were slower in the
peripheral, nondecision component of processing (e.g., speed of
perceptual and motor processes). Importantly, the DDM analysis
showed that older participants processed information at the same
rate as did the college-age participants. This example shows how
the DDM allows researchers to draw detailed conclusions about
cognitive processes, something that is impossible from observed
data alone.

The most parsimonious version of the DDM without across-trial
variability in its parameters is a continuous version of the sequen-
tial probability ratio test (e.g., Bogacz, Brown, Moehlis, Holmes,
& Cohen, 2006; Laming, 1968; Wald & Wolfowitz, 1948). This
means that the DDM makes optimal decisions in the sense that for
a given percentage correct, the model will have the lowest asso-
ciated mean RT. Similarly, for a given mean RT, the model will
produce the highest associated percentage correct.' Thus, not only
has the DDM been shown to be useful as a tool to measure latent

! This definition is only one of many possible definitions of optimality,
a point to which we return in the Conclusion.
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cognitive processes, the existence of the model can also be moti-
vated from the perspective of optimal information processing.

The DDM is one of the most successful models in mathematical
psychology and has been applied to data many times (see the next
section for a summary). However, Usher and McClelland (2001)
argued that a biologically plausible model should feature leakage
of activation (which the DDM does not have; see also Wang,
2002); Usher and McClelland also noted that the DDM does not
easily extend to decision problems with more than two alterna-
tives. In a biologically plausible model, decisions with more than
two alternatives are accommodated by means of feedforward,
pooled, or lateral inhibition (e.g., Ditterich, 2010).

The search for a more biologically plausible model for speeded
decision making has resulted in the development of several neural
inhibition models. While neural inhibition models are similar to
the DDM in some respects (e.g., gradual integration of noisy
evidence to a threshold), they differ from the DDM in others (e.g.,
the presence of leakage and inhibition). Two prominent examples
of neural inhibition models are the leaky competing accumulator
model (LCA; Usher & McClelland, 2001) and the feedforward
inhibition model (FFI; Ditterich, 2010; Shadlen & Newsome,
2001); for models inspired by LCA or FFI, see for instance Brown
and Heathcote (2008), Ratcliff and Starns (2009), and Purcell et al.
(2010).

An important question is whether the neural inhibition models
are able, just as the DDM is, to make decisions in an optimal way.
If so, the neural inhibition models would have two desirable
properties: biological plausibility and optimality. This issue was
addressed with mathematical rigor by Bogacz et al. (2006), who
identified conditions under which the DDM and a number of
neural inhibition models are equivalent. The goal of this article is
to demonstrate when the conclusions from Bogacz et al. hold and
when they do not. Specifically, we show that model equivalence is
compromised by truncating negative neural activations to zero and
by across-trial variability in the response conservativeness. We
show in this article that the first of these complications, the
necessity of truncation, may be resolved by assuming a baseline
activity for neurons.

The outline of this article is as follows. In the first part we
introduce the DDM and the LCA. We then introduce phase planes,
a graphical method to represent data from two accumulators in a
two-dimensional plane. Bogacz et al. (2006) used phase planes to
demonstrate conditions of model equivalence. The next two sec-
tions discuss two challenges that have to be overcome before there
can be model equivalence between the DDM and the LCA. The
first challenge concerns the potential for negative activations in the
LCA. The second challenge is that the LCA (but not the DDM)
allows response conservativeness to vary over trials. We then
present two different sets of simulations that show how both the
LCA with truncation and the LCA without truncation perform
differently from the DDM in practice.

In the second part of this article, we introduce the FFI and the
model equivalence solution between the DDM and the FFI as
presented by Bogacz et al. (2006). This solution is also challenged
by the existence of negative neural activations. We then present
simulations that show that the truncated FFI performs differently
from the DDM, whereas the nontruncated FFI performs identically
to the DDM.

In the third part of this article, we offer a potential solution to the
problem of truncation for both the LCA and the FFI: baseline
accumulator activity. We discuss the ramifications and plausibility
of the assumption of neural baseline firing rates. In addition, we
discuss optimality and the many ways in which this may be
defined.

The DDM

In the DDM (Ratcliff, 1978; Ratcliff & Rouder, 2000; van
Ravenzwaaij & Oberauer, 2009; Wagenmakers, 2009), a decision
process with two response alternatives is conceptualized as the
accumulation of noisy evidence over time. Evidence is represented
by a single accumulator, so that evidence in favor of one alterna-
tive is evidence against the other alternative. A response is initiated
when the accumulated evidence reaches one of two predefined
thresholds. For instance, in a lexical decision task, participants
have to decide whether a letter string is an English word, such as
TANGO, or a nonword, such as TANAG (Figure 1).

The model assumes that the decision process starts at the start-
ing point z, from which point evidence is accumulated with a
signal-to-noise ratio that is governed by drift rate v and Wiener
noise. Without trial-to-trial variability in drift rate, the change in
evidence x is described by the following stochastic differential
equation:

dx(t)y=v - dt+ s - dW(1), €))

where W represents the Wiener noise process (i.e., idealized
Brownian motion). Parameter s represents the standard deviation
of dW(z). Values of v near zero produce long RTs and high error
rates.

Evidence accumulation stops and a decision is initiated once the
accumulator hits one of two response boundaries. The difference
between these boundaries, boundary separation a, determines the
speed—accuracy tradeoff; lowering a leads to faster RTs at the cost
of a higher error rate. The starting point, z, is usually fixed at a/2,
which indicates no a priori bias in the decision process. Together,
these parameters generate a distribution of decision times (DTs).
The observed RT, however, also consists of stimulus-nonspecific
components such as response preparation and motor execution,
which together make up nondecision time 7,,. The model assumes
that 7, simply shifts the distribution of DT, such that RT = DT +
T,, (Luce, 1986).

Thus, the four key parameters of the DDM are (a) speed of
information processing, quantified by drift rate v; (b) response
caution, quantified by boundary separation a; (c) a priori bias,
quantified by starting point z; and (d) nondecision time, quantified
by 7,,. In addition to these four parameters, the full DDM also
includes parameters that specify across-trial variability in drift rate,
starting point, and nondecision time (Ratcliff & Tuerlinckx, 2002),
but our analytical work involves the simpler four-parameter ver-
sion.

