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Abstract

After more than 15 years of study, the 1/f noise or complex-systems approach to cognitive science

has delivered promises of progress, colorful verbiage, and statistical analyses of phenomena whose

relevance for cognition remains unclear. What the complex-systems approach has arguably failed to

deliver are concrete insights about how people perceive, think, decide, and act. Without formal mod-

els that implement the proposed abstract concepts, the complex-systems approach to cognitive sci-

ence runs the danger of becoming a philosophical exercise in futility. The complex-systems approach

can be informative and innovative, but only if it is implemented as a formal model that allows con-

crete prediction, falsification, and comparison against more traditional approaches.
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Ever since its introduction (Gilden, Thornton, & Mallon, 1995), the precise contribution

of the complex-systems approach to the study of cognition has been shrouded in mystery. It

is not entirely clear, for example, what exactly we will have learned about the mind when

psychological time series contain ‘‘1/f noise,’’ that is, long-range correlations in observed

performance.

The mystery deepens when we consider the four topiCS articles that promote a com-

plex-systems approach to cognitive science (Dixon, Holden, Mirman, & Stephen, in
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press; Gibbs & Van Orden, in press; Riley, Shockley, & Van Orden, in press; Silberstein

& Chemero, in press). At their core, these four articles advance the following three-step

argument: (a) there is 1/f noise in psychological time series; (b) 1/f noise is a signature

of systems that are nonlinearly coupled, dynamical, self-organized critical, synergistic,

scale-free, exquisitely context-sensitive, interaction-dominant, multifractal, and inter-

dependent; (c) hence, the presence of 1/f noise demonstrates that the brain is an inter-

action-dominant system that should be studied using techniques from dynamical systems

theory. Moreover, traditional component-dominant theories and models should be aban-

doned. We aim to show that this line of reasoning is counterproductive, potentially

misleading, and a way to avoid the difficult but necessary mathematical modeling that

has gone hand in glove with the complex-systems approach in physics (see also van der

Maas, 1995).

To be fair, the complex-systems approach does have a lot of potential. It is inherently

multidisciplinary as it draws heavily on concepts first developed in physics and economics;

it promotes the study of intraindividual variability, a topic that is currently understudied; it

advances a new perspective on human performance and cognition; it can improve our under-

standing of clinical disorders (Gilden & Hancock, 2007; Gottschalk, Bauer, & Whybrow,

1995); it tries to account for phenomena that have been ignored by more traditional

approaches; and it could yield insights that change the way we model cognition, as many

current approaches such as ACT-R (Anderson, Fincham, Qin, & Stocco, 2008; Borst, Taat-

gen, Stocco, & van Rijn, 2010) are explicitly modular (‘‘component-dominant’’). However,

the complex-systems approach has harbored this potential for over 15 years. At some point,

that potential needs to be transformed to tangible benefits: new insights, new models, and

new predictions. In our opinion, this has happened in the movement sciences (e.g., Torre &

Wagenmakers, 2009) but much less so in cognitive science.

1. Analysis of the three-step argument

There are some problems with the three-step line of reasoning as it is used in the com-

plex-systems approach to the study of human cognition. We expect many of these problems

will disappear once the complex-systems approach develops concrete models for the phe-

nomenon under study.

1.1. Step 1: Detect 1/f noise in time series of human performance

This is the least controversial step in the argument, and it nonetheless continues to be the

topic of a heated methodological debate (Craigmile, Peruggia, & Van Zandt, 2010; Delig-

nières, Ramdani, Lemoine, Torre, Fortes, & Ninot, 2006; Farrell, Wagenmakers, & Ratcliff,

2006; Gilden, 2009; Ihlen & Vereijken, 2010; Thornton & Gilden, 2005; Torre, Delignières,

& Lemoine, 2007; Wagenmakers, Farrell, & Ratcliff, 2004). To show that a time series con-

tains 1/f noise or long-range correlations, one needs to rule out that the observed correlations

are short-range; short-range correlations are automatically generated by run-of-the-mill
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autoregressive moving average processes. This means that one needs to propose one set of

statistical models for long-range correlation and another, competing set of models for short-

range correlations—subsequently, the models can be compared on how well they fit the

observed data, after appropriately correcting for differences in model complexity. In addi-

tion, one needs to take into account that the data could be nonstationary, for instance,

because of slow changes in mean or variance. Wagenmakers, Farrell, and Ratcliff (2005)

and Farrell et al. (2006) showed that many psychological times series most likely did not

contain 1/f noise, a conclusion contested by Thornton and Gilden (2005) and Gilden (2009).

