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Abstract People tend to slow down after they make an
error. This phenomenon, generally referred to as post-error
slowing, has been hypothesized to reflect perceptual
distraction, time wasted on irrelevant processes, an a priori
bias against the response made in error, increased variabil-
ity in a priori bias, or an increase in response caution.
Although the response caution interpretation has dominated
the empirical literature, little research has attempted to test
this interpretation in the context of a formal process model.
Here, we used the drift diffusion model to isolate and
identify the psychological processes responsible for post-
error slowing. In a very large lexical decision data set, we
found that post-error slowing was associated with an
increase in response caution and—to a lesser extent—a
change in response bias. In the present data set, we found
no evidence that post-error slowing is caused by perceptual
distraction or time wasted on irrelevant processes. These
results support a response-monitoring account of post-error
slowing.

Keywords Response caution . Response time
distributions . Cognitive control and automaticity . Diffusion
model decomposition . Lexical decision

“What does a man do after he makes an error?” This
question is just as valid as when it was first articulated by
Rabbitt and Rodgers (1977), over 30 years ago. One answer
to this question is that, after making an erroneous decision,
one slows down on the next decision—an empirical
regularity known as post-error slowing (PES; Laming,
1968, 1979a, 1979b; Rabbitt, 1966, 1979; Rabbitt &
Rodgers, 1977). However, this answer raises a new and
more interesting question: Namely, why does one slow
down after making an error? Various answers have been
proposed, and one of the main goals of this article is to
implement these answers in a formal model of decision
making so as to compare their adequacy in a precise and
quantitative fashion.

The competing explanations for PES, detailed in the next
section, are (1) increased response caution, (2) an a priori
bias away from the response that was just made in error, (3)
an overall decrease in the across-trial variability of a priori
bias, (4) distraction of attention, and (5) delayed startup due
to irrelevant processes (e.g., overcoming disappointment).
We propose that these five explanations map uniquely onto
parameters in a drift diffusion model for response time (RT)
and accuracy (Ratcliff, 1978; Ratcliff & McKoon, 2008).
As we will explain below, this one-to-one mapping between
psychological processes and model parameters allows for
an informative diffusion model decomposition of PES and a
rigorous assessment of the extent to which each explanation
(or, indeed, any combination of them) holds true.

A major practical obstacle that we needed to overcome
was that the drift diffusion model requires relatively many
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observations to produce informative parameter estimates; as
a rule of thumb, the model requires at least 10 error RTs in
each experimental condition. Because the interest here
centered on trials that follow an error, this means that the
model required at least 10 errors that immediately followed
an error. With an error rate of 5% throughout, the minimum
number of observations would already be 4,000. Thus, a
reliable diffusion model decomposition of PES would
require a relatively large data set (or a data set with many
errors). Here we fit the model to a lexical decision data set
featuring 39 participants who each completed 28,074 trials
of speeded two-choice decisions (Keuleers, Brysbaert, &
New, 2010).

In the next sections, we will briefly discuss the different
explanations for PES and formalize these predictions in the
context of the drift diffusion model. We then test the
different explanations by fitting the model to the lexical
decision data from Keuleers, Brysbaert, & New (2010).

Explanations for post-error slowing

Over the years, several explanations have been proposed to
account for PES. The first explanation (i.e., increased
response caution) is that an error prompts people to
accumulate more information before they initiate a deci-
sion. The underlying idea is that people can adaptively
change their response thresholds—becoming slightly less
cautious after a correct response, and more cautious after an
error—and thereby self-regulate to an optimal state of
homeostasis characterized by fast responses and few errors
(e.g., Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Brewer & Smith, 1989; Cohen, Botvinick, & Carter, 2000;
Fitts, 1966; Rabbitt & Rodgers, 1977; Smith & Brewer,
1995; Vickers & Lee, 1998). This explanation is so
appealing that it is often assumed to be correct without
further testing. That is, PES is often interpreted as a direct
measure of cognitive control. Conclusions about cognitive
control are then based on associations between PES and
physiological measures such as anterior cingulate activity
(Li, Huang, Constable, & Sinha, 2006; Danielmeier,
Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011),
error-related negativity and positivity (Hajcak, McDonald,
& Simons, 2003), or cortisol levels (Tops & Boksem,
2011). Alternatively, conclusions about cognitive control
may be based on a comparison of PES between clinical
groups (e.g., Shiels & Hawk, 2010).

