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a b s t r a c t

Research in the field of mental chronometry and individual differences has revealed several
robust regularities (Jensen, 2006). These include right-skewed response time (RT) distribu-
tions, the worst performance rule, correlations with general intelligence (g) that are more
pronounced for RT standard deviations (RTSD) than they are for RT means (RTm), an almost
perfect linear relation between individual differences in RTSD and RTm, linear Brinley
plots, and stronger correlations between g and inspection time (IT) than between g and
RTm. Here we show how all these regularities are manifestations of a single underlying
relationship, when viewed through the lens of Ratcliff’s diffusion model (Ratcliff, 1978;
Ratcliff, Schmiedek, & McKoon, 2008). The single underlying relationship is between indi-
vidual differences in general intelligence and individual differences in ‘‘drift rate’’, which is
just the speed of information processing in Ratcliff’s model. We also test and confirm a
strong prediction of the diffusion model, namely that the worst performance rule general-
izes to phenomena outside of the field of intelligence. Our approach provides an integrative
perspective on intelligence findings.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sir Francis Galton (1822–1911), one of the founders of
differential psychology, believed that ‘‘general mental abil-
ity’’ manifests itself by the speed with which people per-
form elementary cognitive tasks. That is, intelligent
people should be faster than less intelligent people at
deciding, say, whether a clearly presented arrow points
to the left or to the right. Galton’s idea could be taken to
imply that individual differences in intelligence are caused
by individual differences in fundamental, low-level neuro-
physiological characteristics (e.g., Anderson & Reid, 2005)
such as brain glucose metabolic rate, intracellular pH lev-
els, or the degree of neural myelinization.

Galton’s idea was reductionist to such an extent
that it struck many people as counter-intuitive: how can

something so complex and multidimensional as human
intelligence be captured by something so simple and
unidimensional as response speed in elementary cognitive
tasks? The initial opposition to Galton’s idea was strong
enough to have it be rejected and ignored until the
1980s. Since then, overwhelming empirical evidence has
been gathered in support of Galton’s idea (for reviews see
Deary, 1994; Jensen, 2006). Indeed, there is now an entire
subfield called ‘‘differential mental chronometry’’, the goal
of which is to study the relation between measures of gen-
eral intelligence (g) and response time (RT) in elementary
cognitive tasks.

Over the course of several decades, researchers in the
field of differential mental chronometry have discovered
various regularities that any theory of the relation between
RT and g should try to accommodate (e.g., Jensen, 2006,
chap. 11). Here we focus on the following key regularities:

1. Right-skewed RT distributions. RT distributions have a
pronounced right skew. In addition, low-g people
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generate RTs that are more spread-out than those for
high-g people (e.g., Baumeister, 1998).

2. The Worst Performance Rule. Slow RTs are more indic-
ative of g than are fast RTs (e.g., Larson & Alderton,
1990; Unsworth, Redick, Lakey, & Young, 2010; for a
review see Coyle, 2003).

3. Stronger correlation between g and the standard devia-
tion of RT (RTSD) than between g and the mean of RT
(RTm). It is generally found that RTSD correlates slightly
higher with g than does RTm, which – as suggested by
Jensen (2006) – in turn correlates slightly higher with
g than does the median RT (Baumeister, 1998; Jensen,
1992; Walhovd & Fjell, 2007).

4. Linear relation between RTm and RTSD. As observed by
Jensen (2006, p. 202): ‘‘(. . .) there is a near-perfect cor-
relation between individual differences in RTm and
RTSD. (. . . ) Empirically measured diameters and cir-
cumferences of different-size circles are no more highly
correlated than are RTm and RTSD. The slight deviations
of their correlation coefficient from unity are simply
measurement errors.’’

5. Linear Brinley plots. Across several tasks that vary in
difficulty, the RTm of a group of low-g people is a con-
stant multiple of the RTm of a group of high-g people
(e.g., Rabbitt, 1996).

6. Stronger correlation between g and inspection time (IT)
than between g and RTm. The time needed to obtain a
predetermined level of accuracy in a simple visual
inspection task is more strongly related to g than is
RTm from a response time task (Jensen, 1998, 2006).

We demonstrate that all of the above regularities can be
viewed as manifestations of a single latent relationship.
We make this argument using one of the most popular
models for RT tasks: the diffusion model (e.g., Ratcliff,
1978; Ratcliff et al., 2008). This single latent relationship
is between individual differences in ‘‘drift rate’’ and indi-
vidual differences in g. Drift rate is a diffusion model
parameter that quantifies the signal-to-noise ratio of the
information-accumulation process. Since drift rate repre-
sents a signal-to-noise ratio, it can be affected by stimulus
manipulations and task demands. However, even in identi-
cal decision environments, different people will evince dif-
ferent drift rates, and we assume that these individual
differences are associated with intelligence, with high-g
people having high drift rates. The primary aim of this arti-
cle is to demonstrate that, although each of the six bench-
mark phenomena may appear different, and have inspired
different research efforts, they can all be accounted for by
this one common assumption. The diffusion model pro-
vides a unifying account of these six benchmark phenom-
ena, but also makes testable predictions about different,
related, phenomena. The secondary aim of this article is
to outline the advantages of a diffusion model analysis as
a tool in the study of the relation between response speed
and general intelligence.

The outline of this paper is as follows. The first section
briefly outlines Ratcliff’s diffusion model. The second sec-
tion describes how the single assumption that individual
differences in the diffusion model’s drift rate parameter
correlate with g naturally predicts the six key phenomena

in the field of differential mental chronometry. Earlier pa-
pers on this relationship laid the groundwork for establish-
ing some results in this section (right-skewed RT
distributions, the worst performance rule, the linear rela-
tion between RT mean and RT standard deviation, and lin-
ear Brinley plots). We add to these results the stronger
correlation between g and RT standard deviation than be-
tween g and RT mean, the stronger correlation between g
and inspection time than between g and RT mean, and a
non-trivial prediction of the worst performance rule: that
the worst performance rule is not specific to g, but gener-
alizes to other phenomena that affect drift rate, such as
stimulus difficulty. The third section lists the conceptual
and practical advantages, as well as two drawbacks, of a
diffusion model approach to the study of intelligence.
The fourth, concluding section discusses what we have
learned by attributing g to drift rate.

