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a b s t r a c t

The Balloon Analogue Risk Task, or BART, aims to measure risk taking behavior in a controlled setting.
In order to quantify the processes that underlie performance on the BART, Wallsten, Pleskac, and
Lejuez (2005) proposed a series of mathematical models whose parameters have a clear psychological
interpretation. Here we examine a 2-parameter simplification of Wallsten et al.’s preferred 4-parameter
model. A parameter recovery study shows that—with plausible restrictions on the number of participants
and trials — both parameters (i.e., risk taking γ + and response consistencyβ) can be estimated accurately.
To demonstrate how the 2-parameter model can be used in practice, we implemented a Bayesian
hierarchical version and applied it to an empirical data set in which participants performed the BART
following various amounts of alcohol intake.

© 2010 Elsevier Inc. All rights reserved.
When people take a risk, they pursue some form of reward
while exposing themselves to potential harm (Wallach, Kogan, &
Bem, 1962). Depending on the situation, such harm can include
bankruptcy, cocaine addition, sexually transmitted diseases, and
even death. Among the factors affecting risk taking behavior—why
some people take risks when other people decide to play it safe —
a very influential one is substance abuse (Adlaf & Smart, 1983), of
which a common example is the abuse of alcohol.

The effects of alcohol on risk taking have been the topic of
extensive research. Among others, alcohol abuse has been found
to increase risk taking during driving (e.g., Burian, Liguori, &
Robinson, 2002; Cohen, Dearnaley, & Hansel, 1958), reduce the
perceived negative consequences of risk taking (e.g., Fromme,
Katz, & D’Amico, 1997), increase the participation in unsafe
sex (e.g., McEwan, McCallum, Bhopal, and Madhok (1992) and
Kalichman, Heckman, and Kelly (1996), but see Leigh and Stall
(1993) for cautionary remarks) and increase the number of
accidents encountered (e.g., Cherpitel, 1993a,b). In this paper, we
experimentally investigate the effects of three doses of alcohol on
risk taking behavior.

The study of risk taking generally proceeds along one of two
research traditions. The first tradition is the most direct in that it
uses self-report questionnaires to measure risk-related tendencies
such as impulsivity and sensation seeking (e.g., Eysenck & Eysenck,
1977). While the direct approach provides a measurement of risk
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taking that is straightforward and transparent, the fact that this
approach relies on self-report means that the results hinge on the
truthfulness of the respondent. Because respondents might not
answer accurately for a variety of reasons (e.g., shame, insufficient
self-knowledge, fear of consequences, e.g., Edwards (1957)), it is
desirable to have other ways to measure risk taking.

The second research tradition is less direct, as it uses
experimental tasks to measure risk taking behavior in a controlled
setting. One such experimental task is the Balloon Analogue Risk
Task, or BART (Lejuez et al., 2002). On every trial of the BART,
a computer screen displays a balloon that represents a small
monetary value (see Fig. 1). The participant is presented with a
choice; the first option is to play it safe and secure the amount of
money the balloon is worth by transferring the money to a virtual
bank account (i.e., cash). The second option is to take a risk and add
a small amount of air to the balloon (i.e., pump).

When the participant pumps, the balloon can burst, and all
the money that the balloon represents is lost. However, when the
balloon is pumped and does not burst, it grows in size and is
worth more money—when this happens, the participant is again
confrontedwith the choice: cash or pump. A new trial beginswhen
the participant cashes or the balloon bursts.

In the original version of the BART (Lejuez et al., 2002), the
probability that the balloon bursts, pburst , increases with every
pump according to

pburst =
1

x − npumps
with x > 0, (1)

where npumps is the number of pumps in the trial so far and x is a
positive integer determined by the experimenter. In their original
paper, Lejuez et al. (2002) used x = 8, x = 32, and x = 128.
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Fig. 1. A screenshot of the Balloon Analogue Risk Task (BART).

The BART is a simple laboratory task that nonetheless captures
the defining characteristic of risk taking in the real world—when
participants pump the balloon, they pursue rewardwhile exposing
themselves to potential harm. For the remainder of this paper, we
will be using a version of the BART in which pburst is fixed over
pump opportunities and the average gain of every pump decision
is exactly 0. This will allow us to look at the effects of risk-taking in
isolation.