Both the optimal and the full DDMs have been successfully
applied to a number of experimental paradigms, including percep-
tual discrimination, letter identification, lexical decision, recogni-
tion memory, signal detection, preference, and decision making.
Applications for the optimal DDM include the following: Kamien-
kowski, Pashler, Dehaene, and Sigman (2011); Schmiedek, Lov-
dén, and Lindenberger (2009); Schmiedek, Oberauer, Wilhelm,
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The drift diffusion model and its key parameters, illustrated for a lexical decision task. Evidence

accumulation begins at starting point z, proceeds over time guided by drift rate v, but subject to random noise,
and stops when either the upper or the lower boundary is reached. Boundary separation a quantifies response
caution. The predicted response time equals the accumulation time plus the time required for nondecision
processes T, (i.e., stimulus encoding and response execution).

Sip, and Wittmann (2007); and van Ravenzwaaij, Dutilh, and
Wagenmakers (2011). Applications for the full DDM include the
following: Busemeyer and Townsend (1993); Cavanagh et al.
(2011); Klauer, Voss, Schmitz, and Teige-Mocigemba (2007);
Philiastides, Ratcliff, and Sajda (2006); Ratcliff (1978); Ratcliff,
Gomez, and McKoon (2004); Ratcliff, Hasegawa, Hasegawa,
Smith, and Segraves (2007); Ratcliff, Thapar, and McKoon
(2010); Ratcliff and van Dongen (2009); Roe, Busemeyer, and
Townsend (2001); van Ravenzwaaij, van der Maas, and Wagen-
makers (2011); Wagenmakers, Ratcliff, Gomez, and McKoon
(2008); and White, Ratcliff, Vasey, and McKoon (2010).

The LCA

The LCA (Usher & McClelland, 2001) assumes that each choice
alternative is represented by a single accumulator that collects
noisy evidence over time. A decision is made as soon as one of the
accumulators reaches a boundary Z (Figure 2).

In contrast to the DDM, both of the accumulators lose a constant
proportion of their current activation in each unit of time, so that
their growth is negatively accelerated. The proportional leakage is
a free parameter k. The accumulators for different alternatives also
inhibit each other, and the strength of inhibition is a free parameter
w.2 Thus, for a choice between two alternatives, the accumulators’
change in activation over time (cf. Bogacz et al., 2006, Equation
14) is given by

dx,(t) =[—k-x,(t) = w - x,(t) + I Jdt + s - dW, (1),
dxy(t) = [—k - x,(1) = w - x,(t) + L]dt + s - dW,(), 2)

where dx, and dx, are the change in activation per unit time dt for
the two accumulators. Parameters /, and I, are the drift rates of
both accumulators. Quantities s + dW, and s + dW, are white noise

added at each time step with M = 0 and variance = §2 - dt,
analogous to the noise process of the DDM. Activation starts at
zero (i.e., x,(0) = x,(0) = 0) and in the original model, negative
values of x; and x, are truncated to zero (Usher & McClelland,
2001, p. 557).

More recently, some versions of the LCA have been fit to
empirical data. For instance, an LCA without inhibition has been
applied to data from a brightness discrimination task (Ratcliff et
al., 2007); an LCA without leakage has been applied to data from
a stop-signal task (Boucher, Palmeri, Logan, & Schall, 2007); and
the original LCA has been applied to preferential choice tasks
(Usher & McClelland, 2004).

LCA Phase Plane Analysis

In an effort to combine the optimality from the DDM with the
biological plausibility of the LCA, Bogacz et al. (2006) identified
conditions under which the LCA reduces to the DDM. To bring
about this reduction, the authors made use of phase planes (see
Figure 3).

The phase plane in Figure 3 represents the data from Figure 2.
In a phase plane, x, is plotted against x,. The time dimension is
now represented by the line, so that three dimensions are now
depicted in a two-dimensional space. With the phase plane in
place,

x, and x, can now be transformed to x} and x5 by means of the
Pythagorean theorem:

X~ X

2

xF=

2 Usher and McClelland (2001) called this parameter B, but we follow

the terminology in Bogacz et al. (2006).
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Accumulated Evidence

Non-word

Figure 2. Evidence accumulation in the leaky competing accumulator
model, illustrated for a lexical decision task. Evidence accumulation for
each response alternative begins at decision time DT = 0, proceeds over
time guided by drift rates /; and 1,, but subject to random noise, and stops
when the response threshold Z is reached. Both accumulators are subject to
decay k and mutual inhibition w.

X3 = . 3)
2 \/5

In this reparameterization, x, is proportional to the sum of the
accumulated evidence of both accumulators, whereas x| is propor-
tional to the difference. The stochastic differential equations of x|
and x5 are given by

dx¥(y) = [(w —k) - xF@) + Il_lz]dt + 5 - dWi(1),
2

I, -1,
2

where s - dW| and s - dW; are white noise added at each time step
with M = 0 and variance = s> - dt (cf. Bogacz et al., 2006,
Equations 19, 20, 21, 22).

Bogacz et al. (2006) demonstrated that the LCA process approx-
imates the DDM process if x5, which is proportional to the sum of
the accumulated evidence, rapidly approaches its asymptote,
lim ,_..x; (cf. Figure 3, the dotted line), while x], which is propor-
tional to the difference in accumulated evidence, remains approx-
imately zero. Once x5 is reached, x| moves away from zero,
ultimately yielding a response when response threshold Z is
reached. This way, the choice between the two accumulators is
determined mainly by movement along the xj-axis, that is, through
considering only the difference in activation between the two
accumulators. Bogacz et al. showed this dynamic to hold when k =
w >> 0 and input values for both accumulators are similar. Thus,
under these conditions the LCA mimics the DDM and behaves
optimally.

If the DDM and the LCA are indeed equivalent, we would have
the best of two worlds: a formal model for decision making that is
biologically plausible and yields optimal decisions. However, ex-
amination of the model equations proposed by Bogacz et al. (2006)
and the phase plane dynamics suggest two discrepancies. The first
discrepancy is that the version of the LCA used in the equations by
Bogacz et al. allows the accumulators to have negative activation

dxi(r) = [(— k—w) - x50 + ]dt +5-dWi(1), (4)

values. Negative accumulator activation is undesirable, because it
implies negative neural firing rates. However, when truncating
negative accumulator activation to zero, the derivations presented
by Bogacz et al. no longer hold.

The second discrepancy is that the model equivalence solution
of Bogacz et al. (2006) leads to between-trial variability in the
boundary separation parameter of the DDM. Although such vari-
ability may be expected in real data, it is not present in the
four-parameter DDM, or in the full DDM, compromising a strict
equality between the LCA and the DDM. In the next two sections,
we deal with each of these discrepancies in turn.

LCA Discrepancy 1: Negative Activations

The derivation of model equivalence presented in the previous
section ignored the fact that the activation of accumulators poten-
tially has to be truncated at zero. Put differently, equivalence was
demonstrated for LCA versions in which the losing accumulator is
either allowed to cross the zero boundary (i.e., have a negative
activation) or never hits the zero boundary. To illustrate the prob-
lem, consider a phase plane with a truncated accumulator, shown
in Figure 4.