2. The diffusion model

In the diffusion model (Ratcliff, 1978; Ratcliff & Rouder,
2000; van Ravenzwaaij & Oberauer, 2009; Wagenmakers,
2009), stimulus processing is conceptualized as the noisy
accumulation of evidence over time. A response is initiated
when the accumulated evidence reaches a predefined
threshold (Fig. 1).

The model applies to tasks in which the participant has
to decide quickly between two alternatives. For instance, in
a lexical decision task, participants have to decide whether a
letter string is an English word, such as TANGO, or a non-
word, such as TANAG. The RTs in this task generally do
not exceed 1.0 or 1.5 s. The four key parameters of the dif-
fusion model are (1) the speed of information processing,
quantified by mean drift rate v; (2) response caution, quan-
tified by boundary separation a; (3) a priori bias, quantified
by mean starting point z; and (4) mean non-decision time,
quantified by Ter.

The model assumes that the decision process starts at z,
after which information is accumulated with a signal-
to-noise ratio that is governed by mean drift rate v.1 Con-
ceptually, drift rate captures a range of factors that affect
information accumulation, including characteristics of the
stimuli, the task, and the participant. Small drift rates (near
v = 0) produce long RTs and high error rates. Boundary
separation (a) determines the speed-accuracy tradeoff; low-
ering boundary separation leads to faster RTs at the cost of a
higher error rate. A starting point of z = .5a indicates and
unbiased decision process (an assumption we maintain
throughout the paper). Together, these parameters generate
a distribution of decision times DT. The observed RT,
however, also consists of stimulus-nonspecific components
such as response preparation and motor execution, which
together make up non-decision time Ter. The model
assumes that non-decision time Ter simply shifts the distri-
bution of DT, such that RT = DT + Ter (Luce, 1986). The full
diffusion model includes parameters that specify across-trial

1 Mathematically, the change in evidence X is described by a stochastic
differential equation dX(t) = n ! dt + s ! dW(t), where W(t) represents the
Wiener noise process (i.e., idealized Brownian motion). Parameter s
represents the standard deviation of dW(t) and is usually fixed.
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variability in drift rate, starting point, and non-decision time
(Ratcliff & Tuerlinckx, 2002), but these are fixed to zero
throughout this paper.

The advantages of a diffusion model analysis over stan-
dard analyses that separately consider accuracy and mean
response time are twofold. First, the model takes into ac-
count entire RT distributions, both for correct and incorrect
responses. Second, the model allows researchers to decom-
pose observed RTs and error rates into latent psychological
processes. The diffusion model has been successfully ap-
plied to a wide range of experimental paradigms, including
brightness discrimination, letter identification, lexical
decision, recognition memory, and signal detection (e.g.,
Dutilh, Wagenmakers, Vandekerckhove, & Tuerlinckx,
2009; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007;
Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Ratcliff,
Thapar, & McKoon, 2006b, 2010; van Ravenzwaaij, van
der Maas, & Wagenmakers, in press; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008).

3. Key phenomena in intelligence research captured by
drift rate

We discuss six important phenomena in the study of
mental chronometry in turn, each with a demonstration
that the diffusion model naturally predicts the data, with
the common assumption that g manifests itself through
drift rate v.

3.1. Right-skewed RT distributions

Distributions of RT are almost always right-skewed
(e.g., Baumeister, 1998). Typically, the spread of the distri-
bution is negatively correlated with the participant’s g (i.e.,

low-g participants have a more spread-out RT distribution
than high-g participants). The diffusion model not only
predicts RT distributions with a right-skew, but also cannot
account for RT distributions with any other shape (cf.
Ratcliff, 2002).

Fig. 2 shows how right-skewed RT distributions follow
naturally from the geometry of the diffusion model (see
also Ratcliff, Spieler, & McKoon, 2000, Fig. 6). The figure
shows 10 lines with slopes / = {1,2, . . . ,10}, which can be
thought of as different accumulation paths for a single par-
ticipant that vary over trials. For presentational conve-
nience, we have omitted the noise from the accumulation
paths (but adding noise does not lead to a qualitatively dif-
ferent pattern). Fig. 2 shows how the spread between the

Fig. 1. The diffusion model and its key parameters. Evidence accumulation begins at z, proceeds over time guided by drift rate v, is subject to random noise,
and stops when either the upper or the lower boundary is reached. The distance between the boundaries is a. The predicted RT is just the accumulation
time, plus a constant value for non-decision processes Ter.
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Fig. 2. Increasing slopes lead to a right-skewed distribution. Displayed
are 10 lines with slopes / = {1,2, . . . ,10}. The spread between lines with
slopes 1 and 2 is much larger than the spread between lines with slopes 9
and 10.
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points where the lines hit the upper boundary increases as
we move to the right.

The figure with noiseless data provides an intuition
about why the diffusion model always predicts right-
skewed RT distributions. The same line of reasoning im-
plies that low-g participants have an RT distribution that
is more spread-out than high-g participants, as observed
in mental chronometry (e.g., Baumeister, 1998). In this
case, a lower g is associated with a lower drift rate v, which
leads to a lower slope /, which results in an RT distribution
that is more spread-out; as in the right-hand end of Fig. 2.

In order to demonstrate more concretely how the diffu-
sion model accounts for the fact that low-g participants
have an RT distribution that is more spread-out than
high-g participants, we conducted a simulation in which
we varied drift rate for five synthetic participants. We gen-
erated 50,000 RT trials from synthetic participants with
drift rates of v = 0.1, v = 0.2, v = 0.3, v = 0.4, and v = 0.5.
For all participants, boundary separation was fixed to
a = 0.12 and non-decision time was fixed to Ter = 0.25,
values that are within a plausible range (e.g., Matzke &
Wagenmakers, 2009; Wagenmakers, van der Maas, &
Grasman, 2007). Fig. 3 shows that the RT distributions for
five different drift rates increase in spread as drift rate
decreases. To quantify this, we divided the RT data into five
bins and found the cut-points between bins: these are
called quantiles, represented by the dots under the densi-
ties. Both the densities and the quantiles show that the
spread of the RT distribution increases for smaller drift
rates. Note that for different drift rates, the fastest RTs
differ only a little, but the slowest RTs differ a lot.