Performance on the BART is usually quantified by the mean
number of pumps across trials, excluding balloons that burst.
This measure has been shown to correlate with self-reported
risk taking behaviors such as alcohol abuse, smoking, drug abuse,
gambling, unsafe sex, and even stealing (e.g., Hopko et al., 2005;
Lejuez, Aklin, Zvolensky, & Pedulla, 2003; Lejuez et al., 2002).
Little is known, however, about the cognitive processes that
cause suboptimal performance on the BART. For instance, drug
addicts might perform poorly on the BART because they take
too much risk; alternatively, they may have trouble learning
from experience, or they may be more erratic when it comes to
translating their preference into action. Based on the observed data
alone, these different possibilities cannot be distinguished.

One way to learn more about the unobserved psychological
processes that determine performance of the BART is with the
use of a cognitive process model. Cognitive process models
propose concrete cognitive mechanisms that underlie observed
behavior; therefore, a cognitive process model is a means
to translate what is observed but relatively uninformative to
what is unobserved and relatively informative. An example
of a successful cognitive process model in the study on risk
taking is the Expectancy–Valence model for the Iowa gambling
task (e.g., Busemeyer & Stout, 2002; Wetzels, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2010).

In an attempt to increase understanding of the psychological
processes involved in the BART, Wallsten et al. (2005) proposed
a series of cognitive process models. These models include
parameters that quantify risk taking (the psychological process
of interest), speed of learning from experience, and behavioral
consistency. With the help of these models, researchers can
study the risk taking process separately from other psychological
processes that together determine performance on the BART.
Thus, the BART models proposed by Wallsten et al. allow a
decomposition of observed behavior into its constituent cognitive
processes. Unfortunately, the BART models have not been applied
often, and consequently not much is known about how well the
models are able to estimate the processes they purport tomeasure.

The goals of this paper are twofold. First, this paper seeks to
increase knowledge about how the BART models can be applied
to data. In order to do so, we will assess parameter recovery of
a simplified version of the BART model not originally considered
by Wallsten et al. (2005). Second, this paper seeks to investigate
the effects of alcohol intake on the BART. We will analyse the
experimental data with a Bayesian hierarchical implementation of
the BART model.

The remainder of this paper is organized in five sections. In the
first section we introduce the BART models. In the second section
we discuss Bayesian modeling and the extension to hierarchical
Bayesian modeling. In the third section we present a number of
simulations that seek to establish whether the model can recover
the parameter values that were used to generate simulated data. In
the fourth section we present experimental data and fit a Bayesian
hierarchical implementation of a 2-parameter simplification of the
model to a data set inwhichwemanipulated alcohol intake prior to
administration of the BART, after which the last section concludes.

1. The BART models

The BART models by Wallsten et al. (2005) are cognitive de-
cision models inspired by the Expectancy–Valence model (Buse-
meyer & Stout, 2002) for the famous Iowa Gambling Task (Bechara,
Damasio, Tranel, & Damasio, 1997). In their article, Wallsten et al.
presented a total of 10 models that make different assumptions
about the details of the decision process (for an overview seeWall-
sten et al. (2005), p. 870, Table 2). As a basis of our discussion we
use Wallsten et al. ’s ‘‘Model 3’’, a parsimonious model that fit the
data relativelywell (seeWallsten et al. (2005), p. 872, Table 3). This
parsimonious model has 4 parameters and will from here on be
called the 4-parameter model. Apart from the 4-parameter model,
we assessed parameter recovery of two 3-parameter simplifica-
tions and one 2-parameter simplification that were all not origi-
nally considered by Wallsten et al. (2005).

The 4-parameter model assumes that, on a particular trial k,
the decision maker (henceforth DM) believes that there is a single,
constant probability that a pump will make the balloon burst,
pbeliefk . Thus, on any given trial DM is assumed to believe that the
balloon is just as likely to burst after the first pump than after, say,
the fifth pump. According to this model, DM starts the first trial
with a prior belief about the probability that a pumpwill make the
balloon burst, a prior belief that is updated on subsequent trials:

pbeliefk = 1 −

α +

k−1∑
K=0

nsuccess
K

µ +

k−1∑
K=0

npumps
K

with α < µ. (2)

In this updating equation, the quantity 1 − α/µ reflect DM’s prior
belief that pumping the balloon will make it burst. The absolute
size of α and µ determines the rate with which DM learns from
the data, with higher values indicating that more data is needed
to overwhelm DM’s prior belief. The quantity

∑k−1
K=0 n

success
K is the

number of successful (non-bursting) pumps up to trial k, and∑k−1
K=0 n

pumps
K is the total number of pumps up to trial k.