In the movement sciences, the evidence for 1/f noise appears to be much stronger than it is

in cognitive science (e.g., Torre, 2008).

1.2. Step 2: Conclude that the presence of 1/f noise shows the system is
interaction-dominant

This is a crucial step that goes at the heart of what it means to observe 1/f noise. As sum-

marized by Wagenmakers et al. (2005), 1/f noise is not a unique property of interaction-

dominant systems. For instance, Granger (1980) has shown that the aggregation of many

short-range processes can yield a long-range process. Such aggregation is plausible in eco-

nomics and also in the neurosciences. More important, the physics literature shows that

the phenomenon of 1/f noise is acutely sensitive to specific details of the system under

study. To observe 1/f noise and label the system ‘‘interaction-dominant‘‘ is to ignore the

more interesting question of why and under what circumstances the system generates 1/f
noise.

As an example, consider systems that display self-organized criticality (SOC; Bak, 1996;

Jensen, 1998; Sornette, 2000). One often-studied system that displays SOC is a pile of rice

on a table (Fig. 1A; e.g., Wagenmakers et al., 2005; see Jensen, 1998 for details). Grains of

rice are dropped onto the pile one by one. When the local slope of the rice pile is sufficiently

steep, this causes an avalanche that transports grains downhill. A rice pile that is in a critical

state features many local slopes near threshold, such that adding a single grain of rice can

trigger a cascade of avalanches. Thus, by continually adding grains the rice pile self-

organizes to a critical state in which the size of avalanches follows a power-law distribution

or 1/f noise (see also Lörincz, 2008). Grains of rice exit the system when they fall off the

table.

Now consider Fig. 1B, showing a pile of salt.1 Under exactly the same circumstances as

the pile of rice, the pile of salt does not display 1/f noise. Fig. 1C shows a different pile of

salt. This pile is bounded by two orthogonal walls on the corner of the table, and it is driven

by dropping grains along the edges of the walls. This particular pile of salt does display 1/f
noise. Finally, Fig. 1D shows the same situation as in Fig. 1C, but now the grains are added

to random positions on the interior of the pile. Surprisingly, this pile of salt does not display

1/f noise (Jensen, 1998, pp. 30–42).

This example highlights the fact that SOC systems generate 1/f noise under very specific

circumstances. When these circumstances are ignored—the shape of the grains that make up

the pile, the way in which the pile is driven to threshold—one cannot truly understand why
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some piles show 1/f noise and others do not. Regardless, we expect that many cognitive sci-

entists feel that the comparison of human cognition to a pile of rice is not compelling; what

we need instead is a concrete model for the phenomenon of interest (van der Maas, 1995).

In the study of human performance, we need a model of the task requirements and the men-

tal processes involved. The idea that the complex-systems approach does not require such

concrete modeling is mistaken. As already pointed out by Jensen (1998, p. 6), verbal

descriptions and metaphors of SOC in the absence of concrete models constitute ‘‘rather

abstract, heuristic wishful thinking.’’

1.3. Step 3: Conclude that cognition is interaction-dominant and traditional approaches
should be abandoned

The final step is to conclude that cognition is ‘‘interaction-dominant‘‘ and that the new

tools of complex-systems theory should replace the old science of component-dominant

dynamics. However, from the perspective of a cognitive scientist the tools of complex-

systems theory may appear to be limited (i.e., they mostly involve the detection of 1/f
noise), superficial (i.e., they deal with the observed data instead of latent cognitive

processes), and overly general (i.e., they ignore the details of the task and the participant).