In sum, the diffusion model automatically produces RT
distributions that are skewed to the right. Furthermore,
people with a lower drift rate will have a more spread-
out RT distribution. Fig. 3 shows two other phenomena in
addition to the right-skewed RT distributions. First, the dif-

ferences in drift rate are related more strongly to the
slower RT quantiles than to the faster RT quantiles. This
phenomenon, called the worst performance rule, will be
the topic of the next section. Second, changes in drift rate
have a large influence on RTSD, but a somewhat weaker
influence on RTm. This observation relates to another phe-
nomenon in intelligence research: a larger correlation be-
tween g and RTSD than between g and RTm. We will
discuss this topic after the worst performance rule.

3.2. The worst performance rule

The worst performance rule refers to the finding that
differences in slow RTs between people correlate more
strongly with g than differences in fast RTs. The original
worst performance rule was identified by Larson and
Alderton (1990) and their result is displayed in Fig. 4. This
effect has since been found in several studies (for a review,
see Coyle, 2003). In this section we show how the diffusion
model produces data consistent with the worst perfor-
mance rule.

3.2.1. Worst performance rule for ability
The standard WPR effect entails a correlation between g

and slow RTs. Specifically, across people, the correlation
between g and the speed of each person’s slowest RTs is
stronger than the corresponding correlation for the fast
RTs. In a simulation study, Ratcliff et al. (2008) generated
data that showed the diffusion model predicted the worst
performance rule when drift rate was used as a proxy mea-
sure for g (i.e., they showed a higher correlation between
slow RTs and drift rate v than between fast RTs and drift
rate v).

In nine different simulations, Ratcliff et al. (2008) gener-
ated data for 1000 synthetic participants. For all simula-
tions, each participant had a drift rate v, boundary
separation a, and non-decision time Ter that were sampled
from a normal distribution. Drift rate v had mean vm = .4
and standard deviation vs = .01 or .10. Boundary separation
a had mean am = .1 and standard deviation as = 0, .02, or
.04. Non-decision time Ter had mean Term ¼ :4 and standard

v =  0.1 RTm =  0.57
RTSD =  0.26

v =  0.2 RTm =  0.5
RTSD =  0.19

v =  0.3 RTm =  0.44
RTSD =  0.13

v =  0.4 RTm =  0.4
RTSD =  0.09

Time (s.)
0 0.2 0.4 0.6 0.8 1

v =  0.5 RTm =  0.37
RTSD =  0.07

Fig. 3. Predicted RT distributions from the diffusion model spread out as
drift rate decreases: five RT distributions of 50,000 RT trials, generated
from the diffusion model with drift rate v = 0.1, v = 0.2, v = 0.3, v = 0.4, and
v = 0.5. The dots under the densities represent the 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles of the RT distribution. The five arrows to the left of the figure
highlight the fastest RT quantiles, the five arrows to the right highlight
the slowest RT quantiles.

Larson and Alderton (1990)
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Fig. 4. The worst performance rule. The RT data from the original
experiment by Larson and Alderton (1990, Table 4) were divided into 16
bands, the mean of which was correlated with g. Mean RT from the
slowest bands correlates more strongly with g than the mean RT from the
fastest bands.
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deviation Ters ¼ 0, .05, or .10. For each synthetic
participant’s data set, five different quantiles were calcu-
lated, to estimate the shortest through to the longest RTs
in the distribution (.1, .3, .5, .7, and .9 quantiles).

Ratcliff et al. (2008) found a worst performance rule for
drift rate: the slowest quantile (.9) correlated more
strongly with drift rate than did the fastest quantile (.1).
The difference between the correlation between the fastest
RT quantile and drift rate and the correlation between the
slowest RT quantile and drift rate ranged from .19 to .42,
depending on the values of the parameters.

In Ratcliff et al.’s (2008) work, different drift rates were
associated with different (synthetic) participants, but their
mathematical result does not depend on this interpreta-
tion. This means that the diffusion model predicts that
the worst performance rule should not be limited to differ-
ences between individual participant, but should also be
found for any manipulation that creates drift rate differ-
ences. For example, different stimuli produce different drift
rates, so the diffusion model predicts that a worst perfor-
mance rule should be found when RTs are grouped based
on stimulus difficulty: slow RT bins should correlate more
strongly with stimulus difficulty than fast RT bins. In the
next section, we will explain this strong prediction of the
diffusion model and demonstrate a worst performance rule
for stimulus difficulty.

3.2.2. New prediction: worst performance rule for stimulus
difficulty

In the diffusion model, drift rate represents the quality
of information processing. A high drift rate means that
information is accumulated quickly and a low drift rate
means that information is accumulated slowly. Many fac-
tors influence the drift rate for a particular participant per-
forming a particular task. For one, the participant may have
a very high ability, being superior to other participants in
this task. Alternatively, the task itself may be very easy,
leading to higher drift rates for this task than other tasks
(for all participants). In the previous section, we saw how
a worst performance rule for ability may translate to a
worst performance rule for drift rate. Since drift rate may
also manifest itself on the level of the stimulus, the diffu-
sion model predicts that a worst performance rule for
stimulus difficulty – a higher correlation between slow
RTs and stimulus difficulty than between fast RTs and
stimulus difficulty. We test this prediction using empirical
data.