As an example, consider participant Jack. At the beginning of
the experiment, Jack’s α is 18 and Jack’s µ is 20. This means his
prior belief that pumping the balloon will make it burst equals
1 − 18/20 = 0.1. Suppose that on the first trial, Jack pumps
twice, and then the balloon bursts. This means Jack’s new belief
about the bursting probability is 1 − (18 + 1)/(20 + 2) = 0.136.
Consequently, Jack will pump more cautiously in the future (see
also Eqs. (3) and (4) below).

The next assumption is that DM determines the number of
pumps prior to the first pump, and does not make adjustments
during pumping. The number of pumps that DM considers optimal
on trial k, ωk, depends both on DM’s propensity for risk taking, γ +,
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andDM’s belief about the probability that pumping the balloonwill
make it burst:

ωk =
−γ +

ln(1 − pbeliefk )
with γ +

≥ 0. (3)

The actual probability that DM will pump on trial k for pump
opportunity l, ppump

kl , depends both on the number of pumps DM
considers optimal, ωk, and on DM’s behavioral consistency β:

ppump
kl =

1
1 + eβ(l−ωk)

with β ≥ 0. (4)

This logistic equation shows that high values for β mean less
variable responding. When β = 0, ppump

kl = 0.5, and DM’s decision
to pump or to cash is random. When β → ∞, DM’s behavior is
completely determined by whether or not the pump opportunity
l exceeds the number of pumps that DM considers optimal: if l −
ωk > 0 (i.e., the optimum number has been exceeded), ppump

kl → 0,
and DM is virtually certain to stop pumping; if l − ωk < 0 (i.e., the
optimum number has not yet been reached), ppump

kl → 1, and DM
is virtually certain to continue pumping.

In order to fit the 4-parameter BART model to observed data
and infer the parameter values that are most consistent with DM’s
performance, the parameters are connected to the data via the
likelihood function. For the 4-parameter model, the probability of
the data, p(D|α, µ, γ +, β) for all trials, nk, and for all pumpswithin
each trial, nl(k), depends on the probability that DM will pump for
each trial k for each pump opportunity l

p(D|α, µ, γ +, β) =

nk∏
k=1

nl(k)∏
l=1

ppump
kl (1 − ppump

k,nl(k)+1)
dk , (5)

where dk = 1 if DM cashed on trial k and dk = 0 if the
balloon burst on trial k. This quantity is basically the product
of all probabilities that DM will pump times one minus this
probability on the occasions where DM cashed. The likelihood of
the parameters given the data is proportional to the probability of
the data given the parameters (e.g., Edwards, 1992; Myung, 2003),
so that L(α, µ, γ +, β|D) ∝ p(D|α, µ, γ +, β). The parameters to
be estimated for the 4-update model are α, µ, γ +, and β .

So far, we have dealt exclusively with the 4-parameter model.
However, our simulations — reported below and in an online
Appendix1 — will indicate that this model needs to be simplified.
In the online Appendix we considered the 4-parameter model
and two 3-parameter simplifications, here we only discuss one
2-parameter simplification, because it was the model that most
accurately recovered its parameters.

The 2-parameter model assumes that DM’s belief about the
probability that pumping the balloon will make it burst is fixed
over trials. In other words, DM does not learn. This means we
can drop the subscript k from pbeliefk ; parameter pbelief is now fixed
and does not need to be estimated. This is a realistic model when
the participant is told the actual bursting probability in advance.
The parameters to be estimated for the 2-parameter model are
γ +and β .

2. Bayesian parameter estimation

In previous work, parameter estimation for the 4-parameter
BART model was carried out by means of individual subject
maximum likelihood (Wallsten et al., 2005).2 This means that the
model was applied to each participant’s data separately, and that
inference concerned the parameter point values that make the
observed data most likely.

1 See http://www.donvanravenzwaaij.com, section ‘‘Research & Codes’’.
2 Matlab code can be found on the web page of Tim Pleskac.
Here we estimate the parameters of the BART model in
a Bayesian way. In Bayesian inference, the researcher starts
with prior probability distributions, or priors, that reflect the
researcher’s uncertainty or belief about the parameters before the
data have been observed. In the next step, the prior distributions
are updated by means of the data (i.e., the likelihood), and the
result is a joint posterior distribution for the model parameters.
This posterior distribution reflects the researcher’s uncertainty or
degree of belief about the parameters after the data have been
observed.