The second explanation (i.e., a priori bias) is that people
become negatively biased against the response option that
was just executed in error (e.g., Laming, 1968, 1979b;
Rabbitt & Rodgers, 1977). This implies that errors facilitate
response alternations and hinder response repetitions, with
respect to both response speed and probability of occurrence.

The third explanation (i.e., decreased variability in bias)
is that, following an error, people more accurately control
the timing of the onset of information accumulation. This
idea, first promoted by Laming (1968, 1979a), is that in
speeded RT tasks people often start to sample information
from the display even before the stimulus is presented. This
advance sampling of stimulus-unrelated information indu-
ces trial-to-trial variability in a priori bias. This variability
may cause fast errors, and therefore a cautious participant
would start the information accumulation process at
stimulus onset, but not before.

The fourth explanation (i.e., distraction of attention) is
that the occurrence of an error is an infrequent, surprising
event that distracts participants during the processing of the
subsequent stimulus (Notebaert et al., 2009). Thus, the
error-induced distraction contaminates the process of
evidence accumulation.

The fifth explanation (i.e., delayed startup) is that errors
delay the start of evidence accumulation on the next trial;
for instance, participants might need time after an error to
reassess their own performance level and overcome
disappointment (Rabbitt & Rodgers, 1977).

In the literature, the first explanation of PES (i.e.,
increased response caution) has always been the most
dominant. Many studies that associate PES with cognitive
control affirm this association simply by citing Rabbitt
(1966). However, Rabbitt (1966, p. 272) concluded that his
data “do not allow a choice between possible explanations.”
Other studies have not tested the competing explanations in
a rigorous and quantitative manner (but see White, Ratcliff,
Vasey, & McKoon, 2010b). Here, we set out to test the five
explanations above in the context of what is arguably the
most popular and successful model for RTs and accuracy,
the drift diffusion model (Ratcliff, 1978; Ratcliff &
McKoon, 2008).

A drift diffusion model decomposition of response times

In the analysis of speeded two-choice tasks, performance
is usually summarized by mean RTs and proportions
correct. Although concise, this summary ignores impor-
tant aspects of the data and makes it difficult to draw
conclusions about the underlying cognitive processes that
drive performance (Wagenmakers, van der Maas, &
Grasman, 2007). A more detailed and more informative
analysis would take into account the entire RT distribu-
tions for both correct and error responses, in addition to
proportions correct. These RT distributions can be ana-
lyzed with the help of formal models; here, we focus on
the drift diffusion model.

The drift diffusion model has been successfully applied
to a wide range of experimental tasks, including brightness
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discrimination, letter identification, lexical decision, recog-
nition memory, signal detection, and the Implicit
Association Test (e.g., Dutilh, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2009; Klauer, Voss,
Schmitz, & Teige-Mocigemba, 2007; Ratcliff, 1978;
Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2006, 2010; van Ravenzwaaij, van der Maas, &
Wagenmakers, 2011; Wagenmakers, Ratcliff, Gomez, &
McKoon, 2008). In these tasks and others, the model has
been used to decompose the behavioral effects of phenom-
ena such as practice (Dutilh et al., 2009; Dutilh, Krypotos,
& Wagenmakers, 2011; Petrov, Horn, & Ratcliff, 2011),
aging (Ratcliff, Thapar, & McKoon, 2001, 2006, 2010),
psychological disorders (White, Ratcliff, Vasey, &
McKoon, 2009, 2010a, 2010b), sleep deprivation (Ratcliff
& Van Dongen, 2009), intelligence (Ratcliff, Schmiedek, &
McKoon, 2008; Schmiedek, Oberauer, Wilhelm, Süß, &
Wittmann, 2007; van Ravenzwaai j , Brown, &
Wagenmakers, 2011), and so forth.

The success of the drift diffusion model is due to several
factors. First, this model not only takes into account mean
RTs, but considers entire RT distributions for correct and
error responses; second, the drift diffusion model generally
provides an excellent fit to observed data, with relatively
few parameters left free to vary; third, the drift diffusion
model accounts for many benchmark phenomena (Brown &
Heathcote, 2008; but see Pratte, Rouder, Morey, & Feng,
2010); fourth, the model allows researchers to decompose
observed performance into constituent cognitive processes
of interest; finally, evidence accumulation in the drift
diffusion model has been linked to the dynamics of neural
firing rates, showing that diffusion-like processes can be
instantiated in the brain (e.g., Gold & Shadlen, 2002, 2007).
Additional advantages (and limitations) of a diffusion
model analysis are discussed in more detail in
Wagenmakers (2009).

