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Abstract We propose a default Bayesian hypothesis test for
the presence of a correlation or a partial correlation. The test
is a direct application of Bayesian techniques for variable
selection in regression models. The test is easy to apply and
yields practical advantages that the standard frequentist tests
lack; in particular, the Bayesian test can quantify evidence in
favor of the null hypothesis and allows researchers to mon-
itor the test results as the data come in. We illustrate the use
of the Bayesian correlation test with three examples from
the psychological literature. Computer code and example
data are provided in the journal archives.

Keywords Bayesian inference . Correlation . Statistical
evidence

Introduction

A correlation coefficient indicates how strongly two variables
are related. The concept is basic, and it comes as no surprise
that the correlation coefficient ranks among the most popular
statistical tools in any subfield of psychological science. The
first correlation coefficient was developed by Francis Galton
in 1888 (Stigler, 1989); further work by Francis Edgeworth
and Karl Pearson resulted in the correlation measure that is
used most frequently today, the Pearson product–moment
correlation coefficient, or r (Pearson, 1920). The coefficient
r is a measure of the linear relation between two variables,
where r 0 −1 indicates a perfectly negative linear relation, r 0 1
indicates a perfectly positive relation, and r 0 0 indicates the
absence of any linear relation.

In this article, we focus on the two-sided hypothesis test for
the Pearson correlation coefficient. The standard (i.e., classical,
orthodox, or frequentist) test produces a p value for drawing
conclusions; the common rule is that when p < .05, one can
reject the null hypothesis that no relation is present. Unfortu-
nately, frequentist p value tests have a number of drawbacks
(e.g., Edwards, Lindman, & Savage, 1963;Wagenmakers,
2007). For instance, p values do not allow researchers to
quantify evidence in favor of the null hypothesis (Rouder,
Speckman, Sun, Morey, & Iverson, 2009; Wetzels et al.,
2011). In addition, p values depend on the sampling plan, and
hence, its users may not stop data collection when an interim
result is compelling, nor may they continue data collection
when the fixed sample size result is ambiguous (Edwards et
al., 1963). These drawbacks are not merely theoretical but have
real consequences for the way in which psychologists carry out
their experiments and draw conclusions from their data.

An alternative to frequentist tests is provided by Bayesian
inference and, in particular, the so-called Bayes factor
(Jeffreys, 1961; Kass & Raftery, 1995). The Bayes factor
computes the probability of the observed data under the null
hypothesis vis-a-vis the alternative hypothesis. In contrast to
the frequentist p value, the Bayes factor allows researchers to
quantify evidence in favor of the null hypothesis. Moreover,
with the Bayes factor, “it is entirely appropriate to collect data
until a point has been proven or disproven, or until the data
collector runs out of time, money, or patience" ( Edwards et
al., , p. 193). Thus, the Bayes factor altogether eliminates the
optional stopping phenomenon, where researchers can bias
their results by collecting data until p < .05 (e.g., Simmons,
Nelson, & Simonsohn, 2011). Researchers are allowed to
monitor the Bayes factor as the data come in and stop when-
ever they feel that the evidence is compelling.

In the field of psychology, interest in hypothesis testing
using the Bayes factor has greatly increased over the last
years. For instance, a method for variable selection in regres-
sion models (Liang, Paulo, Molina, Clyde, & Berger, 2008) is
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used to develop a Bayesian ANOVA (Wetzels, Grasman &
Wagenmakers, in press) and a Bayesian t test (Rouder et al.,
2009; Wetzels, Raaijmakers, Jakab, & Wagenmakers, 2009);
Masson has shown how statistical output from SPSS can be
translated to Bayes factors using the BIC approximation
(Masson, 2011); Hoijtink, Klugkist, and colleagues have
promoted Bayes factors for order-restricted inference
(e.g., Hoijtink, Klugkis, & Boelen, 2008).

Perhaps the greatest impediment to the large-scale adop-
tion of the Bayes factor is the lack of easy-to-use tests for
statistical models that psychologists use in practice. For
example, the test for the presence of a correlation (and
partial correlation) is one of the most popular workhorses
in experimental psychology, yet many psychologists will
struggle to find a Bayes factor equivalent. In this article,
we remove this hurdle by providing an easy-to-use Bayes
factor alternative to the Pearson correlation test.