Bayesian inference has several advantages over maximum like-
lihood (e.g., Carlin & Louis, 2000; Congdon, 2010; Wagenmakers,
Lee, Lodewyckx, & Iverson, 2008). First, modern Bayesian parame-
ter estimation techniquesmake it easy to extend a Bayesianmodel
to handle realistic situations in which structure is added at the
group level (e.g., randomeffects,mixtures, and contaminants). Sec-
ond, Bayesian model selection procedures allow researchers to
quantify the support that the data provide both for and against
a null hypothesis (Carlin & Louis, 2000; Gallistel, 2009; Rouder,
Speckman, Sun, Morey, & Iverson, 2009; Wetzels, Raaijmakers,
Jakab, & Wagenmakers, 2009); in a manner similar to parame-
ter estimation, Bayesian model selection starts by specifying prior
probabilities for each of the competingmodels. The prior probabil-
ities are updated through the data to yield posterior probabilities
for the competing models. Third, posterior distributions automat-
ically and naturally give an idea about the uncertainty in the infer-
ence (Congdon, 2010).

2.1. Hierarchical extension

As mentioned above, Bayesian models can be easily extended
to more realistic scenarios, such as those that feature group-
level structure, and, in particular, random effects that describe
individual differences. Historically, the field of experimental
psychology has mostly ignored individual differences, tacitly
assuming that each new participant is a replicate of the previous
one (Batchelder, 2007). As Estes and others have shown, however,
individual differences that are ignored can lead to averaging
artifacts, where the inference for the grouped data is no longer
representative for any of the participants (e.g., Estes, 1956, 2002;
Heathcote, Brown, & Mewhort, 2000). One way to address this
issue, popular in psychophysics, is to measure each individual
participant extensively, and analyze the data on a participant-by-
participant basis.

In between the two extremes of assuming that participants are
completely the same and that they are completely different lies
the compromise of hierarchical modeling (see also Lee & Webb,
2005; Nilsson, Rieskamp, & Wagenmakers, 2011). In hierarchical
modeling, individual parameters are assumed to be drawn from an
overarching group distribution (Gelman & Hill, 2007). This group
distribution has parameters of its own, called hyperparameters.
Usually, one starts by assuming that individual-level parameters
are constrained by aGaussian groupdistribution,N(µ, σ ); because
σ corresponds to the spread of the group distribution, this
parameter quantifies the extent to which the participants differ—
low values of σ indicate that the participants are relatively similar;
in the limit of σ → 0, all participants are identical copies of each
other.

The theoretical advantages and practical relevance of a
Bayesian hierarchical analysis for common experimental designs
has been repeatedly demonstrated by Jeff Rouder and col-
leagues (e.g., Rouder & Lu, 2005; Rouder, Lu, Morey, Sun, & Speck-
man, 2008; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder et al.,
2007). One of the theoretical advantages is that by hierarchical
modeling, researchers automatically obtain an optimal compro-
mise between the extremes of complete pooling and complete in-
dependence. This approach is used by a number of authors in this

http://www.donvanravenzwaaij.com
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special issue, including Merkle, Smithson, and Verkuilen (2011),
and Nilsson et al. (2011), who also consider individual differences
in simple decision-makingmodels. One of the practical advantages
is that hierarchical modeling allows for more efficient inference on
the individual level; this happens because extreme individual esti-
mates, when these are based on few data, are shrunk towards the
group mean (Gelman & Hill, 2007).

2.2. Implementation

We implemented the BART models in the WinBUGS environ-
ment (Lunn, Spiegelhalter, Thomas, & Best, 2009; Lunn, Thomas,
Best, & Spiegelhalter, 2000; Ntzoufras, 2009), of which introduc-
tions for psychologists are given by Lee and Wagenmakers (2009)
and Sheu and O’Curry (1998). WinBUGS is a general-purpose pro-
gram that allows users to specify and fit a wide array of Bayesian
models. AlthoughWinBUGS does not work for every application, it
will work for most applications in psychology. The WinBUGS pro-
gram is easy to learn and is supported by a large community of ac-
tive researchers. In WinBUGS, the user needs to specify the model
(i.e., the likelihood and the priors—see the Appendix for an exam-
ple), and provide themodel with the data. Next, theWinBUGS pro-
gram usesMarkov chainMonte Carlo (MCMC) to draw values from
the posterior distribution. One of the advantages of WinBUGS is
that the user does not need to hand-code theMCMC algorithms, as
these are applied by WinBUGS per default.