Here, we briefly introduce the drift diffusion model as it
applies to the lexical decision task, a task in which
participants have to decide quickly whether a presented
letter string is a word (e.g., party) or a nonword (e.g.,
drapa). The core of the model is the Wiener diffusion
process, which describes how the relative evidence for one
of two response alternatives accumulates over time. The
meandering lines in Fig. 1 illustrate the continuous
accumulation of noisy evidence following the presentation
of a word stimulus. When the amount of diagnostic
evidence for one of the response options reaches a
predetermined response threshold (i.e., one of the horizon-
tal boundaries in Fig. 1), the corresponding response is
initiated. The darker gray line in Fig. 1 shows how the
noise inherent in the accumulation process can sometimes
cause the process to end up at the wrong (i.e., nonword)
response boundary.

The standard version of the drift diffusion model
decomposes RTs and proportions correct into seven
different parameters:

1. Mean drift rate (v). Drift rate quantifies the rate of
information accumulation from the stimulus. This
means that when the absolute value of drift rate is
high, decisions are fast and accurate; thus, v relates to
task difficulty or subject ability.

2. Across-trial variability in drift rate (η). This parameter
reflects the fact that drift rate may fluctuate from one
trial to the next, according to a normal distribution with
mean v and standard deviation η. The η parameter
allows the drift diffusion model to account for data in
which error responses are systematically slower than
correct responses (Ratcliff, 1978).

3. Boundary separation (a). Boundary separation quanti-
fies response caution and modulates the speed–accuracy
trade-off: At the price of an increase in RTs, participants
can decrease their error rate by widening the boundary
separation (e.g., Forstmann et al., 2008).

4. Mean starting point (z). The starting point reflects the
a priori bias of a participant for one or the other
response. This parameter is usually manipulated via
payoff or proportion manipulations (Edwards, 1965;
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total RT

non−word
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Fig. 1 The drift diffusion model as it applies to the lexical decision
task. A word stimulus has been presented (not shown), and two
example sample paths represent the accumulations of evidence that
result in one correct response (lighter line) and one error response
(darker line). Repeated applications of the diffusion process yield
histograms of both correct responses (upper histogram) and incorrect
responses (lower histogram). As is evident from the histograms, the
correct, upper, word boundary is reached more often than the
incorrect, lower, nonword boundary. The total RT consists of the
sum of a decision component, modeled by the noisy accumulation of
evidence, and a nondecision component that represents the time
needed for processes such as stimulus encoding and response
execution
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Wagenmakers et al., 2008; but see Diederich &
Busemeyer, 2006). Here, we report z as a proportion
of boundary separation a, referred to as bias B.

5. Across-trial variability in starting point (sz). This
parameter reflects the fact that starting point may
fluctuate from one trial to the next, according to a
uniform distribution with mean z and range sz. The
parameter sz also allows the drift diffusion model to
account for data in which error responses are system-
atically faster than correct responses (Laming, 1968;
Ratcliff & Rouder, 1998). Analogous to the transfor-
mation of z to B, sz is often transformed to sB.

6. Mean of the nondecision component of processing (Ter).
This parameter encompasses the time spent on common
processes—that is, processes executed irrespective of
the decision process. The drift diffusion model assumes
that the observed RT is the sum of the nondecision
component and the decision component (Luce, 1986):

RT ¼ DTþ T er; ð1Þ

where DT denotes decision time. Therefore, nondeci-
sion time Ter does not affect response choice and acts
solely to shift the entire RT distribution.

7. Across-trial variability in the nondecision component of
processing (st). This parameter reflects the fact that
nondecision time may fluctuate from one trial to the
next, according to a uniform distribution with mean Ter
and range st. The parameter st also allows the model to
capture RT distributions that show a relatively shallow
rise in the leading edge (Ratcliff & Tuerlinckx, 2002).