To test for a worst performance rule for stimulus diffi-
culty, we have taken data from a stimulus brightness
experiment (Ratcliff & Rouder, 1998) in which three partic-
ipants had to categorize the brightness of a stimulus as
‘‘high’’ or ‘‘low’’. The stimuli varied in brightness, and so
produced greatly differing decision difficulty. The experi-
ment was divided into blocks, and for half of those blocks
the participants were instructed to focus on response
speed, whereas for the other half, they were instructed to
be as accurate as possible. We binned the data according
to 17 different levels of stimulus difficulty. For each level
of difficulty, we calculated five RT quantiles (i.e., .1, .3, .5,
.7, and .9) per emphasis condition (i.e., ‘‘speed’’ and ‘‘accu-
racy’’) for each participant, and did so separately for correct

and error responses. We correlated each of the five quan-
tiles with the 17 levels of stimulus difficulty, numbered
from least to most difficult. These correlations were calcu-
lated for each condition, participant, and response (i.e., cor-
rect or error). The results can be seen in Fig. 5.

The panels in the figure show the worst performance
rule, separated by condition and by response accuracy.
All four panels show a worst performance rule for stimulus
easiness which is most clearly seen in the group average
(solid line on each panel). The worst performance rule is
most pronounced for the correct responses from the
‘‘speed’’ condition for correct RTs, where the difference in
correlations between the highest and the lowest RT quan-
tiles is .53. For the incorrect responses from the ‘‘speed
condition’’, this difference is .40. In the ‘‘accuracy’’ condi-
tion the difference in correlations between the highest
and the lowest RT quantiles is .21 for correct responses2

and .45 for incorrect responses.
In sum, the worst performance rule is not limited to

participant-specific effects. Here, we demonstrated that
the worst performance rule can hold for individual-partic-
ipant data. The size of this worst performance rule for
stimulus difficulty was in the range of .21 to .53, depending
on the condition and on the accuracy of the RTs. In this sec-
tion, we have verified a strong and novel prediction that
follows from a drift rate account of g, namely that the
worst performance rule is not just an effect found in intel-
ligence research. Instead, our findings suggest that it is a
more general effect, just as the diffusion model predicts,
and is also found for stimulus difficulty.

3.3. Stronger correlation between g and RTSD than between g
and RTm

A persistent phenomenon in intelligence research is
that g correlates more strongly with RTSD than with RTm
(e.g., Baumeister, 1998; Jensen, 1992; Walhovd & Fjell,
2007). In this section, we will investigate under what con-
ditions this finding might be accounted for by the drift rate
parameter. We generated diffusion model parameters for
10,000 synthetic participants in many different simulation
conditions. In all simulations, the drift rate for each syn-
thetic participant was drawn from a normal distribution
with mean 0.2, which instantiates the assumption that dif-
ferent participants have different drift rates (and different
g). We repeated the simulation with different standard
deviations for the distribution of drift rates (vr), between
zero and 0.1, to observe what happened when participants
were assumed to be either more alike (small standard
deviation) or more variable (large standard deviation).
For the first simulation, we also allowed two other param-
eters (boundary separation a and non-decision time Ter) to
vary randomly across participants. We then explored the
consequences of fixing these parameters across partici-
pants in three further simulations. For every simulation,
we calculated RTm and RTSD using the following equations
(cf. Wagenmakers, Grasman, & Molenaar, 2005):

2 This relatively low difference in correlations was probably caused by a
ceiling effect, as the lowest RT quantile already correlates #.70 with
stimulus easiness.
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RTm ¼ a
2v $

1#e#va=s
2

1þe#va=s2
þ Ter ;

RTSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2v $

s2
v2 $ #2va=s2e#va=s2#e#2va=s2þ1

ð1þe#va=s2 Þ2

r
;

ð1Þ

Finally, we compared the correlations between drift
rate v and RTSD with the correlations between drift rate
v and RTm. In the first set of 40 simulations, in addition
to the random drift rates, individual values for boundary
separation a were drawn from a uniform distribution with
minimum 0.08 and maximum 0.12. Individual values for
non-decision time Ter were drawn from a uniform distribu-
tion with minimum 0.20 and maximum 0.40.

In the second, third, and fourth simulations, we fixed
non-decision time Ter, or boundary separation a, or both,
respectively. Fixing these parameters allowed us to inves-
tigate the underlying causes of the observed results. The
key aspect of all simulations was that we calculated RTm
and RTSD for each synthetic participant and correlated
them with drift rate v, separately for each of the many lev-
els of between-subject variability in drift rate (vr). We
were most interested in what conditions predicted the ob-
served finding; that the correlation between RTm and drift
rate is weaker than the correlation between RTSD and drift
rate.

The top left panel of Fig. 6 shows that the correlation
between drift rate v and RTSD (filled dots) is stronger than
the correlation between drift rate v and RTm (open dots).
One reason for this could be that RTSD is not influenced
by individual differences in non-decision time Ter – these
only shift the RT distribution, without affecting variance
– whereas non-decision time Ter differences do affect

RTm. Therefore, fixing non-decision time Ter between par-
ticipants should lead to a smaller difference between these
correlations.

In the second set of simulations, parameters drift rate v
and boundary separation a varied between participants as
before, but non-decision time Ter was fixed to .3 for all par-
ticipants. The results, found in the top right panel of Fig. 6,
show that removing individual differences in non-decision
time Ter weakens the difference between the two correla-
tions, but still maintains the order: drift rate v always cor-
relates more strongly with RTSD than RTm.

In the third set of simulations, parameters drift rate v
and non-decision time Ter varied between participants as
in the first simulations, but this time boundary separation
a was fixed to .1 for all participants. The results, found in
the bottom left panel of Fig. 6, show that when individual
differences in boundary separation a are removed, the cor-
relation between drift rate v and RTSD becomes close to 1.
This is not surprising, as variation in RTSD now exclusively
depends on drift rate (cf. Eq. (1)). The increase in strength
of the correlation between drift rate v and RTm resulting
from fixing boundary separation a is much less pro-
nounced. Therefore, the difference between both correla-
tions has increased.