In this article, we first discuss the standard, frequentist tests
for the presence of correlation and partial correlation. Next,
we explain Bayesian model selection in general and then
focus on a Bayesian test for correlation and partial correlation
that is considered default. By default (or objective, or uninfor-
mative), we mean that the test is suitable for situations in
which the researcher is unable or unwilling to use substantive
information about the problem at hand. Key concepts and
computations are illustrated with three examples of recent
psychological experiments.

Frequentist test for the presence of correlation

We discuss the frequentist correlation test in the context of a
study where participants were involved in an intensive medita-
tion training program (MacLean et al., 2010). The aim of this
program was to investigate whether there is an effect of med-
itation on visual acuity. To assess visual acuity, participants
were asked to judge repeatedly whether a vertical line was long
or short. Perceptual threshold was defined as the difference in
visual angle between the short and the long lines that allowed
the participant to classify the lines correctly 75 % of the time.
The main result of the experiment was that the intensive med-
itation program decreased participants’ perceptual threshold.

In addition to this main result, MacLean et al. (2010)
explored whether the improved visual acuity is retained
5 months after termination of the meditation program and,
more specifically, whether at follow-up the participants who
had meditated the most also had the lowest threshold. The
follow-up involved 54 participants, whose data are replotted
in Fig. 1. On the basis of these data, MacLean et al. con-
cluded that “this result indicates a correlation between the
long-term stability of training-induced discrimination im-
provement and the maintenance of regular, but less inten-
sive, meditation practice.”

To calculate the correlation between threshold and medita-
tion time, we first define the following variables. For person i,
mean daily meditation time is denoted xi, and threshold is
denoted yi. For meditation time and threshold, the sample
variances are s2X ¼ 20; 916:68 and s2Y ¼ 0:05, and the sample
means are x ¼ 121 and y ¼ 0:56 , respectively. Then, the
sample correlation coefficient ofX and Y is calculated as follows:

rXY ¼
Pn

i ¼ 1 xi � xð Þ yi � yð Þ
n� 1ð ÞsX sY ¼ �589

1629
¼ �:36; ð1Þ

where n is the number of participants (n 0 54).
In order to test whether we can reject the null hypothesis

that the correlation coefficient is zero, ρXY ¼ 0, we calculate
the t statistic (using rXY ¼ �:36 and n 0 54):

t ¼ rXY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ
1� r2XYð Þ

s
¼ �2:80; ð2Þ

which follows the Student t distribution with n − 2 degrees
of freedom. This t statistic corresponds to a p value of 0.01.
Therefore, with a significance level of α 0 0.05, researchers
may feel that they can confidently reject the null hypothesis
of no correlation.

Frequentist test for the presence of partial correlation

Partial correlation is the correlation between two variables,
say X and Y, after the confounding effect of a third variable Z
has been removed. Variable Z is known as the control variable.
In psychological research, there are many situations in which
one might want to partial out the effects of a control variable.

Consider a recent experiment on the role of implicit
prediction in visual search by Lleras, Porporino, Burack,
and Enns (2011). Implicit prediction was studied using an
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Fig. 1 Relationship between average daily meditation time and dis-
crimination threshold. A negative correlation suggests that time spent
in meditation improves visual perception (i.e., lowers the threshold).
Data are replotted from MacLean et al, (2010)
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interrupted search task featuring three groups of children and
one group of adults (i.e., mean ages of 7, 9, 11, and 19 years).
In the search task, participants had to identify a target among a
set of distractors (i.e., one “T" among 15 “L" shapes). Cru-
cially, brief looks at the search display (100–500 ms) were
interrupted by longer “waits" in which the participant was
shown a blank screen (1,000–3,500 ms). The focus of this
study was on rapid resumption, the phenomenon that, in
contrast to the first look at the stimulus (where only 2 % of
the correct responses are faster than 500ms), subsequent looks
often show 30 % – 50 % correct responses faster than 500 ms.

On the basis of n 0 40 observations, Lleras et al., (2011)
calculated the correlation between mean successful search
time (X) and the proportion of rapid resumption responses
(Y): rXY ¼ :51 , a highly significant correlation (p < .01).
However, Lleras et al. also observed that this correlation
does not take the participants’ age into account. The corre-
lation between search time (X) and age (Z) is relatively high
(i.e., rXZ ¼ �:78), and so is the correlation between rapid
resumption (Y) and age (i.e., rYZ ¼ �:66). Hence, the authors
computed a partial correlation to exclude the possibility that
age Z caused the correlation between search time X and rapid
resumption Y. This is accomplished by the following formula:

rXY jZ ¼ rXY � rXZrYZ

1� r2XZð Þ 1� r2YZð Þ½ �1=2

¼ :51� �:78ð Þ �:66ð Þ
1� �:78ð Þ2

� �
1� �:66ð Þ2

� �h i1=2 ¼ �:01: ð3Þ

This result shows that by controlling for the variable age,
the correlation between search time and rapid resumption is
virtually eliminated. The correlation, rxy, is .51, but the
partial correlation, rXY jZ , is -.01. The p value for the partial
correlation can be calculated by computing the t statistic
(using rXY jZ ¼ �:01 and n040):

t ¼ rXY jZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 3ð Þ

1� r2XY jZ
� �

vuut ¼ �0:06; ð4Þ

which follows the Student t distribution with n−3 degrees
of freedom. This t statistic corresponds to a p value of .95.
Hence, Lleras et al. did not reject the null hypothesis of no
correlation between search time and rapid resumption.

Note that this nonsignificant result leaves the null hypoth-
esis in a state of suspended disbelief. It is not statistically
correct to conclude from a nonsignificant result that the data
support the null hypothesis; after all, the same nonsignificant
result could have been due to the fact that the data were
relatively noisy. This is one of the prominent p value problems
that does not occur in the alternative framework of Bayesian
inference, which enables researchers to directly gather evi-
dence in favor of the null.

Bayesian hypothesis testing

In Bayesian model selection or hypothesis testing, the com-
peting statistical hypotheses are assigned prior probabilities.
Suppose that we have two competing hypotheses: the null
hypothesis, H0, and the alternative hypothesis, H1. These
hypotheses are assigned prior probabilities of p(H0) and
p(H1). Then, after observing the data Y, Bayes’ theorem is
applied to obtain the posterior probability of both hypothe-
ses. The posterior probability of the alternative hypothesis,
p H1jYð Þ, is calculated as follows:

p H1jYð Þ ¼ p YjH1ð Þp H1ð Þ
p YjH1ð Þp H1ð Þ þ p YjH0ð Þp H0ð Þ ; ð5Þ

where p YjH1ð Þ denotes the marginal likelihood of the data
under the alternative hypothesis (and equivalently for the
null hypothesis). The marginal likelihood of the alternative
hypothesis is calculated by integrating the likelihood with
respect to the prior:

p YjH1ð Þ ¼
Z
Θ
p Yjθ;H1ð Þp θjH1ð Þdθ: ð6Þ

Because the posterior model probabilities are sensitive to
the prior probabilities of both hypotheses, p(H0) and p(H1),
it is common practice to quantify the evidence by the ratio of
the marginal likelihoods, also known as the Bayes factor
(Jeffreys, 1961):

p H1jYð Þ
p H0jYð Þ ¼

p YjH1ð Þ
p YjH0ð Þ �

p H1ð Þ
p H0ð Þ ¼ BF10 � p H1ð Þ

p H0ð Þ : ð7Þ

The Bayes factor, BF10, is a weighted average likelihood
ratio that indicates the relative plausibility of the data under the
two competing hypotheses. Another way to conceptualize the
Bayes factor is as the change from prior odds p H1ð Þ=p H0ð Þ to
posterior odds p H1jYð Þ=p H0jYð Þ brought about by the data
(cf. Eq. 7). This change is often interpreted as the weight of
evidence (Good, 1983), and as such, it represents “the standard
Bayesian solution to the hypothesis testing andmodel selection
problems" (Lewis & Raftery, 1997, p. 648).

When the Bayes factor has a value greater than 1, this
indicates that the data are more likely to have occurred under
the alternative hypothesis H1 than under the null hypothesis
H0, and vice versa when the Bayes factor is below 1. For
example, when BF10 0 4, this indicates that the data are four
times as likely to have occurred under the alternative hypoth-
esis H1 than under the null hypothesis H0.

Jeffreys (1961) proposed a set of verbal labels to catego-
rize different Bayes factors according to their evidential
impact. This set of labels, presented in Table 1, facilitates
scientific communication but should be considered only an
approximate descriptive articulation of different standards of
evidence (Kass & Raftery, 1995).
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Default prior distributions for the linear model

In order to calculate the Bayes factor, one needs to specify
prior distributions for the parameters in H0 and H1 (cf.
Eq. 6). A long line of research in Bayesian statistics has
focused on finding appropriate default prior distributions—
that is, prior distributions that reflect little information and
have desirable characteristics. Much of this statistical devel-
opment has taken place in the framework of linear regres-
sion. In order to capitalize on this work, we later restate the
correlation test and the partial correlation test as linear
regression:

Y ¼ a þ bXþ "; ð8Þ
where X is the vector of predictor variables, which are as-
sumed to be measured as deviations from their corresponding
sample means.