As noted above, one of the strengths of the drift
diffusion model is that it allows us to decompose observed
performance into several latent psychological processes.
Such a decomposition relies on the validity of the mapping
between model parameters and the postulated psychological
processes. Fortunately, many experiments have attested to
the specificity and reliability of the model parameters. For
instance, Voss, Rothermund, and Voss (2004), Ratcliff and

Rouder (1998), and Wagenmakers et al. (2008) showed that
accuracy instructions increase boundary separation, easier
stimuli have higher drift rates, and unequal reward rates or
presentation proportions are associated with changes in
starting point. Moreover, simulation studies have shown
that the parameters of the diffusion model can be estimated
reliably (e.g., Ratcliff & Tuerlinckx, 2002; Wagenmakers,
van der Maas, & Molenaar, 2005). Finally, Ratcliff (2002)
has shown that the model fits real data but fails to fit fake
but plausible data.

From process to parameter: A drift diffusion model
perspective on post-error slowing

Many recent applications of the drift diffusion model have
been exploratory in nature; for instance, researchers have
used the drift diffusion model to study the psychological
processes that change with practice (Dutilh et al., 2011;
Dutilh et al., 2009), sleep deprivation (Ratcliff & Van
Dongen, 2009), hypoglycemia (Geddes et al., 2010), and
dysphoria (White et al., 2009, 2010a), but this work has
seldom been guided by strong prior expectations and
theories. The situation is different in the case of PES,
perhaps because explanations for PES have originated in
part from a framework of sequential information processing
(e.g., Laming, 1979a). Therefore, the competing explan-
ations for PES—in terms of the cognitive processes that
change after an error—can be mapped selectively to
different parameters in the drift diffusion model, as is
shown in Fig. 2.

Thus, the cognitive-process explanation of increased
response caution maps onto an increase in boundary
separation a; the explanation of a priori bias corresponds
to a shift in bias B away from the boundary that was just
reached in error; the explanation of decreased variability in
bias translates to a decrease in across-trial variability sz; the
explanation of distraction of attention entails a decrease in
mean drift rate v; and, finally, the explanation of delayed

Fig. 2 Cognitive-process
explanations for post-error
slowing (PES) map uniquely
onto different parameters from
the drift diffusion model. See
the text for details

Atten Percept Psychophys (2012) 74:454–465 457



startup is associated with an increase in mean nondecision
time Ter. The unique links between processes and param-
eters mean that competing explanations for PES can be
rigorously tested in any particular paradigm, as long as the
drift diffusion model applies and the data set is sufficiently
large. In the context of PES, the latter concern is
particularly acute.

Method

The present data set was originally collected to validate a
new measure for word frequency (i.e., SUBTLEX-NL;
Keuleers, Brysbaert, & New, 2010). Each of 39 participants
contributed 28,074 lexical decisions, for a grand total of
1,094,886 decisions. Half of the stimuli were uniquely
presented words, and the other half were uniquely pre-
sented nonwords. The word stimuli were selected from the
CELEX database (Baayen, Piepenbrock, & van Rijn, 1993),
and the nonword stimuli were created with the Wuggy
pseudoword generator (Keuleers & Brysbaert, 2010).

The experiment was presented in blocks of 500 trials
with a self-paced break after every 100 trials. Each trial
started with a 500-ms fixation period. The stimulus was
then presented until the participant responded, up to a
maximum of 2,000 ms. A new trial started 500 ms after
the response. Participants received feedback about their
accuracy after each block of 500 trials. Importantly,
participants did not receive trial-by-trial feedback
concerning errors. This means that any post-error effects
were not contaminated by the possibly distracting
presence of error feedback. More detailed descriptions
of the experimental methods are presented in Keuleers,
Brysbaert, & New (2010) and Keuleers, Diependaele, and
Brysbaert (2010).

The enormous number of lexical decision trials in this
data set featured a commensurate amount of errors; across
all participants, 118,566 trials (i.e., 10.80%) contained
errors. This abundance of errors allowed us to examine
the explanations for PES across various conditions.
Specifically, we were able to compare post-error effects
separately for nonword and word stimuli of varying word
frequencies. That is, we used word frequency (based on
SUBTLEX) to divide all words into six equally large bins,
the five cut points being 0.11, 0.48, 1.33, 3.73, and 14.16
occurrences per million.