In a final set of simulations, parameter drift rate v varied
between participants as in the previous simulations. We
investigated whether removing individual differences in
both boundary separation a and non-decision time Ter sim-
ilarly leads the correlation between drift rate v and RTm to
approach 1. Boundary separation a was fixed to 0.1 and
non-decision time Ter was fixed to 0.3 for all participants.
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Fig. 5. The worst performance rule for the reverse of stimulus difficulty (i.e., stimulus easiness). The bold lines correspond to the correlation between RT
quantiles and stimulus difficulty, averaged over the three participants. The dashed, dotted, and dash–dotted lines represent data from participants ‘‘KR’’,
‘‘NH’’, and ‘‘JF’’, respectively. Top left panel: correct RTs in the ‘‘speed’’ condition. Top right panel: correct RTs in the ‘‘accuracy’’ condition. Bottom left panel:
error RTs in the ‘‘speed’’ condition. Bottom right panel: error RTs in the ‘‘accuracy’’ condition.
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The results, found in the bottom right panel of Fig. 6, show
that both correlations approached 1, so there was no long-
er any appreciable difference between the two
correlations.

In sum, as long as individuals differ when described in
terms of diffusion model parameters, the correlation be-
tween drift rate and RTSD is likely to be larger than the cor-
relation between drift rate and RTm. The difference
between these two correlations gets stronger as individual
differences in drift rate increase. Removing individual dif-
ferences in non-decision time does not lead to a qualitative
difference in the pattern of results, whereas removing indi-
vidual differences in boundary separation leads the corre-
lation between drift rate and RTSD to approach unity.
Removing individual differences in both boundary separa-
tion and non-decision time leads to both the correlation
between drift rate and RTSD and between drift rate and
RTm to approach unity, and no appreciable difference be-
tween the two correlations.3

3.4. Linear relation between RTm and RTSD

The linear relation between RTm and RTSD is well-
known in the field of intelligence. Jensen even suggests
that the correlation between RTm and RTSD is in principle
1.0, and the lower correlations we obtain in practice are
simply due to measurement error (Jensen, 2006, p. 202).

Despite the fact that the linear relationship between RTm
and RTSD is a familiar phenomenon in research on intelli-
gence (e.g., Berkson & Baumeister, 1967; Jensen, 1992),
surprisingly little research has been conducted to explain
this correlation.

The linear relationship between RTm and RTSD has
also been studied by RT researchers (e.g., Luce, 1986;
Wagenmakers et al., 2005; Wagenmakers & Brown,
2007). In a theoretical study, Wagenmakers et al. (2005)
formalized the relationship between RTm and RTSD in
terms of diffusion model parameters (see Wagenmakers
et al., 2005, Eq. 12). In order to visualize this relationship,
we plotted RTSD against RTm for a range of values of
boundary separation a and drift rate v (see Fig. 7, adapted
from Wagenmakers et al., 2005, Fig. 3).

The figure shows that for different values of boundary
separation, when drift rate varies between participants,
v = {.1, .15, . . . , .5}, the relationship between RTSD and
RTm is almost perfectly linear. Put another way, if partici-
pants vary in drift rate on some task, the RTSD of those par-
ticipants will be linearly related to their mean RTs.
Wagenmakers and Brown (2007) also found the linear rela-
tion between RTm and RTSD for a range of empirical data
outside the field of intelligence involving memory, percep-
tion, categorization, and problem solving. The authors con-
clude that for nearly 75% of the participants, the
correlation between RTm and RTSD is at least .85.

In sum, the precise relationship between RTm and RTSD
is predicted by the diffusion model (cf. Wagenmakers et al.,
2005, Eq. (12)). When diffusion model parameters vary in a
realistic range (Matzke & Wagenmakers, 2009), this rela-
tionship is approximately linear, as can be seen in Fig. 7.
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3 In simulations not reported here, we found that setting non-zero values
for the across-trial variability in drift rate, starting point, and non-decision
time led to lower correlations in general, but did not change the qualitative
pattern of results.
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Recent work by Schmiedek, Lövdén, and Lindenberger
(2009) showed that the linear relationship between RTm
and RTSD may not be invariant across age-groups, suggest-
ing that the relationship displayed in Fig. 7 may be an ide-
alized representation.

3.5. Linear Brinley plots

First introduced in the context of cognition and aging,
Brinley plots (Brinley, 1965; Salthouse, 1996) are now also
used in the area of intelligence (e.g., Rabbitt, 1996). In the
original Brinley plot, the mean RT of older participants is
plotted against the mean RT of younger participants, for a
number of experimental conditions that vary in difficulty.
Typically, Brinley plots are linear with a slope larger than
one and a negative intercept. Brinley plots are usually
interpreted as an indication of the general slowing of cog-
nitive processes (e.g., Cerella, 1985).

In intelligence research, the role of the participant’s age
is played instead by their intelligence: Brinley plots show
the mean RT of low-g people against the mean RT of
high-g people, for conditions with different task difficul-
ties. These plots are also usually linear with a slope larger
than one and a negative intercept. Analogous to the re-
search on aging, this pattern of results is interpreted as
an indication of global (as opposed to specific) differences
in mental ability (e.g., Fry & Hale, 1996; Kail, 1991, for an
overview, see Jensen, 2006, for a modeling approach, see
Faust, Balota, Spieler, & Ferraro, 1999; Myerson, Hale,
Wagstaff, Poon, & Smith, 1990).

In terms of diffusion model parameters, the relationship
between RTm and drift rate v is given by Eq. (1), provided
that there is no a priori bias and no across-trial variability
parameters (Wagenmakers et al., 2005). Since the within-
trial noise of drift rate s is fixed arbitrarily, the shape of a
Brinley plot for two people with different drift rates can
be calculated analytically if one is willing to make an
assumption about their boundary separations.

Based on Eq. (1), we constructed a set of Brinley plots, in
which RT means of a synthetic high-g participant (with

drift rate vhigh) are displayed against a synthetic low-g par-
ticipant (with drift rate vlow). For this set of Brinley plots,
we assumed that vhigh was larger than vlow by a fixed
amount (i.e., vhigh = vlow + .2). We set boundary separation
a to be equal for the high-g participant and the low-g par-
ticipant. The Brinley plots are displayed in Fig. 8.

Displayed in the figure are data from the low-g and the
high-g participants on a task with nine conditions of
decreasing difficulty, modeled using vlow = {.1, .125, . . . , .3}.4

As observed empirically, the Brinley plots are approximately
linear with a slope greater than 1 and a negative intercept.
For larger values of boundary separation a, the slope in-
creases and the intercept becomes lower.