For linear regression, one of the most popular priors is
known as Zellner’s g-prior (Zellner, 1986). This prior cor-
responds to a normal distribution on the regression coeffi-
cients β, Jeffreys’s prior on the error precision ϕ (Jeffreys,
1961), and a uniform prior on the intercept α:

p bjf; g;Xð Þ ¼ N 0;
g

f
XTX
� ��1

� �
; p f; að Þ / 1

f
: ð9Þ

Note that the information in the data about β can be

conceptualized as f�1 XTXð Þ�1
(Kass & Wasserman,

1995). Hence, g is a scaling factor controlling the informa-
tion that we give the prior on β, relative to the information in
the sample. For example, when g 0 1, the prior carries the
same weight as the observed data; when g 0 10, the prior
carries one tenth as much weight as the observed data.

Obviously, the choice of g is crucial to the analysis, and
much research has gone into choosing an appropriate g. This

is a difficult problem: A default prior should not be very
informative, but a prior that is too vague can lead to unwanted
behavior. Various choices of g have been proposed; a popular
setting is g 0 n, the unit information prior (n equals the sample
size; Kass & Wasserman,1995), but others have argued for
g 0 k2 (k equals the number of parameters; Foster &
George,1994) or g ¼ max n; k2

	 

(Fernandez, Ley, & Steel,

2001). However, the choice for a single g remains difficult.
The impact of the choice of g can be clarified using an

example taken from Kanai et al. (in press) that concerned the
correlation between the number of Facebook friends and the
normalized gray matter density at the peak coordinate of the
right entorhinal cortex. Figure 2 shows the data; people with
more Facebook friends have higher gray matter density,
r 0 .48, p < .002. The effect that a specific choice of g has
on the Bayes factor for this data set is shown in Fig. 3. This
figure demonstrates that when g is increased, the support for
the null hypothesis can be made arbitrarily large. This is
due to the fact that if g increases, the vagueness of M1

does too. This phenomenon is known as the Jeffreys–
Lindley–Bartlett paradox (Bartlett, 1957; Jeffreys, 1961;
Lindley, 1980; but see Vanpaemel, 2010). One of the
primary desiderata for a default Bayesian hypothesis test
is to avoid this paradox.

In a different but related approach, Zellner and Siow (1980)
extended the work of Jeffreys (1961) and proposed assigning
the regression coefficients a multivariate Cauchy prior, with a
precision based on the concept of unit information (Liang et
al., 2008). However, the marginal likelihood for this model
specification is not analytically tractable, and therefore, this
approach did not gain much popularity (but note that these
priors are well-studied nonetheless; see Bayarri & Garcia-

Table 1 Evidence categories for the Bayes factor BF10 (Jeffreys,
1961). We replaced the label “not worth more than a bare mention"
with “anecdotal"

Bayes factor BF10 Interpretation

> 100 Decisive evidence for H1

30 – 100 Very Strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Substantial evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence

1/3 – 1 Anecdotal evidence for H0

1/10 – 1/3 Substantial evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very Strong evidence for H0

< 1/100 Decisive evidence for H0
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Fig. 2 Relation between the number of Facebook friends and the
normalized gray matter (GM) density at the peak coordinate of the
right entorhinal cortex. A positive correlation indicates that people with
many Facebook friends have denser gray matter in the right entorhinal
cortex. Data are replotted from Kanai, Bahrami, Roylance, and Rees
(in press)
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Donato, 2007; Berger, Ghosh, & Mukhopadhyay, 2003;
Berger & Pericchi, 2001).

Recently, however, Liang et al. (2008) represented this
Jeffreys–Zellner–Siow (JZS) prior as a mixture of g-priors—
that is, an inverse-gamma 1=2; n=2ð Þ prior on g and Jeffreys’s
prior on the precision ϕ:

p bjf; g;Xð Þ ¼ R
N 0; gf XTX

� ��1
� �

pðgÞdg
p fð Þ / 1

f

pðgÞ ¼ n=2ð Þ1=2
Γ 1=2ð Þ g

�3=2e�n= 2gð Þ:

ð10Þ

From this (mathematically equivalent) perspective, the
problem of selecting a single g has been mitigated by
assigning g a prior. The formulation above combines the
computational advantages of the g-prior with the theoretical
advantages of the Cauchy prior (see Liang et al., 2008, for
details). Moreover, the mixture representation also facili-
tates the calculation of the Bayes factor, leaving only one
integral that has to be estimated numerically. Note that the
same prior setup underlies the JZS ANOVA (Wetzels et al.,
in press) and the JZS t test (Rouder et al., 2009; Wetzels et
al., 2009). In the following, we will use this setup for our
correlation and partial correlation test.