An example of the kind of inference that WinBUGS affords is
shown in Fig. 2. The top panel of this figure shows three chains
that are designed to sample values from the posterior for γ +, the
risk taking parameter for a participant in the drunk condition of
our experiment (explained in detail later). The figure shows that
each chain samples 5000 values; a first set of 5000 values was
discarded as burn-in, to eliminate any dependence on the starting
values of the chains. Visual inspection shows that the three chains
are virtually indistinguishable — this indicates that the chains are
drawing samples from the same distribution — and that the chains
do not exhibit slow upward or downward trends — this indicates
that the distribution is sampled efficiently.

To confirmmore formally that the three chains have converged
to the posterior distribution, one method is to calculate the R̂
statistic (Gelman & Rubin, 1992), a statistic that compares the
variance over chains to that within chains. When the chains are
indistinguishable, R̂ equals 1. As a rule of thumb, an R̂ higher than
1.10 is considered suspicious. For the three chains shown in Fig. 2,
R̂ = 1.00.

Having reassured ourselves that the three chains draw samples
from the posterior distribution, we can then pool the samples and
plot these as a histogram. The result is shown in the bottom panel
of Fig. 2. Based on the 15,000 samples, we can also construct a
Bayesian 95% confidence interval (also known as credible interval).
In this case, after seeing the data, we can be 95% confident that γ +

lies in the interval (0.78, 1.12). In addition, we can summarize the
posterior distribution by its mean, median, or mode.

3. Parameter recovery simulations

In this section we examine parameter recovery of the 2-
parameter simplification of the BART model. In this model, pbelief
is fixed to the value of pburst . This way, the only parameters
left to estimate are γ + and β . We generated data for a grid of
values for parameters γ + and β . We did so by plugging in the
parameter values into Eqs. (3) and (4), to calculate the probability
that DM will pump on trial k for pump opportunity l, ppump

kl . We
generated pumps and cashes based on these probabilities, and also
incorporated bursting probability after each pumping decision to
Table 1
Parameter correlations in the 2-parameter model with 90 trials per simulation.

β

0.4 0.5 0.6 0.7 0.8

γ +

0.6 −0.79 −0.72 −0.75 −0.73 −0.73
1 −0.82 −0.82 −0.82 −0.79 −0.71
1.4 −0.85 −0.83 −0.81 −0.74 −0.69
1.8 −0.85 −0.82 −0.77 −0.72 −0.67
2.2 −0.82 −0.76 −0.73 −0.65 −0.54

generate a full dataset. Next, we fit themodel to the simulated data
and compared the resulting parameter estimates (specifically, the
posteriormean)with the original values thatwere used to generate
the data.

For all simulations, parameters were recovered with a Bayesian
implementation of the model, WinBUGS code of which can be
found in the Appendix. We used the following priors: γ +

∼

U(0, 10) and β ∼ U(0, 10), where U indicates the uniform
distribution. In the absence of strong prior knowledge about the
parameters, these priors were chosen to be relatively vague. Other
vague priors (e.g., uniform priors on the log of γ + and β) yielded
similar results. For each of the model fits in the next section, we
used a single chain, consisting of 2000 iterations with a burn-in
of 1000 samples. The simulations were conducted with a range of
starting values for theMCMC chains. The results were qualitatively
similar, unless reported otherwise. Parameter pburst was set to
0.15, so that pbelief was also 0.15. We ran 1000 simulations of 1
participant completing 90 trials.

Fig. 3 shows recovery of the γ + parameter. Recovery of γ + is
good for most combinations of true values for γ + and β . For a
combination of low γ + and low β parameters, the estimate of γ +

becomes too high. Also, the estimates become more variable.
Fig. 4 shows recovery of the β parameter. Recovery of β is

good for the whole range of values for the γ + and β parameters,
although there is a small bias for the extreme values of γ +.

Table 1 presents the correlation between the different param-
eters for the posterior means. Analogous to the more complicated
models, this table shows that γ + and β estimates are highly neg-
atively correlated. This correlation seems to be high when β takes
a low value and when γ + takes an intermediate value. Regardless,
there is a substantial parameter dependency.

In order to examine the effect of burst probability on
parameter recovery, we simulated data for the following range of
values for pburst : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and
‘‘variable’’. The ‘‘variable’’ pburst meant that for one third of the
trials, pburst = 0.1, for one third pburst = 0.15, and for one third
pburst = 0.2. We included the ‘‘variable’’ pburst in our simulations
because it is identical to pburst that was used in the experiment
presented below. Since pbelief = pburst , we simultaneously varied
pbelief . Analogous to the other simulations, γ +

= 1.4 and β = 0.6.
We ran 1000 simulations of 1 participant completing 90 trials. The
results of this simulation are displayed in Fig. 5.