For the full diffusion model with across-trial variability
in drift rate, starting point, and non-decision time, an ana-
lytical approach is not practical. However, Ratcliff et al.
(2000) used simulation to demonstrate linear Brinley plots
with the full diffusion model (see also Myerson, Adams,
Hale, & Jenkins, 2003). Ratcliff et al. generated RT data with
the diffusion model for synthetic older and younger partic-
ipants. The participants differed on either drift rate or
boundary separation: the older group had either a lower
drift rate, or a higher boundary separation than the young
group. As a result, the older group had larger RTs than the
younger group. Brinley plots were constructed that
showed all the standard features, such as linearity, a slope
higher than one, and a negative intercept Ratcliff et al.,
2000, see Fig. 8. In sum, the diffusion model is capable of
generating linear Brinley plots by varying either drift rate
or boundary separation.

3.6. Stronger correlation between g and IT than between g and
RTm

The inspection time, or IT, task is another simple para-
digm that has often been studied in relation to intelligence
(Deary & Stough, 1996; Jensen, 2006). In a typical IT task, a
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4 Non-decision time Ter was set to .25 for both the high-g and the low-g
participants, but since non-decision time Ter is an additive component that
is assumed not to vary across conditions, it cannot influence the shape of
the Brinley plots.

388 D. van Ravenzwaaij et al. / Cognition 119 (2011) 381–393



participant is simultaneously presented with two lines and
has to judge which of the two is the longest. While there is
no time limit for this judgment, the task is made difficult
by displaying the lines only for a limited duration, which
is varied over trials. For each participant, a display duration
is found that leads to a predetermined level of accuracy
(e.g., 90%). This duration is called the IT for that particular
participant.

Typically, the correlation between IT and g ranges from
about #.30 to #.50 (Deary & Stough, 1996; Grudnik &
Kranzler, 2001) and is therefore more pronounced than
the correlation between RTm and g, which ranges from
about #.20 to #.30 (Jensen, 1998, 2006). Here we show
that the diffusion model predicts such a pattern of correla-
tions when the plausible assumption is made that bound-
ary separation and non-decision time vary between
participants.

First, we express IT in terms of drift rate. An inspection
time paradigm can be modeled by a diffusion process with
no response boundaries; that is, the evidence accumula-
tion process begins at some starting point and gathers
information from the stimulus as long as the stimulus is
available. When the stimulus is removed, at time IT, the
diffusion process stops.5 A response is chosen depending
on whether the diffusion process terminated above or below
its starting point, corresponding to a balance of evidence in
favor of one response or the other. Across trials, the finishing
point of the evidence accumulation process will be normally
distributed with mean v $ IT and standard deviation s$

ffiffiffiffiffi
IT

p
,

where v is drift rate and s is the within trial noise of drift rate
(e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). The
decision maker’s accuracy, pc, will thus be given by the mass
of this distribution that lies above 0 (see Fig. 9), which can be
defined in terms of the standard normal distribution. Invert-
ing that relationship shows that IT is given by:

pc ¼ U
v
s

ffiffiffiffiffi
IT

p" #
ð2Þ

whereU denotes the standard normal cumulative distribu-
tion. Now, by rearranging the equation, we can express IT
in terms of the decision maker’s accuracy pc and drift rate
v

IT ¼ s
v $U#1ðpcÞ

" #2
: ð3Þ

With IT defined, we can investigate under what contin-
gencies drift rate can account for a stronger correlation be-
tween g and IT than between g and RTm. In order to do so,
we have reused the simulation data presented in Section 4.
Correlations between drift rate v and IT (open dots) and
correlations between drift rate v and IT (filled dots) are
shown in Fig. 10. Note that all four panels contain the same
data, as IT only depends on drift rate.

Recall that in Section 4, synthetic data were generated
from the diffusion model while allowing drift rate v to vary
across participants. The magnitude of variability between
participants was varied from vr = {.0025, .005, . . . , .1}, and
this manipulation is shown on the x-axis of Fig. 10. For
these same parameter settings, we calculated RTm and IT
for each participant and correlated them with drift rate v.

The top left panel of Fig. 10 shows that the correlation
between drift rate and IT becomes weaker as between-sub-
ject variability in drift rate increases. This occurs because
drift rate v is inversely related to the square root of IT –
not a linear relationship. Therefore, the measured linear
correlation must decrease when a wider range of values
of drift rate over participants is observed, and eventually
approach the asymptote 0.6 In all four simulation condi-
tions, the correlation of drift rate vwith RTm becomes stron-
ger than the correlation of drift rate v with IT whenever the
variation in drift rate between participants is large enough
(greater than about vr = 0.05).

In sum, we found a stronger correlation between drift
rate and IT than between drift rate and RTm when the be-
tween-subject standard deviation in drift rate is below
0.05. Empirically found correlations between IT and g from
about #.30 to #.50 (Deary & Stough, 1996; Grudnik &
Kranzler, 2001) and correlations between RTm and g from
about #.20 to #.30 (Jensen, 1998, 2006) match our simula-
tion results when the between-subject standard deviation
in drift rate is somewhere between 0.04 and 0.05. Values
of the between-subject standard deviation in drift rate in
this range are plausible and have been found empirically
for the mean drift rate value of 0.02 which we used in
our simulations (e.g., Ratcliff, Thapar, & McKoon, 2001).
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Fig. 9. The relationship between drift rate v, inspection time IT and
percentage correct pc. The percentage correct is defined as the proportion
of decision processes that terminate above the starting point at time IT.
The two panels represent low- and high-g participants. Response accu-
racy is identical in both panels (pc = .9), showing how a low drift rate v
leads to a high inspection time IT, and vice versa.

5 Different assumptions about the termination of the diffusion process
could be reasonable. A plausible assumption is that the diffusion process
could continue for a fixed time after time IT (e.g., 100 ms longer). For
instance, Ratcliff and Rouder (2000) found that after masking the stimulus
in a two-choice letter identification task, the decision process continued
with a full drift rate. This assumption would only add a constant amount of
time to each IT (e.g., 100 ms) and would not alter the correlation between
drift rate v and IT.