The JZS Bayes factor for correlation and partial
correlation

In order to calculate the Bayes factor for the JZS (partial)
correlation test, we conceptualize these Bayesian tests as a
comparison between two regression models, such that the
test becomes equivalent to a variable selection test for linear
regression (i.e., a test of whether or not the regression
coefficient β should be included in the model). This con-
ceptualization allows us to exploit the JZS prior distribution.
Computer code for calculating the JZS Bayes factors is
presented in the Appendix.

The JZS Bayes factor for correlation

Suppose that we have observed data from two variables, X
and Y, and are interested in their correlation. Consider the
regression from Eq. 8, where α is the intercept, β is the
regression coefficient, and ε is the error term, normally
distributed with precision ϕ.

Next, we are interested in how well this regression equa-
tion fits the data. The standard method for assessing this fit
is by calculating the coefficient of determination R2:

R2 ¼ 1� SSerr
SStot

; ð11Þ

where SSerr denotes the residual sum of squares and SStot
denotes the total sum of squares. Note that R2 is the propor-
tion of variance that is accounted for by the regression
model. Specifically, R2 is an indication of how much better
the fit of model M1 is, when compared with model M0:

Y

Y X
ð12Þ

When R2 is low (i.e., near zero), the addition of the
regression coefficient β to M0 has caused only a small
increase in explained variance. As R2 increases, so does
the importance of β. Because R2 is the square of the sample
correlation r, a test for whether or not the correlation equals
zero is equivalent to a test for whether or not β equals zero.
Hence, the correlation test can be recast as a comparison
between two linear regression models, M0 and M1 (e.g.,
Draper & Smith, 1998).

The Bayes factor BF10 using the JZS prior setup can then
be calculated as follows (see Liang et al., 2008):

BF10 ¼ p YjM1ð Þ
p YjM0ð Þ

¼ n=2ð Þ1=2
Γ 1=2ð Þ �

R1
0 1þ gð Þ n � 2ð Þ=2 � 1þ 1� r2ð Þg½ �� n � 1ð Þ=2

g �3=2ð Þe�n= 2gð Þdg:

ð13Þ
Note that the only input to Eq. 13 is the usual sample

correlation r and the number of observations n. The result-
ing Bayes factor BF10 quantifies the evidence in favor of the
alternative hypothesis. Therefore, Bayes factors greater than
1 indicate evidence for the presence of a correlation, and
Bayes factors smaller than 1 indicate evidence for the ab-
sence of a correlation.

The JZS Bayes factor for partial correlation

Again, we formalize the test as a model selection prob-
lem between two regression models. Assume that we
have three variables, Y, X1, and X2, and we want to test
whether the partial correlation between Y and X2 is zero
or not. Analogously to the correlation example, one is

0.1 100 1E+4 1E+8 1E+12

Fig. 3 Illustration of the Jeffreys–Lindley–Bartlett paradox when the
Zellner g prior is applied to the data from Kanai, Bahrami, Roylance,
and Rees (in press). By increasing g, the Bayes factor can be made
arbitrarily close to 0, signifying close to infinite support for the null
model
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interested in whether adding the variable X2 increases
R2 when the variable X1 is already included in the
regression model. Hence, we compare the two models
(e.g., Draper & Smith, 1998):

Y X

Y X X
ð14Þ

The Bayes factor BF10 using the JZS prior setup can then
be calculated as follows:

BF10 ¼ p YjM1ð Þ
p YjM0ð Þ

¼
R1
0

1 þ gð Þ n � 1 � p1ð Þ=2 � 1 þ 1 � R2
1ð Þg½ � � n � 1ð Þ=2

g � 3=2ð Þe�n= 2gð ÞdgR1
0

1 þ gð Þ n � 1 � p0ð Þ=2 � 1 þ 1 � R2
0ð Þg½ �� n � 1ð Þ=2

g �3=2ð Þe�n= 2gð Þdg

ð15Þ
Input to Eq. 15 is the coefficient of determination for H0

and for H1 (i.e., R2
0 and R2

1 ), the number of regression
coefficients H0 and H1 (i.e., p0 and p1), and the number of
observations n. Note that the coefficient of determination for
M0 is found by squaring the sample correlation between the
variable of interest and the controlling variable: R2

0 ¼ r2YX1
;

the coefficient of determination for M1 can be written as

R2
1 ¼ r2YX2jX1

1� r2YX1

� �
þ r2YX1

. As before, the resulting

Bayes factor BF10 quantifies the evidence in favor of
the alternative hypothesis.