Recovery of the γ + parameter is substantially biased upwards
for burst probabilities of 0.25 and higher, when the parameter
estimates also becomemore variable. Recovery of the β parameter
is similarly affected by the burst probability. When the burst
probability is too high, there are not enough data to obtain reliable
parameter estimates. On top of that, for a small burst probability
(0.05), there is a tendency to overestimate β . Therefore, we would
advise researchers who use our version of the BART (inwhich pburst
is fixed) to only set burst probabilities in the range of 0.1–0.2, as
values outside of this range lead to biased parameter estimates. The
correlations between γ + and β are: −0.55, −0.72, −0.78, −0.83,
−0.81, −0.80, −0.83, −0.83, −0.81, −0.77 for burst probabilities
of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and ‘‘variable’’,
respectively.
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Fig. 2. Top panel: threeMCMC chains for parameter γ + . Bottompanel: Histogramandnon-parametric density estimate for (Silverman, 1986, p. 48) the posterior distribution
of parameter γ + . The 95% Bayesian confidence interval extends from 0.78 to 1.12.
Fig. 3. The 2-parameter BART model recovers parameter γ + (results based on a 90-trial BART). Parameter pbelief = pburst = 0.15. The dots represent the median of 1000
posterior means. The violins around the dots are density estimates for the distribution of the 1000 posterior means, with the extreme 5% truncated (see also Hintze & Nelson,
1998). The horizontal lines represent the true parameter values.
In sum, based on the simulation results presented, we conclude
that the parameter recovery of the 2-parametermodel is very good.
In contrast, parameter recovery of the 3- and 4-parameter models
is suspect.3 Therefore, we chose to analyze the results from the

3 See the online Appendix at http://www.donvanravenzwaaij.com, section
‘‘Research & Codes’’.
empirical study, presented below, with the 2-parameter model
only.

4. Experiment

In this section we will present an application of a hierarchical
version of the 2-parameter model to empirical BART data. In
a within-subjects design, we administered three different doses

http://www.donvanravenzwaaij.com
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Fig. 4. The 2-parameter BART model recovers parameter β (results based on a 90-trial BART). Parameter pbelief = pburst = 0.15. The dots represent the median of 1000
posterior means. The violins around the dots are density estimates for the distribution of the 1000 posterior means, with the extreme 5% truncated. The horizontal lines
represent the true parameter values.
Fig. 5. The 2-parameter BARTmodel recovers parameters γ + and β for pburst values from 0.1 to 0.3 (results based on a 90-trial BART). Lower or higher burst probabilities lead
to biased estimates. The dots represent themedian of 1000 posteriormeans. The violins around the dots are density estimates for the distribution of the 1000 posteriormeans,
with the extreme 5% truncated. The horizontal lines represent the true parameter values. Var = First 30 trials: burst probability of 0.1, second 30 trials: burst probability
of 0.15, third 30 trials: burst probability of 0.2.
of alcohol to every participant, each measured in blood alcohol
content, or BAC, in grams per liter: a placebo condition (BAC= 0), a
tipsy condition (BAC = 0.5) and a drunk condition (BAC = 1). After
consumption, each participant completed a 20 min version of the
BART.

We expected that a higher dose of alcohol would lead to more
pumps per trial (and therefore a lower percentage of cashing in
the experiment). In terms of model parameters, we expected that
a higher dose of alcohol would lead to higher risk taking, as evident
in higher values of γ +, and to a more diverse, less stable pumping
pattern over trials, as evident in lower values of β .

4.1. Method

4.1.1. Participants
Eighteen male students from the University of Amsterdam,

aged 18–25, participated in all three conditions in exchange for a
monetary reward of 80 euros.
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4.1.2. Materials
The amount of alcohol administered to participants was based

on Widmark’s Formula:

BAC =
A
rW

− ξ t, (6)

where BAC is the blood alcohol concentration (in grams per liter), A
is the weight of the alcohol consumed since the commencement of
drinking (in grams), W is the weight of the person (in kilograms),
r is the alcohol distribution ratio (in liters per kilogram), which is
on average 0.68 for men, t is the number of hours elapsed since
the commencement of drinking, and ξ is the decay factor (Watson,
Watson, & Batt, 1981).

Pilot work showed ξ to be approximately 0.15.4 Thus, each
participant was required to drink an amount of vodka (in
milliliters) equal to 1.28 times their body weight (in kilograms) in
the tipsy condition and double that amount in the drunk condition.
For example, a man weighing 70 kg would be required to drink 90
ml of vodka in the tipsy condition and 180ml of vodka in the drunk
condition.