In the figure it can be seen that negative activations are pre-
vented by means of reflecting boundaries along the x, and x, axes
(e.g., Zhang & Bogacz, 2010). Negative activations are unwanted
because they are biologically implausible (see also Bogacz, Usher,
Zhang, & McClelland, 2007; Usher & McClelland, 2004); activa-
tions are meant to represent a neuron’s firing rate, and this cannot
be negative.

The interpretational problems of negative activation were orig-
inally avoided by truncating activations at zero as illustrated in
Figure 4 (Grossberg, 1988; Usher & McClelland, 2001, 2004).
When truncating, however, the accumulation process is no longer
described by the dynamics of Equation 4 as soon as one of the

X2

lim x,

toe

X4

Figure 3. Phase plane of the leaky competing accumulator model
accumulators from Figure 2; accumulators x, and x, are transformed to
x| and x3.
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X2
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Figure 4. Phase plane of the leaky competing accumulator model with
reflecting lower boundaries (bold lines).

accumulators hits the lower boundary. This compromises the
model equivalence results from Bogacz et al. (2006).

Moreover, there is a qualitative difference between nontruncated
and truncated accumulation paths for the LCA, as shown in Figure
5. In the left panel, accumulators are not truncated at zero. The
winning accumulator will grow unboundedly, because the inhibi-
tion of the losing accumulator turns into excitation (i.e., negative
inhibition) when its activation is below zero. Therefore, the in-
creasing loss of activation from the winning accumulator as a
result of leakage is counteracted by an increasing gain as a result
of negative inhibition from the losing accumulator. The DDM
behaves similarly, as it allows an unbounded growth of evidence.

In the right panel, a reflecting boundary is imposed so that
accumulators are truncated at zero. When the losing accumulator is
truncated at zero, the winning accumulator will move stochasti-
cally toward an attractor, because at a certain level of activation the
loss of activation that results from leakage cancels the gain of
activation from the input.

Assuming that the system is deterministic (i.e., s = 0 in Equa-
tion 4), the attractor for the winning accumulator, lim,_... x,(?), can
be derived as follows:

1> 1=>x0)=0

dx
$7¢l= —k-x () —w-x()+ 1, = —k-x,(t) + 1,
. b
>x)=c-e +t
lim 1
> Lenl) =7 )

The dynamics are a little more complicated for s # 0, but for
typical values of s, x, continues to evolve close to the attractor line.
The first line of Equation 5 shows that for very large ¢ the losing
accumulator approaches zero. The remaining lines of the equation

show that when the losing accumulator is close to zero, the
asymptote of the winning accumulator is given by /,/k. If the LCA
response threshold Z is sufficiently higher than the value of lim,_,.,
x;, the asymptote of the winning accumulator lies below the
response threshold. It may then take a very long time before the
stochastic process causes the accumulator to hit the response
threshold. In terms of the phase planes, if Z is larger than lim,_..,
X,, the gravitation point of the accumulators lies somewhere to the
left and below the decision thresholds Z, thereby preventing
the execution of a response (cf. Bogacz et al., 2006, Figure 6a).
The dynamics are that of a system in which there is only leakage
and no inhibition, instead of a system in which the inhibition
equals the leakage.

In sum, if the losing accumulator hits the zero boundary before
the winning accumulator hits the response threshold, truncation is
necessary to prevent negative activations from occurring (see the
left panel of Figure 6). This compromises the proposed model
equivalence between the DDM and the LCA. We now introduce
the second discrepancy of model equivalence between the LCA
and the DDM.

LCA Discrepancy 2: Changing Boundaries

The second discrepancy with the model equivalence between
the LCA and the DDM as proposed by Bogacz et al. (2006) is that
an LCA response threshold that is fixed over trials may correspond
to across-trial variability in DDM boundary separation. Consider
the phase plane in Figure 7, in which the dark accumulation path
is the same as the one in Figure 3. The DDM boundary separation
a, is determined by the location on the LCA threshold Z where the
accumulator hits, as shown in Figure 7. On another trial, the
evidence accumulation may correspond to the lighter accumulation
path. This means that for this trial, the DDM boundary separation
a, is different from a,.

Across-trial variability in boundary separation is a source of
discrepancy for two reasons. The first reason is that optimal

Truncated LCA

Non-truncated LCA

z zlo
[0}
o
[ =
@
S
>
w
o
2
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é’ - DT
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(5]
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Figure 5. The effect of truncation on the dynamics of the leaky compet-
ing accumulator model (LCA). The left panel shows accumulation paths
that are not truncated at zero. This allows the winning accumulator to grow
unboundedly, as the increasing leakage is compensated by the increasing
excitation (i.e., negative inhibition) of the losing accumulator. The right
panel shows the same accumulators, now truncated at zero. The winning
accumulator grows toward an asymptote and may take a very long time to
reach the response threshold Z. DT = decision time.
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Figure 6. The two discrepancies of model equivalence between the leaky competing accumulator model and
the drift diffusion model. If the losing accumulator hits the zero boundary before the winning accumulator hits
the response threshold, the discrepancy of truncation occurs (left panel). If the losing accumulator never hits the
zero boundary, the discrepancy of across-trial variability in boundary separation occurs (right panel). Perfect
correspondence between both models happens only when the losing accumulator hits the zero boundary just as
the winning accumulator hits the response threshold (middle panel). See text for details. DT = decision time.

behavior for the DDM has been demonstrated only for situations in
which boundary separation is fixed over trials. Unpublished sim-
ulations confirmed that allowing for across-trial variability in
boundary separation increases error rate while leaving mean RT
largely intact. In other words, the DDM with across-trial variabil-
ity in boundary separation does not perform optimally.

The second reason is that a fixed across-trial LCA response
threshold corresponds to a variable DDM boundary separation.
There is no theoretical reason why such a correspondence should
exist. Thus, transforming the LCA to the DDM leads to across-trial
variability in DDM boundary separation and as such compromises
a strict equality between the LCA and the DDM.

The across-trial variability in DDM boundary separation can be
visualized as the difference in accumulated evidence between the
winning and the losing accumulators of the LCA over repeated
trials. Across-trial variability in DDM boundary separation is

X2

z

Figure 7. Phase plane of the leaky competing accumulator model (LCA),
with the drift diffusion model (DDM) boundary separation a overlaid. The
dark line is identical to the one displayed in Figure 3 and has DDM
boundary separation a,. The light line represents an accumulation path for
a different trial and has DDM boundary separation a,.

avoided if the losing accumulator has the same amount of activa-
tion on each trial at the time of a decision. In theory, optimal model
correspondence may be accomplished only if the difference be-
tween the losing accumulator and the winning accumulator is the
same on each trial at the moment when the winning accumulator
hits the response threshold on every trial (see the middle panel of
Figure 6). This situation is unlikely to occur, as both the winning
and the losing accumulators are noisy.