6 As an example, consider the correlation between fictional variables x1
and x2, with x1 = {1,2, . . . ,n} and x2 = (1/x)2. So, variable x2 is inversely
related to the square root of variable x1, like the relation between drift rate
and IT. Increasing values of n lead to lower correlations between x1 and x2;
n = 10 gives a correlation of #0.67, n = 100 gives a correlation of #0.26,
n = 1000 gives a correlation of #0.09. Increasing the variability in drift rate
leads to an analogous decrease in the correlation between drift rate and IT.
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We have demonstrated that three of the phenomena re-
viewed earlier (the worst performance rule, stronger corre-
lations between g and RTSD, and linear Brinley plots) all
continue to hold when the between-subject standard devi-
ation in drift rate is smaller than 0.05. Two other phenom-
ena (right skewed RT distributions and the linear relation
between RTm and RTSD) are not affected by the be-
tween-subject standard deviation in drift rate. These re-
sults agree with this new result – a stronger correlation
between drift rate and IT than between drift rate and
RTm. All six phenomena will be observed whenever the be-
tween-subject standard deviation in drift rate is not too
large.

4. Advantages and limitations of a diffusion model
approach to the study of intelligence

We have shown how a simple assumption in a compu-
tational model can provide a unifying account of six differ-
ent phenomena from the intelligence literature. When we
assume that differences in drift rate in the diffusion model
are associated with differences in intelligence (g), we find
that the model predicts: right-skewed RT distributions;
the worst performance rule; the fact that g correlates
stronger with RTSD then with RTm; the linear relation be-
tween RTm and RTSD; linear Brinley plots; and the stron-
ger correlation between g and IT than between g and
RTm. The diffusion model also provides a theoretical
framework for interpreting these phenomena. We will

now list an additional set of advantages of using the diffu-
sion model in intelligence research.

1. The diffusion model is a quantitative model. Precise
predictions can be obtained through analytics or simu-
lation; verbal accounts are less precise and notoriously
susceptible to alternative interpretation.

2. The diffusion model allows for a decomposition of RTs
in terms of meaningful psychological processes. The
model can filter out the processes that may be related
to psychometric g (e.g., drift rate or variability in drift
rate) from those that are not (e.g., nondecision time
Ter). The diffusion model therefore solves an important
problem that was most recently articulated by Jensen:
‘‘The RT literature is made problematic by the inconsis-
tency across studies to employ methods that distin-
guish between the cognitive decision and the motor
components of the task, treating them as if they are
equivalent or indistinguishable.’’ (Jensen, 2006, p.234).

3. The diffusion model takes into account entire distribu-
tions of response times, for both correct and error deci-
sions, as well as error rate.

4. The diffusion model makes qualitative predictions and
can be falsified. In a series of simulations, Ratcliff
(2002) showed that the diffusion model is incapable
of fitting many apparently reasonable patterns of RT
data. That such data have not been observed is strong
evidence in favor of the model. Even more powerfully,
we demonstrated that a novel prediction from the diffu-
sion model account was supported in data.
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Fig. 10. The correlation between IT and drift rate v (filled dots) is larger than the correlation between RTm and drift rate v (open dots) for low standard
deviations of drift rate, vr, but smaller for high values of vr. All panels show data from simulations in which the standard deviation of drift rate over
participants, vr = {.0025, .005, . . . , .1}. In the top left panel, boundary separation a and non-decision time Ter vary between participants. In the top right panel,
boundary separation a varies between participants, but non-decision time Ter is fixed. In the bottom left panel, non-decision time Ter varies between
participants, but boundary separation a is fixed. In the bottom right panel, both boundary separation a and non-decision time Ter are fixed.
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5. The diffusion model is now easy to apply, thanks to sev-
eral purpose-built software packages: EZ (Wagenmakers
et al., 2007), fast-dm (Voss & Voss, 2007), DMAT
(Vandekerckhove & Tuerlinckx, 2007, 2008), and a hier-
archical Bayesian version (Vandekerckhove, Tuerlinckx,
& Lee, in press).

6. Drift rate is theory-neutral; it is a general parameter to
capture signal-to-noise ratio in the evidence accumula-
tion process, and is not particular to the diffusion model
alone. The deeper meaning of the drift rate parameter
can be further explored through developments in neu-
roscience or quantitative modeling (Gold & Shadlen,
2007; Heekeren, Marrett, & Ungerleider, 2008; Ho,
Brown, & Serences, 2009; Lo & Wang, 2006; Ma, Beck,
& Pouget, 2008; Soltani & Wang, 2010).

7. The diffusion model builds a bridge between theorizing
in related fields, such as aging (e.g., Ratcliff et al., 2000,
2001, 2006b; Ratcliff, Thapar, & McKoon, 2003, 2004,
2006a).

8. There is a growing link between neuroscience and the
diffusion model (e.g., Gold & Shadlen, 2007). Neurosci-
ence will also become more important for the study of
intelligence (Jensen, 2006). Further integration between
these different research agendas will most likely benefit
both lines of research.

These per usual, these benefits do not come without
cost. Quantitative modeling is a powerful approach, and
the diffusion model in particular is very useful, but also
brings inherent limitations. The most important limita-
tions are:

1. The diffusion model requires a substantial number of
observations per condition in order to be able to obtain
reliable parameter estimates. For instance, for an error
rate of 5%, approximately 200 RTs are necessary to get
a reliable estimate of the RT distribution for errors
(Wagenmakers, 2009). This limitation may be partly
solved by including multiple experimental conditions
in the experiment, in which only a single parameter
(e.g., drift rate) is manipulated.

2. The diffusion model can only be applied to two-alterna-
tive forced-choice data. Cognitive tasks that allow for
multiple response alternatives are unsuitable for a diffu-
sion model analysis. Fortunately, there are several alter-
native models that feature a drift rate parameter and do
allow for multiple alternatives. Two of those models are
the leaky, competing accumulator model (LCA Usher &
McClelland, 2001) and the linear ballistic accumulator
model (LBA Brown & Heathcote, 2008). We will return
to these models in the concluding comments.