Results and discussion

Below we first discuss the effects of errors on the observed
performance—that is, on RTs and proportions correct. Next,
we fit the drift diffusion model to the data and discuss the

effects of errors on the latent psychological processes
hypothesized to explain PES.1

Post-error effects on observed data The different
hypotheses about PES entail effects on RTs, effects on
proportions correct, or a combination of the two. It would
therefore be informative to show—both for post-error and
postcorrect trials, as well as for different stimulus categories—
entire distributions of RTs for correct and error responses,
together with proportions correct. A convenient tool to paint
this multivariate picture is the quantile probability plot (e.g.,
Ratcliff, 2002). Figure 3 shows a quantile probability plot for
the data from Keuleers, Brysbaert, and New (2010), based on
averaging RT quantiles and proportions across individual
participants.

Figure 3 features two important factors in the design of
this study—that is, post-error trials versus postcorrect trials
(i.e., triangles vs. circles) and the word frequency of the
current stimulus (including nonwords; different shades of
gray). The plot is read as follows. Each column of points
summarizes a single RT distribution by five quantiles (i.e.,
the .1, .3, .5, .7, and .9 quantiles; e.g., the .1 quantile is the
RT value for which 10% of the RT distribution was faster;

1 The analyses reported here concern the difference between post-
correct trials and post-error trials. Results based on the difference
between pre-error and post-error trials yielded quantitatively and
qualitatively similar results. The latter results can be found at the first
author’s Web site.
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Fig. 3 Post-error and word frequency effects on RT distributions and
accuracy: Each pair of dots on the right half of the figure reflects the
distribution of correct RTs in a condition, and its position on the x-axis
defines the accuracy in this condition. Each correct-RT distribution on
the right half has its incorrect-RT counterpart on the left half of the
figure, at one minus the accuracy on the x-axis. Post-error trials are
slower and somewhat more accurate than postcorrect trials. This
pattern holds for all word stimuli, but it is more pronounced for low-
frequency words (“freq 1”) than for high-frequency words (“freq 6”).
In addition, the effect is more pronounced in the tail of the RT
distribution
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the .5 quantile is the median RT). Each column in the right
half of the figure describes a correct-RT distribution for a
particular condition; its position on the x-axis shows the
corresponding proportion correct (e.g., x = .61 for the
postcorrect, low-frequency “freq 1” words). This correct-RT
distribution has an associated distribution of incorrect RTs,
shown in the left half of the figure (e.g., x = 1 – .61 = .39 for
the postcorrect, low-frequency “freq 1” words).

Figure 3 shows that word frequency benefits perfor-
mance: High-frequency words are associated with low error
rates and fast RT quantiles. More important for the present
study, RT quantiles are slower after an error (triangles) than
after a correct response (circles). The slowdown is smallest

in the leading edge of the distribution (for correct
responses, on average 3 ms for the .1 quantile) and biggest
at the tail (on average 38 ms for the .9 quantile). These PES
effects are more pronounced for low-frequency (Frequency
Groups 1 and 2) than for high-frequency words. Figure 4
zooms in to the PES effect by presenting the data (and the
model fit discussed later) as a delta plot (de Jong, Liang, &
Lauber, 1994; Pratte et al., 2010; Speckman, Rouder,
Morey, & Pratte, 2008). In a delta plot, the factor of
interest—in this case, the PES effect—is shown as a
function of response speed. Here, Fig. 4 shows the average
PES effect (i.e., the PES effect across all experimental
conditions, quantile-averaged across participants). The delta
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plot indicates that the PES effect is negligible for very fast
responses and becomes more prominent when RTs are slow.

In the following discussion, we will assess differences
between conditions by quantifying the evidence in favor of
or against the null hypothesis using a default Bayesian t test
(Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wetzels,
Raaijmakers, Jakab, & Wagenmakers, 2009; Wetzels et al.,
2011). The resulting Bayes factor BF10 quantifies how
much more (or less) likely the data are under the alternative
hypothesis than under the null hypothesis. For instance, a
BF10 of 2 indicates that the data are twice as likely under
the alternative hypothesis than under the null hypothesis,
whereas a BF10 of 1/2 indicates that the data are twice as
likely under the null hypothesis than under the alternative
hypothesis.

For the low-frequency words, accuracy is slightly higher
following an error than following a correct response (BF10 =
51.8). For higher word frequencies, no change in accuracy
was present (all Bayes factors BF10 < 1/2.61). The small
decrease in post-error accuracy for nonwords (about 0.7%) is
supported by a Bayes factor of 10.0.