In sum, the model equivalence between the LCA and the DDM
as proposed by Bogacz et al. (2006) leads to a DDM boundary
separation that changes over trials (see the right panel of Figure 6).
The variable boundary separation and the issue of truncation
constitute two theoretical discrepancies between the DDM and the
LCA. However, it is quite possible that both the DDM and the
LCA show indistinguishable performance in practice. In the next
two sections, we investigate how both models fare when pitted
against each other.

LCA Simulation 1: Performance

In order to examine whether the LCA matches the optimal
performance of the DDM, we

1. analytically calculated mean decision times for sets of DDM
parameters that correspond to three different mean percentages
correct;

2. used these DDM parameters to analytically calculate the
corresponding LCA parameters for a range of values of decay and
inhibition; and

3. generated LCA data based on the calculated LCA parameters
and then compared the mean decision time and percentage correct
for both models.

The next three paragraphs discuss each of these steps in more
detail.

For the first step of this set of simulations, we calculated
boundary separation values that correspond to percentages correct
of 80%, 90%, and 95% based on drift rate v = 0.2. Practice has
shown this to be a plausible value (e.g., Matzke & Wagenmakers,
2009). For this and following simulations, we set DDM noise

3 Simulation results for v = 0.3 are shown in the section Higher Input
LCA Simulation 1 in the supplemental material.
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parameter s = 0.1. Boundary separations were calculated using the
relation a = s* X In(P/(1 — P)/v (cf. Wagenmakers, van der
Maas, & Grasman, 2007, Equation 5). The mean decision time was
then calculated using the relation MDT = a/(2v) X (1 — e~ 52)/
1+ e’"”sz) (cf. Wagenmakers et al., 2007, Equation 9).

For the second step of this set of simulations, we used the
relation I, = v X \E + I, (cf. Bogacz et al., 2006, Equation 24)
to calculate the corresponding value for the LCA inputs (we set
L, = 1). We then applied Z = [a/2 + (I, + L/(\2 X (k

+ w)l \E (cf. Bogacz et al., 2006, Equation 26) to calculate
corresponding values for the LCA threshold for a range of values
of decay parameter k and inhibition parameter w: k = w = {1, 2,
... 30}.

For the third step of this set of simulations, we generated 20,000
RT trials from the LCA with LCA parameters that correspond to
the DDM parameters. Finally, we compared the mean decision
time and the percentage correct of the DDM to the LCA. Figure 8
shows the simulation results, with the left, middle, and right panels
displaying results for DDM percentages correct of 80%, 90%, and
95%, respectively.

The top panels show that for all three levels of DDM accuracy,
the truncated LCA consistently has a higher mean decision time
than the DDM. The truncated LCA seems to have an optimum that
depends on the values of £ = w. For lower values of k = w, the
discrepancy between the truncated LCA and the DDM increases,
supporting the observation by Bogacz et al. (2006) that k = w
needs to be much larger than zero for model equivalence to hold.
For higher values of k = w, the discrepancy between the models
also increases. This occurs because higher decay and inhibition
lead to more truncation as the losing accumulator is pushed down
more strongly. For higher levels of accuracy, truncation starts to
dominate the process for relatively low values of k = w, because

DDM Pc = 80%

400
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= = Non-Truncated LCA
. DDM 800 -

600 -

400

200

DDM Pc =90%

207

the response threshold is set higher (compare the right panels to the
left panels). For the range of k = w where the truncated LCA
approximates the optimal mean decision time, the corresponding
accuracy (shown in the bottom panels) is consistently lower for all
three levels of DDM accuracy.

The nontruncated LCA performs somewhat better than the trun-
cated LCA. All panels show that for lower values of k = w,
performance of the nontruncated LCA approximates the perfor-
mance of the truncated LCA. This is expected, as no truncation
takes place for low values of k = w. The difference between the
truncated and the nontruncated LCAs emerges for values of k = w
that are higher than the values that corresponded to an optimal
mean decision time for the truncated LCA. Where performance of
the truncated LCA clearly deteriorates for higher values of k = w,
performance of the nontruncated LCA appears to be largely unaf-
fected. In general, the DDM is now slightly slower than the LCA,
but more accurate. The lower percentage correct of the nontrun-
cated LCA is most likely caused by the changing boundary sepa-
rations (cf. the section LCA Discrepancy 2: Changing Boundar-
ies), as a variable boundary separation leads to more errors. We ran
additional simulations in which we simulated LCA and DDM data
for the same accuracy level, eliminating the speed—accuracy
tradeoff present in Figure 8 (see the section Matched Accuracy
LCA Simulation 1 in the supplemental material). These simula-
tions confirmed that the DDM outperforms the nontruncated LCA.

In sum, for a relatively large range of parameter values, the
DDM outperforms the truncated LCA. This underscores the fact
that the DDM and the truncated LCA are not identical and, as a
consequence, that the truncated LCA does not make optimal de-
cisions. The advantage of the DDM over the nontruncated LCA is
smaller than the advantage of the DDM over the truncated LCA,
but a discrepancy remains.
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Figure 8. Simulation results for drift diffusion model (DDM) drift rate v = 0.2. Top panels: mean decision time
(DT). Bottom panels: percentage correct (Pc). DDM boundary separations were set to match mean percentages
correct of 80% (left panels), 90% (middle panels), and 95% (right panels). LCA = leaky competing accumulator

model.
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LCA Simulation 2: Parameters

In the previous section we established that for a relatively large
parameter range the LCA performs worse than the DDM. In this
section we examine whether the two models draw the same con-
clusions about latent psychological processes. We do so by fitting
the DDM to data simulated with the LCA for input values I, =
1.28 and 1, = 1, two relatively high values of k = w (i.e., 15 and
30), a nondecision time of 400 ms, and mean percentages correct
of 80%, 90%, and 95%. If the models are equivalent, the DDM
estimates should be very close to the corresponding LCA param-
eters that generated the data. We used v = (I, — L)/ \fi and a
= 2\2Z — (\2(, + L)k + w) (cf. Bogacz et al., 2006,
Equations 24 and 26) to calculate the DDM equivalents for LCA
drift rate and LCA boundary separation parameters.