Moreover, old science seems to be doing rather well and can boast an arsenal of useful

(A) (B)

(C) (D)

Fig. 1. Piles of rice and salt illustrate the sensitivity of SOC to design details. (A) A pile of rice exhibits 1/f noise;

(B) a pile of salt does not exhibit 1/f noise; (C) when driven by adding grains along the edges of two orthogonal

walls, the bounded pile of salt exhibits 1/f noise; (D) when driven by adding grains to random positions on the

interior, the bounded pile of salt does not exhibit 1/f noise. For details, see Jensen (1998).
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models of how people think, decide, reason, learn, recall, attend, perceive, and act. These

models allow us to go beyond the observed data and infer something about the underlying

cognitive processes or architecture, something that the complex-systems approach only

admits in the most general sense.

The deeper problem is whether cognitive scientists really care whether cognition is

‘‘interaction-dominant’’ or not. Many people already intuit that the human brain is a pretty

complex entity, something substantially more complex than a pile of rice. If the goal is to

convince cognitive scientists that particular paradoxes can be resolved only in a complex-

systems framework, then one needs to construct a formal complex-systems model that suc-

ceeds where a standard model fails (van der Maas, 1995).

It should also be noted that standard models of human cognition are sometimes

special cases of nonlinear systems with many interacting components. For instance,

Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed models for optimal

decision making in neural networks, and they demonstrated that the standard drift diffu-

sion model (Ratcliff, 1978) can be considered a simplification of a highly interactive

‘‘pooled inhibition‘‘ model proposed by Wang (2002). In this case a standard mathe-

matical model in psychology is fully justified from a complex-systems perspective. We

conjecture that this applies to many existing models in psychology. The tension between

old science versus the complex-systems approach may therefore be more apparent than

real.

Currently, the complex-systems approach proceeds by identifying a mysterious phenome-

non (i.e., 1/f noise) and explaining this phenomenon by verbal reference to a series of other

mysterious phenomena (e.g., SOC), without ever making contact with latent cognitive

processes. This is unfortunate because latent cognitive processes are exactly what cognitive

scientists are interested in (Kaplan & Bechtel, in press).

2. Concrete alternative approaches

We wish to avoid the impression that we dislike almost everything about complex-

systems theory. In fact, the opposite is true, and we have worked on several collaborative

projects that involve complex systems: Dutilh, Wagenmakers, Visser, and van der Maas (in

press) proposed a cusp catastrophe model of the speed-accuracy tradeoff (see also Ploeger,

van der Maas, & Hartelman, 2002; van der Maas & Molenaar, 1992) and Torre and Wagen-

makers (2009) demonstrated how a mechanistic model of 1/f noise can be successfully inte-

grated with currently established models for rhythmic self-paced, synchronized, and

bimanual tapping. We also like the work by Usher, Stemmler, and Olami (1995), who devel-

oped a model of 1/f noise in spike trains of neural populations.

Another relatively recent trend in cognitive science is that of quantum cognition. The

verdict on quantum cognition is still out, but its proponents have at least developed con-

crete models to account for phenomena that normative models have had difficulty

explaining (e.g., Aerts, 2009; Bruza, Busemeyer, & Gabor, 2009; Pothos & Busemeyer,

2009).
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3. Conclusion

The complex-systems approach provides an exciting new perspective on human cogni-

tion. However, we believe it is vital that the approach matures to include concrete models

for the cognitive phenomena under study. Currently, the complex-systems approach does

itself a disservice by eschewing formal models in favor of verbal generalities. As a result,

we fear that many cognitive scientists might judge the four current topiCS articles (Dixon et

al., in press; Gibbs & Van Orden, in press; Riley et al., in press; Silberstein & Chemero, in

press) to be mostly speculation, wrapped in jargon, inside wishful thinking.

Note

1. The standard example concerns a pile of sand. For convenience, we assume here that

grains of sand behave identically to grains of salt.
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