Correlation example: The meditation data

In the meditation study, MacLean et al. (2010) tested the
hypothesis of a relation between meditation time and visual
acuity (see Fig. 1). The sample correlation between these two
variables was found to be rXY 0 −.36; the associated
p value is .01, significant at the α 0 .05 level.

We can now apply Eq. 13 to calculate the Bayes factor.
Entering rXY 0 −.36 and n 0 54 in Eq. 13 yields a
Bayes factor BF10 0 3.86, indicating that the data are 3.86
times more likely to have occurred under H1 than under H0, a
“substantial" Bayes factor according to the coarse category
scheme proposed by Jeffreys (1961). However, note that the
factor 3.86 inspires less confidence than does the p value; this
illustrates the well-known point that p values overestimate the
evidence against the null, at least when the p value is misinter-
preted as the posterior probability of the null hypothesis being
true (e.g., Edwards et al., 1963; Wetzels et al., 2011).

Correlation example: The Facebook data

In the Facebook study, Kanai et al. (in press) investigated
the relation between the number of Facebook friends and the
normalized gray matter density at the peak coordinate of the
right entorhinal cortex (see Fig. 2).

Entering rXY 0 .48 and n 0 40 in Eq. 13 yields a Bayes
factor BF10 0 17.87, indicating that the data are 17.87 times
more likely to have occurred under H1 than under H0, a
“strong" Bayes factor according to the coarse category
scheme proposed by Jeffreys (1961).

Partial correlation example: The rapid resumption data

In the study on rapid resumption, Lleras et al. (2011) tested the
partial correlation between search time (X) and rapid resump-
tion (Y) while controlling for age (Z). The partial correlation
was found to be rXY|Z 0 −.01, with a p value of .95.

We can compute the Bayes factor using the coefficient of
determination for both models. The null model M0 regresses
search time (X) on age (Z), containing only the regression
coefficient for Y. Hence, in Eq. 15, p0 0 1, and R2

0 ¼ 0:6084.
The alternative model M1 contains the regression coeffi-
cients for Y and Z. Hence, p1 0 2, and R2

1 ¼ 0:6084408 .
The sample size n is 40.

The Bayes factor BF10 is 0.13, indicating substantial evidence
in favor of the null hypothesis: The data are 1=0:13 � 7:70
times as likely to have occurred under the null hypothesis than
under the alternative hypothesis (see Table 1).

Concluding remarks

In this article, we outlined a default Bayesian test for correlation
and partial correlation. Just like the default Bayesian ANOVA
(Wetzels et al., in press) and t test (Rouder et al., 2009; Wetzels
et al., 2009), the correlation test follows directly from the
regression framework for variable selection proposed by Liang
et al., (2008). We did not strive for new statistical development.
Instead, our goal was to show experimental psychologists how
they can obtain a default Bayesian hypothesis test for correla-
tion and partial correlation. As we mentioned throughout this
article, the Bayesian hypothesis test comes with important
practical advantages, as compared with the standard frequentist
test; for instance, the Bayesian hypothesis test can quantify
evidence in favor of the null hypothesis and allows researchers
to collect data until a point has been proven or disproven.

It should be noted that Jeffreys (1961) also proposed a
Bayesian correlation test, one that differs slightly from the
one outlined here. We prefer the JZS correlation test because
it follows directly from the regression framework of Liang
et al., (2008), incorporating modern Bayesian developments
into a more general JZS testing framework. This JZS frame-
work now encompasses linear regression, the t test,
ANOVA, and (partial) correlation, and extensions to other
popular statistical models are likely to follow.

By making default Bayes factors easily available to exper-
imental psychologists, we hope and expect that the field will
start to turn away from p values and move toward a Bayesian
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assessment of evidence. This transition is bound to improve
statistical inference and accelerate scientific progress.
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