Although the post-error effects in Fig. 3 are qualitatively
consistent across different levels of word frequency, it is not
unambiguously clear how these effects should be inter-
preted in terms of underlying psychological processes. The
simultaneous increase in RTs and accuracy seems to
support an explanation in terms of increased response
caution. However, the observed results could also be
produced by a combination of increased attention (i.e., drift
rate v) and a delayed startup of processing (i.e., nondecision
time Ter). And, even if one were to ignore this alternative
interpretation, it is by no means certain that the observed
data would support a single psychological mechanism for
PES. In order to address this issue and provide a
comprehensive account of the data in terms of the
underlying, possibly interacting psychological processes
that cause PES, we now turn to a diffusion model
decomposition.

Post-error effects on latent processes We fit the model
to the individual data using the MATLAB package DMAT
(Vandekerckhove & Tuerlinckx, 2007, 2008), which allows
the user to estimate the model parameters using maximum
likelihood. As noted above, the size of the present data set
allowed us to examine several experimental conditions or
factors. The primary factor was the Correctness of the
Previous Trial, and secondary factors were Stimulus Type
(i.e., Word vs. Nonword) on the Current Trial, Word
Frequency on the Current Trial, and Stimulus Type on the
Previous Trial.

For the secondary factors we used the BIC (Bayesian
information criterion; Schwarz, 1978; Raftery, 1995) to
eliminate excess parameters and select the most parsimoni-
ous model that still gave an acceptable fit to the data. This

BIC-best model was then used to quantify the impact of the
primary factor of interest; that is, the factor Post-error
Versus Postcorrect was allowed to affect all of the diffusion
model parameters.

In this BIC-best model, the different factors affected the
model’s parameters as follows: Stimulus Type of the
Current Trial was allowed to affect drift rate v and its
variability η, as well as nondecision time Ter. Word
Frequency was allowed to affect drift rate v and Ter.
Stimulus Type of the Previous Trial was allowed to affect
bias B and its variability sB. In support of the model
selected to analyze the PES effect, Table 1 shows the BIC
difference (averaged across participants) between the
selected model described above and four alternative
models. These alternatives implement restrictions on the
selected model to test the necessity of including (1) the
effect of word frequency on Ter, (2) the stimulus type effect
on η, (3) the previous stimulus’s effect on B and its
variability sB, and (4) the word frequency effect on v.
Table 1 shows that for the postcorrect trials, the alternative
models all perform worse than the selected model. This
indicates that the parameters excluded in each of the
alternative models are essential to account for the data.
For the post-error trials, the BIC recommends two
alternative models over the selected model. However, the
use of different models for the postcorrect and post-error
conditions would hinder a direct comparison between them,
and therefore we opted to analyze the data with the single
model outlined above.

Figure 4, discussed earlier, compares the data against the
model predictions. The solid dots represent the empirical

Table 1 BIC results for the model selected to analyze the PES effect

Condition Omitted Effect Average BIC
Difference

Postcorrect Word frequency on Ter 197.98

Stimulus type on η 182.82

Previous stimulus on B and sB 227.14

Word frequency on v 1,702.75

Post-error Word frequency on Ter −21.76
Stimulus type on η −8.52
Previous stimulus on B and sB 0.65

Word frequency on v 211.88

The middle column indicates how alternative models were created by
restricting the selected model in several ways. The rightmost column
shows the BIC difference (averaged across participants), in favor of
the selected model against each of the alternative models. Positive
BIC values indicate that the selected model is better. For the
postcorrect trials, the omission of any of the effects results in a
clearly worse fit. For the post-error trials, the BIC results suggest that
the word frequency effect on Ter and the stimulus type effect on η are
not needed. See the text for details.
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data (i.e., the PES effect in all experimental conditions,
quantile-averaged across participants), and the lines with
open dots represent the predictions of the best-fitting model
parameters. Overall, the fit is good, except perhaps for the
.9 quantile; this might be due to the fact that this quantile is
the most difficult to estimate reliably.

Figures 5 and 6 show the estimates for the diffusion
model parameters, averaged over participants. The associ-
ated Figs. 7 and 8 present the differences in the model
parameters for postcorrect versus post-error trials. The most
obvious effect in Figs. 5 and 7 is the increase in boundary
separation after an error, shown in the upper left panels of

both figures. This increase in boundary separation indicates
that, on average, participants became more cautious after
committing an error. The Rouder et al. (2009) default
Bayesian t test indicated that the data were about 180,000
times more likely under the alternative hypothesis of
unequal boundary separation than under the null hypothesis
of equal boundary separation; this is considered extreme
evidence in favor of an effect.