Participants were required to drink two 0.4 l milkshake cups
of fluid. Both cups consisted of half the amount of vodka the
participant had to consume, then filled upwithmultifruit juice. On
top of all this, 6 drops of mint oil were added, as earlier tests had
shown this to mask both the taste and the scent of the alcohol.

4.1.3. Procedure
Each participant started the experiment at 3 pm. Upon entering,

if it was their first session, they received a general instruction
about the procedure and signed an informed consent form. Then
the participant was asked whether he had drank alcohol the
night before, whether he had a light lunch and whether he had
consumed any tea, coffee or coke prior that day (the required
answers were no, yes, no). Next, the participant got his first
breathalyzer measurement. If the BAC read 0 (which it invariably
did), the participant was given his first milkshake cup. To finish
the first cup the participant was allowed 15 min, after which
the second cup was brought in. The participant was allowed
30 min to finish the second cup. After finishing the two cups, the
participant received a glass of water and was required to wait for
another 20 min for the alcohol to take its full effect. During the
complete 65 min, the participant watched a DVD of his choice.
After this, a second breathalyzer measurement was obtained. Then
the participant completed an unrelated perceptual classification
experiment, which took approximately 20 min.5 Subsequently, a
third breathalyzer measure was obtained. Next, the participant
started the BART, which took approximately 20 min to complete.
Upon completion of the BART, the participant received a fourth
breathalyzer measurement.

4.1.4. Design
In each of the three sessions, a BART was administered with 3

blocks of 30 trials each. In 30 trials the risk associated with the
balloon bursting, pburst , was 0.1, in 30 trials the risk was 0.15 and
in 30 trials the risk was 0.2 (analogous to pburst = ‘‘variable’’ in the
second simulation for the 2-parameter model). The blocks of 30
trials were administered in random order. Parameter pburst did not
vary within blocks and was communicated to the participant prior
to each block. The amount of money gained with each pump was
a percentage of the money accrued so far, chosen such that each
pump had an expected gain of exactly zero.

4 The pilot consisted of administering the beverage to the authors and three other
colleagues of the department and measuring their BAC upon consumption.
5 The results of this experiment will be published elsewhere.
4.2. Results

Fig. 6 shows the within-subject effects for the number of
pumps6 and, for completeness, the percentage of trials on which
the participant decided to cash. Contrary to our expectation,
neither alcohol dose nor test session affected these BART
performance measures.

4.2.1. Hierarchical Bayesian parameter estimation
We fit the hierarchical 2-parameter model to the data. The

model estimates a γ +

ij and βij parameter for participants i =

1, . . . , 18 for conditions j = 1, 2, 3. Our design is a two-way
hierarchical Bayesian ANOVA with alcohol dose and session as the
independent variables. Because the experimental design did not
include all combinations of dose × session for each participant,
dummy variables are used to take only the relevant effects into
account (e.g., Ntzoufras, 2009). All 54 parameters are estimated
according to

γ +

ij = η
γ +

i + ζ
γ +

1i D1i + ζ
γ +

2i D2i + θ
γ +

1i D3i + θ
γ +

2i D4i, (7)

βij = η
β

i + ζ
β

1iD1i + ζ
β

2iD2i + θ
β

1iD3i + θ
β

2iD4i, (8)

where for both Eqs. (7) and (8) the η.
i parameters (the dot indicates

the same structure for both equations) is the baseline effect for
participant i in the sober condition for the first session. Parameter
ζ .
1i is the alcohol effect from sober to tipsy, parameter ζ .

2i is the
additional alcohol effect from tipsy to drunk. Parameter θ .

1i is the
training effect from session 1 to 2, parameter θ .

2i is the additional
training effect from session 2 to 3. Parameters D.i are dummy
variables. For example, to calculate γ + for participant 5 in the tipsy
condition, which was administered to this participant in session 3,
we get

γ +

52 = η
γ +

5 + ζ
γ +

15 × 1 + ζ
γ +

25 × 0 + θ
γ +

15 × 1 + θ
γ +

25 × 1

= η
γ +

5 + ζ
γ +

15 + θ
γ +

15 + θ
γ +

25 . (9)

For each participant, the effect parameters η.
i , ζ .

.i, and θ .
.i are

assumed to come from a Gaussian group distribution:

η.
i ∼ N(µ.

η, σ
.
η), (10)

ζ .
.i ∼ N(µ.