To assess systematic biases in the parameter estimates, we
generated 20,000 RTs for both the truncated and the nontruncated
LCAs. To quantify the small remaining uncertainty in the param-
eter estimates, we used a bootstrap procedure and repeatedly drew
a random sample of 20,000 RTs with replacement from the full
data set. To each subset, we applied the simple EZ algorithm
(Wagenmakers et al., 2007) to calculate the DDM drift rate v,
DDM boundary separation @, and DDM nondecision time T,,.* We
repeated this procedure 1,000 times for both the truncated and the
nontruncated LCA data. On the basis of the previous section, we
expect the DDM estimates and the calculated LCA equivalents to
be more similar for the nontruncated LCA than for the truncated
LCA.

First, we present simulation results for a mean percentage cor-
rect of 80%. Results for k = w = 15 are presented in the first
column of Figure 9. The figure shows that for both the truncated
and the nontruncated LCAs, there is a slight overestimation of drift
rate v and nondecision time 7,,. This result mirrors our earlier
finding that for a mean percentage correct of 80% and k = w = 15,
the truncated and the nontruncated LCAs perform very similarly.
It also confirms that both models do not correspond to the DDM.

Results for k = w = 30 are presented in the second column of
Figure 9. For the truncated LCA, the increase in k and w leads to
a negative bias for drift rate v and a positive bias for boundary
separation a. The model does this to compensate for the fact that
the LCA produces a higher RT than the DDM for the same
accuracy level. The nontruncated LCA corresponds more closely
to the DDM.

Second, we present simulation results for a mean percentage
correct of 90%. Results for k = w = 15 are presented in the third
column of Figure 9. Results are very similar to those found for the
mean percentage correct of 80% presented in the first column, with
slight biases in drift rate v and nondecision time 7.

Results for k = w = 30 are shown in the fourth column of
Figure 9. Compared to the mean percentage correct of 80% pre-
sented in the second column, the biases for drift rate v and
boundary separation a reappear more strongly. In addition, there is
now a small negative bias for nondecision time 7 ,,. These findings
reflect the fact that the model discrepancy between the LCA and
the DDM increases for this accuracy level.

Third, we present simulation results for a mean percentage
correct of 95%. Results for k = w = 15 are presented in the fifth
column of Figure 9. For lower mean percentages correct, serious
biases are present only for k = w = 30. However, for an accuracy

level of 95%, a negative bias for drift rate v and a positive bias for
boundary separation a already appear for k = w = 15. Once again,
this bias is there to compensate for the fact that the LCA produces
a higher RT than the DDM for the same accuracy level.

Results for k = w = 30 are shown in the sixth column of
Figure 9. Compared to the mean percentage correct of 90% pre-
sented in the fourth column, the biases for drift rate v, boundary
separation a, and nondecision time 7, have increased substan-
tially. Again, these findings reflect the fact that the model discrep-
ancy between the LCA and the DDM increases for this accuracy
level.

In sum, nontruncated LCA parameters correspond reasonably
well to DDM parameters for different levels of accuracy and
different values of decay k and inhibition w. For data generated
with the truncated LCA, DDM parameters do not match the LCA
parameters used to generate the data for all parameter settings. The
simulations presented above show that the nonequivalence is not
only a theoretical concern but has practical ramifications; when
k = w >=> 0, parameters change substantially when truncation is
imposed. Moreover, this problem is compounded for higher levels
of accuracy.

Interim Conclusion

Is the LCA with &k = w >=> 0 equivalent to the DDM? The
results presented here suggest that for a large range of param-
eters, both the truncated and the nontruncated LCAs are not
equivalent to the DDM. The lack of model equivalence is
caused by the fact that the LCA needs to be truncated at zero
and by the fact that the derivations for model equivalence imply
across-trial variability in boundary separation for the DDM. We
now turn to a different neural inhibition model: the feedforward
inhibition model (FFI).

The Feedforward Inhibition Model

The FFI (Shadlen & Newsome, 2001) is a multiple accumu-
lator model just as the LCA is (Figure 10, right panel). How-
ever, the FFI differs from the LCA in two principal ways. First,
the FFI has no leakage, so each accumulator is a perfect
evidence integrator. Second, inhibition between accumulators is
not affected by their current activation (i.e., their output) but by
their drift rates (i.e., their input). Taking once again the two-
alternative version as an example, the differential equations for
the FFI are given by

dx,(t) =1, -dt + s - dW,() — ull, - dt + s - AW,(1)],
do,(t) =L -dt +s-dW,(t) — ull, - dt + s - dW,(1)]. (6)

As in the LCA, dx, and dx, refer to the changes per unit time dt in
both accumulators. The drift rate for accumulator 1 is /,, whereas
the drift rate of the competing accumulator is /,. Quantities s - dW,
and s - dW, are white noise added at each time step with M = 0 and
variance = s > - dt, analogous to the DDM and LCA. For the same
reason of biological plausibility that applies to the LCA, we

4 Results in which the full DDM was fit to the data are shown in section
Full DDM Estimates LCA Simulation 2 in the supplemental material.
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Figure 9. Drift diffusion model (DDM) estimates for leaky competing accumulator model (LCA) data. Dots
represent the mean of the 1,000 bootstrap parameter estimates, with boxes containing 50% and whiskers
extending to 90% of these estimates. The left two columns represent data for a mean percentage correct (Pc) of
80%, the middle two columns represent data for a mean percentage correct of 90%, and the right two columns
represent data for a mean percentage correct of 95%. The three panel rows represent estimates for DDM

parameters v, a, and T,

o

respectively. For each panel, the left boxes represent the truncated LCA (Trunc.) and

the right boxes represent the nontruncated LCA (N-trunc.).

assume that negative values of x, and x, have to be truncated to
zero (e.g., Ditterich, 2006, p. 998). The starting point of the
accumulators is the same as for the LCA: x,(0) = x,(0) = 0, and
evidence accumulation stops once an accumulator reaches a deci-

Non-truncated FFI Truncated FFI

0 i

—DT

Accumulated Evidence
o

Figure 10. The effect of truncation on the dynamics of the feedforward
inhibition model (FFI). The left panel shows accumulation paths that are
not truncated at zero. This leads to perfectly anticorrelated accumulation
paths. The right panel shows the same accumulators, now truncated at zero.
The winning accumulator does not need to overcome any potential nega-
tive activation, leading to responses that are faster, but more error prone,
than for the nontruncated FFL. DT = decision time.

sion threshold Z. The changes in activation for both accumulators,
dx, and dx,, are assumed to be perfectly anticorrelated. Parameter
u is a constant that represents the weight of the feedforward
inhibition.