The bottom left panels of Figs. 5 and 7 show the post-
error effect on bias. After an error, participants shifted their
a priori preference toward the “word” response, both when
the erroneous response was “word” (BF10 = 11.2) and when
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it was “nonword” (BF10 > 8.51 × 107). In combination with
the overall error-induced increase in boundary separation,
this means that following an error, people became some-
what more careful to respond “word,” but even more
careful to respond “nonword.” The reason for this asym-
metry is currently unclear, and more empirical work will be
needed to ascertain whether the asymmetry generalizes to
other experimental designs.

The bottom left panel of Fig. 5 also shows a response
repetition effect: Participants had a bias toward the response
that was executed on the previous trial, regardless of whether

that response had been correct (BF10 > 1.35 × 109 for the
comparison of bias between postword responses and post-
nonword responses) or incorrect (BF10 > 2.34 × 103 for the
same comparison).

The right two panels of Figs. 5 and 7 show the post-error
effects on drift rate and nondecision time. Neither drift rate
(for all frequencies, BF10 < 1/3.06) nor nondecision time
(for all frequencies, BF10 < 1/3.00) was affected by whether
or not the response on the previous trial was incorrect. Drift
rate did increase with word frequency, indicating that high-
frequency words were easier to classify than low-frequency
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words (see also Ratcliff et al., 2004; Wagenmakers et al.,
2008). Nondecision time was also affected by word
frequency, indicating that processes such as stimulus
encoding and response execution took less time for high-
frequency words than they did for low-frequency words.
This finding is conceptually consistent with that of Dutilh et
al. (2011), who found that practice for specific lexical items
reduced nondecision time.

Figure 6 shows the estimates for the variability param-
eters of the diffusion model, averaged over participants.
The associated Fig. 8 presents the differences in the model
parameters for postcorrect versus post-error trials. The
figures suggest that none of the variability parameters are
responsible for PES. However, we did find that the
variability in drift η was larger for words than for
nonwords, replicating the result from an earlier lexical
decision study (Dutilh et al., 2009).

In sum, the diffusion model decomposition supports an
explanation of PES in terms of increased response caution.

Concluding comments

“What does a man do after he makes an error?” Data from a
1,094,886-trial lexical decision task showed that people
slow down after an error, and a diffusion model decompo-
sition showed that this slowdown can be attributed almost
exclusively to an increase in response caution. This result
confirms the traditional explanation of PES in terms of self-
regulation and cognitive control (e.g., Botvinick et al.,
2001; Brewer & Smith, 1989; Cohen et al., 2000; Fitts,
1966; Hajcak et al., 2003; Li et al., 2006; Rabbitt &
Rodgers, 1977; Shiels & Hawk, 2010; Smith & Brewer,
1995; Tops & Boksem, 2011; Verguts, Notebaert, Kunde, &
Wühr, 2011; Vickers & Lee, 1998): That is, people
adaptively change their response thresholds to a possibly
nonstationary environment—by becoming more daring
after each correct response and more cautious after each
error, people reach an optimal state of homeostasis that is
characterized by fast responses and few errors.

Although this explanation of PES has strong face
validity, it is entirely possible that other explanations could
also be correct in particular cases. Only by applying a
formal process model can we evaluate the competing
accounts of PES quantitatively. Our results are partially
consistent with those of White et al. (2010b), who applied
the drift diffusion model to data from a recognition memory
task and found that participants with high trait anxiety
responded more carefully after making an error (i.e.,
increased boundary separation a following an error).
However, the data from White et al. (2010b) did not show
a response caution effect for participants with low trait

anxiety; in addition, their behavioral data did not show a
PES effect, and, moreover, the diffusion model decompo-
sition revealed that for both anxiety groups, errors were
followed by an unexpected decrease in nondecision time
and a decrease in discriminability (i.e., a drift rate
difference between targets and lures). Therefore, we feel
that our study presents a more compelling case in favor of
the increased-response-caution explanation of PES.

The present study shows that the drift diffusion model can
be used not only to theorize about the causes of PES, but also
to decompose the behavioral aftereffects of an error into its
constituent psychological processes. Such a decomposition is
considerably more informative than the standard analysis of
mean RTs and accuracy, and we believe that future studies of
PES can benefit from taking a similar approach.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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