3. Thediffusionmodel is essentiallya single-processmodel.
Stimulus–response incompatibility tasks (e.g., theStroop
task, MacLeod (1991) or the Simon task, Simon (1990)),
may not be suited to a standard analysis with the diffu-
sion model, because there are two processes at work
simultaneously: the relevant and the irrelevant stimulus
dimension (e.g., Kornblum, Stevens, Whipple, & Requin,
1999). As such, the one-dimensional diffusion model is
not naturally suited to deal with these kinds of tasks.
Modifications of the model may work (e.g., one may

assign a drift rate to the relevant stimulus dimension
and a drift rate to the irrelevant stimulus dimension),
as may other response time models with independent
accumulators for each response (e.g., the dimensional
overlap model, Kornblum et al., 1999).

4. Drift rate is theory-neutral. In some ways this is an
advantage (Item 6 above) but in others it is a disadvan-
tage. For example, thinking of g as a drift rate does not
automatically suggest an underlying theory for changes
in g. However, modern developments have linked the
diffusion model (and the LBA and LCA models) to
underlying physiological processes, using neuroscien-
tific methods (e.g., Bogacz & Gurney, 2007; Gold &
Shadlen, 2007; Ratcliff & McKoon, 2008). These findings
provide the beginnings of a ‘‘theory for drift rates’’.

5. Concluding comments

The diffusion model provides an elegant, quantitative,
and unifying account of previously disparate empirical
phenomena. This means that while substantial research ef-
forts have been devoted to each of the individual phenom-
ena, these efforts represent an ill-advised division of labor.
We combined results from previous research with new re-
sults regarding the stronger correlation between g and RT
standard deviation than between g and RT mean, the linear
relation between RT mean and RT standard deviation, and
the stronger correlation between g and inspection time
than between g and RT mean. We also showed that the
worst performance rule is not specific to g, but generalizes
to other phenomena, such as drift rate and stimulus diffi-
culty. To our knowledge, this is the first attempt to demon-
strate that six seemingly disparate phenomena are in fact
all the same and can be accounted for by a single entity:
the drift rate parameter of the diffusion model.

It is not a new idea that information-accumulation pro-
cesses, such as drift rate, might represent neural firing rate
and therefore also represent mental speed. Both Lo and
Wang (2006) and Usher and McClelland (2001) propose
neurally based models using evidence accumulation
frameworks. Shadlen and Newsome (1996) showed that
when monkeys choose to saccade to one of two directions,
their neurons display selective activation for each direc-
tion. Moreover, the monkeys reliably responded when
neuronal activation reached a fixed response threshold.
Gold and Shadlen (2007) draw a parallel between evidence
accumulation parameters from sequential sampling mod-
els (such as drift rate) and neuronal firing rates in the
brain. The authors show how these evidence accumulation
parameters may be implemented in the brain of a monkey.
Smith and Ratcliff (2004) compared results from single-cell
studies to behavioral results in psychology, and concluded
that for both cases, decisions are made when a noisy accu-
mulator (i.e., drift rate) reaches a response threshold.

It must be noted that drift rate only accounts for the
percentage of variance in individual differences in intelli-
gence that was previously explained by the six benchmark
phenomena. It is likely that higher-order models, featuring
memory and higher cognitive functions, are needed to fully
explain all factors that affect individual differences in
intelligence.
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The assumption that drift rate partly reflects the speed
of mental processing is plausible and parsimonious.
Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann (2007)
showed that drift rate is a strong predictor ofworkingmem-
ory, reasoning, and psychometric speed. They conjectured
that ‘‘drift rate reflects a general source of variance in effi-
ciency of information processing that is also relevant for
more complex cognitive tasks’’. Ratcliff et al. (2010) found
that a common factor for drift rate explains a large propor-
tion of the variance across subjects in two IQmeasures, ma-
trix reasoning and vocabulary. However, it is certainly
possible that other diffusion model parameters also reflect
individual differences in g. This is an exciting and open re-
search question – so far, the diffusion model has seen only
limited application in the field of intelligence research.

Although we have presented our analyses using the dif-
fusion model, there are many related evidence accumula-
tion models. Two examples are the leaky, competing
accumulator model (LCA Usher & McClelland, 2001) and
the linear ballistic accumulator model (LBA Brown &
Heathcote, 2008). These models differ from the diffusion
model mainly in that they feature multiple accumulators
and hence allow for more than two response alternatives.
Apart from this structural difference, the models share
manybasic assumptions – importantly, they all have similar
definitions for drift rates, boundary separation, and non-
decision time. It is reasonable to expect that the LCA and
the LBA would provide a similar account of the six bench-
mark phenomena as the diffusion model, given their simi-
larities. In fact, a recent simulation study demonstrated
that fluctuations in diffusionmodel drift ratesmapuniquely
onto fluctuations in LBA model drift rates (Donkin, Brown,
Heathcote, & Wagenmakers, in press). Thus, what is impor-
tant in our linking of intelligence and drift rate is that drift
rate measures the speed of evidence accumulation.

So what have we learned about intelligence by associat-
ing it with drift rate in the diffusion model? Arguably, al-
most nothing! However, we have shown that many
benchmark phenomena in the field of intelligence research
can originate from fluctuations in a single, theory-neutral
parameter – drift rate – that quantifies processing speed.

Therefore, our work suggests that in order to learn
something unique about g, one should:

1. go beyond the benchmark phenomena discussed above;
2. find an empirical phenomenon, associated with g,

which cannot be accounted for by drift rate;
3. explain in what way g differs from drift rate.

We have outlined the advantages of a diffusion model
analysis as a tool in the study of the relation between re-
sponse speed and general intelligence.We hope that this re-
search may further the integration between the field of
intelligence research and the field of quantitativemodeling.
The diffusionmodel,with its drift rate parameter, provides a
new way of thinking about the concept of intelligence.
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