The FFI has also been applied to empirical data (e.g., Ditterich,
2006, 2010). For instance, Ditterich (2006) applied the FFI to both
behavioral and neurophysiological data from a visual decision-
making task.

Using phase planes and a reparameterization equivalent to the
one in Equation 4, Bogacz et al. (2006) derived expressions for x;
(which is proportional to the sum of the accumulated evidence of
both accumulators) and x| (which is proportional to the difference
in the accumulated evidence of both accumulators). The stochastic
differential equations of x| and x; are given by

axi) = (1 + )[1,—12
X = u
' 2

dt+s- dW]’(t)},

I, -1,
\E dr + s~dW§(t)], @)

dx3(r) = (1 = u)[

where s - dW'| and s - dW', are white noise added at each time step
with M = 0 and variance = s * - dt.

Bogacz et al. (2006) reasoned that if # = 1, the sum of the
accumulated evidence, x5, remains zero. Both accumulators would
then be perfectly anticorrelated. Quantity x| and, by extension, the
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difference in accumulated evidence, determines the decision pro-
cess, and it can be seen from the top part of Equation 7 that for u =
1 this corresponds to a diffusion drift of v = \fi (I, — L).

If the DDM and the FFI are equivalent, we would have a model
for decision making that is biologically plausible and optimal.
However, the FFI used in the equations by Bogacz et al. (2006)
also suffers from the discrepancy that the accumulators are al-
lowed to have negative activation values.

FFI Discrepancy: Negative Activations

The discrepancy with the model equivalence between the DDM
and the FFI as proposed by Bogacz et al. (20006) is that, just like the
LCA, the FFI requires that negative accumulator activation values
are truncated to zero for biological plausibility. Consider the
accumulators in Figure 10, in which the left panel shows two
accumulation paths without truncation and the right panel shows
the same accumulation paths with truncation. The left panel shows
that without truncation, both accumulators are perfectly anticorre-
lated, consistent with the dynamics of the DDM. However, nega-
tive activations are undesirable, because they imply a negative
neural firing rate. To prevent negative activations, the FFI is
truncated at zero. The right panel shows the same accumulators
with a reflecting boundary at zero.

There is a discrepancy between the truncated and the nontrun-
cated FFIs. Namely, truncation accelerates the decision process if
the accumulator that eventually wins has been truncated at zero
along the way. An example of this is shown in Figure 10. The
winning accumulator in the left panel (corresponding to nontrun-
cated activation) has not yet reached the decision threshold Z,
whereas the same accumulator in the right panel (corresponding to
truncated activation) has. The reason for this is that in the left
panel, the winning accumulator has to overcome its initial negative
course, leading to a slower RT. In the right panel, however,
negative activation does not occur. In a sense this means that the
accumulator has “forgotten” its initial negative evidence.

In addition, truncation also affects the proportion of correct
responses. For instance, it is conceivable that the lighter accumu-
lator in the left panel of Figure 10 makes a comeback and even-
tually wins the race, even though it has already lost in the right
panel with truncated activation. Such comebacks are more frequent
in the FFI than in the LCA; in the FFI, accumulators inhibit each
other only through their inputs, and hence there is no increase in
inhibitory pressure on the losing accumulator over time. Thus, the
truncated and nontruncated FFIs do not necessarily produce the
same response. Only the left panel with nontruncated activation is
equivalent to the DDM, whereas the right panel with truncated
activation is more biologically plausible.

In sum, the truncated FFI permits decisions that are faster and
have a different outcome than the nontruncated FFI. Whereas the
truncated FFI is biologically plausible, only the nontruncated FFI
is mathematically equivalent to the DDM and as such behaves as
an optimal decision maker. The problem for the truncated FFI
appears to be less serious than for the truncated LCA, as the
FFI accumulators can still reach arbitrary heights, whereas the
LCA accumulators approach asymptotic values.

We have shown the truncation problem for model equivalence
between the DDM and the FFI in theory. However, it is quite possible
that both the FFI and the DDM show indistinguishable performance

in practice. In the next two sections, we investigate how both models
fare when pitted against each other.

FFI Simulation 1: Performance

In order to examine whether the FFI matches the optimal per-
formance of the DDM, we

1. analytically calculated mean decision times for sets of DDM
parameters that correspond to three different mean percentages
correct;

2. used these DDM parameters to analytically calculate the
corresponding FFI parameters; and

3. generated FFI data based on the calculated FFI parameters,
and then compared the mean decision time and percentage correct
for both models.

The next three paragraphs discuss each of these steps in more
detail.

For the first step of this set of simulations, we calculated
boundary separation values that correspond to percentages correct
of 80%, 90%, and 95% based on drift rate v = {0.15, 0.20, .. .,
0.40}. Practice has shown this to be a plausible range of values
(e.g., Matzke & Wagenmakers, 2009). Boundary separations were
calculated as before (cf. Wagenmakers et al., 2007, Equations 5
and 9).

For the second step of this set of simulations, we used the
relation I, = v/ \/5 + I, (ct. Bogacz et al., 2006, Equation 32,
first part) to calculate the corresponding values for the FFI inputs
(we set I, = 1). We then applied Z = a/(2 NE) (cf. Bogacz et al.,
2006, Equation 32, third part) to calculate corresponding values for
the FFI thresholds. Finally, we applied spp; = sppaw/2 (cf. Bogacz
et al., 2006, Equation 32, second part) to calculate a corresponding
value for the FFI noise parameter.

For the third step of this set of simulations, we generated 20,000
RT trials from the FFI with FFI parameters that correspond to the
DDM parameters. Finally, we compared the mean decision time
and the percentage correct of the DDM to the FFI. Figure 11 shows
the simulation results, with the left, middle, and right panels
displaying results for percentages correct of 80%, 90%, and 95%,
respectively.

Figure 11 shows that the DDM is indeed slightly slower than the
truncated FFI, as anticipated in the section FFI Discrepancy:
Negative Activations. The results also confirm that the slightly
lower decision time of the truncated FFI comes at the expense of
an increase in error rate of between 5% and 10% for each level of
DDM accuracy. We ran additional simulations in which we sim-
ulated FFI and DDM data for the same accuracy level, eliminating
the speed—accuracy tradeoff present in Figure 11 (see the section
Matched Accuracy FFI Simulation 1 in the supplemental material).
These additional simulations confirmed that for the same percent-
age correct, the mean decision time of the DDM is faster than the
mean decision time of the FFI, with an advantage of 20 to 100 ms
(or 16% to 26%) depending on the value of the input parameter.

Performance of the nontruncated FFI cannot be distinguished
from that of the DDM. This is not surprising; without the necessity
for truncation, the FFI and the DDM are mathematically identical.

In sum, we see that compared to the DDM, the truncated FFI
sacrifices a lot of accuracy for a little speed. Performance of the
nontruncated FFI and the DDM is equivalent.
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Figure 11. Simulation results for drift diffusion model (DDM) drift rates v = {0.15, 0.20, ..., 0.40}. Top

panels: mean decision time (DT). Bottom panels: percentage correct (Pc). DDM boundary separations were set
to match mean percentages correct of 80% (left panels), 90% (middle panels), and 95% (right panels). FFI =

feedforward inhibition model.

FFI Simulation 2: Parameters

In the previous section we established that the truncated FFI
performs worse than the DDM, whereas the nontruncated FFI
performs identically to the DDM. In this section we examine
whether the two models draw the same conclusions about latent
psychological processes as the DDM. We do so by fitting the
DDM to data simulated with the FFI for input values /, = 1.28 and
I, = 1. If the models are equivalent, the DDM estimates should be
very close to the corresponding FFI parameters that generated the
data. Weused v = \/5 (I, — L),a = 2/ \E - Z,and sppy = 2
sgrp (cf. Bogacz et al., 2006, Equation 32) to calculate the DDM
equivalents for FFI drift rate, FFI boundary separation, and FFI
noise parameters, respectively.

To assess systematic biases in the parameter estimates, we
generated 20,000 RTs for both the truncated and the nontruncated
FFIs. To quantify the small remaining uncertainty in the parameter
estimates, we used a bootstrap procedure and repeatedly drew a
random sample of 20,000 RTs with replacement from the full data
set. To each subset, we applied the simple EZ algorithm (Wagen-
makers et al., 2007) to calculate the DDM drift rate v, DDM
boundary separation @, and DDM nondecision time 7,.° We
repeated this procedure 1,000 times for both the truncated and
the nontruncated FFI data. On the basis of the previous section, we
expect the DDM estimates and the calculated FFI equivalents to be
more similar for the nontruncated FFI than for the truncated FFI.

The left, middle, and right columns of Figure 12 display results
for mean percentages correct of 80%, 90%, and 95%, respectively.
The right box in each of the nine panels shows that parameter
correspondence between the nontruncated FFI and the DDM is
near perfect for all three levels of accuracy. This result was
expected, since the models are mathematically equivalent.

The left boxes in each of the three columns show that for the
truncated FFI, drift rate v is systematically overestimated, bound-
ary separation g is underestimated, and nondecision time 7,, is
overestimated. An overestimation of nondecision time T,, causes
higher RTs, an effect that is partially counteracted by a higher drift
rate v and a lower boundary separation a. Parameter recovery for
the full DDM with across-trial variability parameters may be found
in the section Full DDM Estimates FFI Simulation 2 in the sup-
plemental material.

In sum, only for data generated with the nontruncated FFI can
the corresponding DDM parameters be recovered with reasonable
accuracy.

A Possible Solution to the Problem of Truncation:
Baseline Activation

We have shown that model equivalence between the DDM and
two neural inhibition models—the LCA and the FFI—are compli-
cated by the potential for negative activation values. Negative
activation values may be resolved by truncating them to zero, but
this jeopardizes the proposed model equivalence by Bogacz et al.
(2006).

There is a way around the necessity of truncation: having
accumulators start at a baseline activation level. Baseline activity
is implemented relatively easily in the FFI. Instead of having each
accumulator start at zero and collecting evidence toward response
threshold Z, accumulators now start at the old value of response

5 Results in which the full DDM was fit to the data are shown in the
section Full DDM Estimates FFI Simulation 2 in the supplemental mate-
rial.
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Figure 12. Drift diffusion model (DDM) estimates for feedforward inhi-
bition model (FFI) data. Dots represent the mean of the 1,000 bootstrap
parameter estimates, with boxes containing 50% and whiskers extending to
90% of these estimates. The left, middle, and right columns represent data
for mean percentages (Pc) correct of 80%, 90%, and 95%, respectively.
The three panel rows represent estimates for DDM parameters v, a, and 7,,.,
respectively. For each panel, the left boxes represent the truncated FFI
(Trunc.) and the right boxes represent the nontruncated FFI (N-trunc.).

threshold Z and collect evidence toward twice the value of Z. In
other words, the accumulators have a baseline activation level that
allows them to start halfway toward the response threshold. Be-
cause the threshold is twice as high, but the distance between the
starting point and the threshold is still intact, the winning accu-
mulator still has to collect the same amount of evidence. The
distance between the starting point and the zero boundary is now
identical to the distance between the starting point and the re-
sponse threshold, which guarantees that no truncation is ever
needed. Such a model is mathematically equivalent to the DDM.

The idea of a nonzero starting point for the FFI is not new. For
instance, Ditterich (2010) chose a starting point of Z/3, a choice
informed by recordings of neural activity in the lateral intraparietal
area.

The implementation of baseline activation levels for the LCA
involves a little more work than it does for the FFI. For the LCA,
simply increasing the starting point and the response threshold,
while leaving the other parameters intact, will have an effect only
on the starting trajectories of the accumulators. Over time, the

combined force of the decay k and initial mutual inhibition w will
lead both accumulators to revolve to the same trajectory they
would have followed had they started out at the zero boundary;
consequently, truncation may still take place.® In order to prevent
this from happening, it is necessary to augment the inputs of each
accumulator with a baseline input, or I, (e.g., Bogacz et al., 2007;
Busemeyer, Townsend, Diederich, & Barkan, 2005). Simulations
by Bogacz et al. (2007) showed that the addition of high baseline
inputs may lead to performance for the truncated LCA that is very
similar to that of the nontruncated LCA (Bogacz et al., 2007,
Figures 5a and 5b).

Specifically, prior to presentation of the stimulus, both accumu-
lators have the same baseline input /,, causing their activation
values to move to their natural equilibrium of Iy/(w + k) (see
Marshall, Bogacz, & Gilchrist, 2011). With a starting point of
I;/(w + k) and a response threshold of Z + I,/(w + k) (so that the
distance between the starting point and the response threshold is
still Z), the increased force of the decay and inhibition is exactly
canceled out by the added baseline input. LCA accumulation paths
with a baseline input I and a starting point of I,/(w + k) are
identical to nontruncated LCA accumulation paths without base-
line input and a starting point of zero, provided that the losing
accumulator never hits the zero boundary. The only difference
between the baseline input LCA and the nontruncated LCA is the
absolute amount of accumulated evidence. Since the response is
determined by the amount of accumulated evidence relative to the
starting point, this difference has no effect on model performance.

Some neurophysiological data support the assumption that neu-
rons responsible for the stochastic accumulation of evidence have
a baseline firing rate that is at least half of the threshold firing rate.
For instance, work by Roitman and Shadlen (2002, Figure 7), Huk
and Shadlen (2005, Figure 5), and Churchland, Kiani, and Shadlen
(2008, Figures 4a and 5a) indicated that the baseline firing rate of
neurons in the lateral intraparietal area is approximately half of the
maximum firing rate. However, there is also evidence that suggests
that neural baseline firing rates in the frontal eye field are approx-
imately 20% of the maximum firing rate (e.g., Bruce & Goldberg,
1985; Hanes, Patterson, & Schall, 1998; Hanes & Schall, 1996;
Pouget et al., 2011; Schall, 1991). Also, research on neural spike
rates in the superior colliculus suggests that the baseline firing
rates in this brain area are roughly between 10% and 30% of the
maximum firing rate (e.g., Basso & Wurtz, 1998; Mays & Sparks,
1980; Munoz & Wurtz, 1995; Ratcliff, Cherian, & Segraves,
2003). Finally, baseline firing rates in the medial superior temporal
area seem to be much lower than half of the maximum firing rate
(e.g., Duffy & Wurtz, 1991).”

In conclusion, some neurophysiological evidence supports the
notion that neural baseline firing rates are at least half the amount
of neural threshold firing rates, although there is also much evi-
dence to the contrary. At least from a modeler’s perspective, both
the LCA and the FFI can be implemented in such a way that
truncation is not necessary without quantitatively altering their
performance.

% For a simulation that demonstrates this effect, see the section LCA
Truncation With Starting Points Above Zero in the supplemental material.

7 We thank two anonymous reviewers for alerting us to some of the
studies mentioned in this paragraph.
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Conclusion

We have highlighted a tension between two desiderata for
neural network models: optimality and biological plausibility. We
examined an attempt by Bogacz et al. (2006) to resolve this tension
between the DDM and two neural network models: the LCA and
the FFI. We have shown that for both the LCA and the FFI there
are challenges that have to be addressed before each of these
models can be reduced to the DDM.

For the LCA, our simulations showed that the DDM outper-
forms the LCA with truncation at zero. With the assumption of
baseline activity of neurons that is at least half the amount of the
threshold firing rate of neurons, the necessity of truncation disap-
pears for the LCA. However, even the nontruncated LCA cannot
be completely reduced to the DDM by means of the equations
presented by Bogacz et al. (2006). Specifically, these derivations
allow for DDM boundary separations that vary over trials, a
condition that the DDM does not allow. Our simulations showed
that the DDM achieves higher accuracy than the nontruncated
LCA.

Although we showed performance deficits for the truncated
LCA relative to both the nontruncated LCA and the DDM, both
Bogacz et al. (2007, Figures 5a and 5b) and Tsetsos, Usher, and
McClelland (2011) have demonstrated that for choice tasks with
more than two alternatives, the truncated LCA can outperform the
nontruncated LCA. Tsetsos et al. argued that in order to account
for data from multialternative experiments, truncation is in fact
required. It is important to remember that, in contrast to the LCA,
the DDM is meant for choice tasks with only two response alter-
natives. For tasks with more alternatives, truncated LCA may lead
to performance that is superior to that of nontruncated LCA.

For the FFI, our simulations showed that the truncated model is
slightly faster than the DDM, but this increase in speed comes at
the expense of a substantially higher error rate. The necessity to
truncate at the zero boundary for the FFI can be overcome by
assuming baseline activity of at least half the threshold firing rate.
The resulting nontruncated version of the FFI is identical to the
DDM.

In the introduction, we highlighted one of the main selling
points of the DDM: It acts as an optimal decision maker. The
DDM is optimal in the sense that it achieves the lowest possible
mean RT for any given accuracy level. However, many other
definitions of optimality are possible. In the context of human
categorization, Anderson (1991) discussed three crucial questions
that relate to the definition of optimality:

1. What is the decision maker trying to optimize?

2. What is the structure of the environment (e.g., to what extent
and in what way is optimal behavior learned by the decision
maker)?

3. What are the costs associated with achieving optimal behav-
ior?

For a participant in a two-choice RT experiment, the first
question may pertain to time spent on the task (e.g., Hawkins,
Brown, Steyvers, & Wagenmakers, 2011), monetary reward (e.g.,
Simen, Cohen, & Holmes, 2006), or minimizing the number of
avoidable errors (e.g., Starns & Ratcliff, 2010). The second ques-
tion deals with the transparency of the task. For instance, when a
decision maker wants to maximize reward rate, the speed-—
accuracy tradeoff needs to be adjusted depending on the difficulty

of the stimuli, the nature and timing of feedback messages, and so
forth. The change in a decision maker’s belief about the environ-
ment can be modeled with Bayesian updating functions (see
Berger, 1985, for more on Bayesian decision theory). For our RT
example, the third question may imply that pursuing an optimal
speed—accuracy trade means forfeiting spending an hour outside in
the sun (something that could have been accomplished by answer-
ing very quickly at the cost of some errors). Shenoy and Yu (2011)
used Bayesian utility functions to define optimal decision-making
behavior in the stop-signal task. The extensive literature on reward
rate maximization and utility functions attests to the fact that
optimality is a construct that depends on context and goals that are
set by the decision maker.

The simple DDM ensures the lowest possible mean RT for any
given accuracy level. However, in practice an extended version of
the DDM is often used that also includes parameters that specify
across-trial variability in drift rate, starting point, and nondecision
time (Ratcliff & Tuerlinckx, 2002). The full DDM is capable of
dealing with a number of empirical phenomena the simple DDM
cannot handle (i.e., fast or slow errors; see Ratcliff & Rouder,
1998). However, the full DDM is not identical to the simple DDM
and therefore does not generate optimal decision-making behavior.

For both the LCA and the FFI, truncation may be avoided by
assuming a baseline firing rate of neurons that is at least half the
amount of their threshold firing rates. With these assumptions,
performance of the neural inhibition models approximates that of
the optimal DDM (for the FFI, performance is even identical to
that of the DDM). However, the neurophysiological evidence
suggests that in many brain areas, neural baseline firing rates are
relatively low. Thus, the quest for a neurologically based, multi-
alternative, optimally behaving decision model continues. With
new and exciting biological models based on Bayesian principles
(Ma, Beck, Latham, & Pouget, 2006; Ma, Beck, & Pouget, 2008;
Soltani & Wang, 2010) and studies that examine decision models
that behave optimally for multiple alternatives (Bogacz & Gurney,
2007; McMillen & Holmes, 2006), there is hope for a decision
model that has the best of all worlds.
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