.ζ , σ
.
.ζ ), (11)

θ .
.i ∼ N(µ.

.θ , σ
.
.θ ). (12)

The priors for the mean and the standard deviation of the
baseline group Gaussian distributions are given by

µ.
η ∼ U(0, 10), (13)

σ .
η ∼ U(0, 10). (14)

For the alcohol dose and the session effects, we chose to use a
prior on effect size instead of on the mean parameter (e.g., Rouder
et al., 2009; Wetzels et al., 2009). Thus,

δ.
.ζ =

µ.
.ζ

σ .
.ζ

, (15)

δ.
.θ =

µ.
.θ

σ .
.θ

. (16)

This way one can model the effect size parameters directly,
which is convenient if one does not know much about the

6 Since the mean number of pumps excluding balloons that burst and the mean
number of pumps based on all trials do not deviate substantially, we report the
mean number of pumps here based on all trials.
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Fig. 6. Alcohol dose (left panels) and test session (right panels) do not affect the mean number of pumps (top panels), nor the percentage of trials on which the participant
cashed (bottom panels). Error bars represent 95% frequentist confidence intervals.
underlying scale. The priors for the standard deviations and effect
sizes are given by

δ.
.ζ ∼ N(0, 1), (17)

σ .
.ζ ∼ U(0, 10), (18)

δ.
.θ ∼ N(0, 1), (19)

σ .
.θ ∼ U(0, 10). (20)

For the remaining individual, mean, and standard deviation
parameters, we used the following priors: γ +

i ∼ N(γ +
µ , γ +

σ ),
βi ∼ N(βµ, βσ ), γ +

µ ∼ U(0, 10), βµ ∼ U(0, 10), γ +
σ ∼ U(0, 10),

βσ ∼ U(0, 10).
For each parameter, we ran three separate Markov chains. For

the first chain, we used the following initial values: ηγ +

i = µ
γ +

η =

1.2, ηβ

i = µβ
η = 0.5, σ .

η = σ .
.ζ = σ .

.θ = 1, and ζ .
.i = θ .

.i = δ.
.ζ =

δ.
.θ = 0. For the second chain, we multiplied all initial values from
chain 1 by 0.8, except for ζ .

.i = θ .
.i = δ.

.ζ = δ.
.θ , which we put on

−0.2. For the third chain, wemultiplied all initial values from chain
1 by 1.2, except for ζ .

.i = θ .
.i = δ.

.ζ = δ.
.θ , which we put on 0.2. We

hand-picked initial values based on results from the simulations
reported earlier. Each chain consisted of 10,000 iterations, ofwhich
the first 5000 were burn-in samples.

4.2.2. Posterior predictives
In Bayesian statistics, model fit can be assessed by means of

posterior predictives. Posterior predictives are synthetic, model-
generated data sets that are produced by parameters drawn
from the posterior distribution. If the synthetic data sets closely
resemble the empirical data, then the model fit is deemed
adequate. We generated posterior predictives for our BART
experiment by sampling 1000 values of the parameters γ + and β
from the joint posterior for each participant and each condition.
We then generated 90 trials of BART data with each of the sampled
sets of parameters and calculated a mean number of pumps for
these 90 trials. Finally, we generated a density across the 1000
sampled mean number of pumps for each participant and each
condition. The resulting posterior predictive densities can be seen
in Fig. 7. The dots in the figure show the experimental data
on the mean number of pumps per participant, with error bars
representing 95% frequentist confidence intervals. The vertical
densities next to the data points are the model predictions that
follow from the joint posterior. The densities fall smoothly over all
confidence intervals, suggesting that the model fits the data well.

4.2.3. Experimental effects
The hierarchical 2-parameter model converged well, with the

median of the R̂s over all parameters being 1.01. Fig. 8 displays
within-subject effects of the two parameters, γ + and β in the
left two panels. The γ + parameter shows an upward trend with
alcohol dosage, and the β parameter shows a downward trend.
The confidence intervals, although suggestive, overlap with zero,
even for the sober-to-drunk effect. Therefore, we cannot conclude
that there is an effect from alcohol consumption on the γ + and
β parameters. The correlation between the γ + and β parameter
estimates is −.68.

The top right panel displays posterior densities for δ
γ +

1ζ and δ
γ +

2ζ .
It also displays a posterior density for the effect size from sober to
drunk, δγ +

3ζ , whichwas estimated in a separatemodel.7 The bottom
right panel displays posterior densities for δ

β

1ζ and δ
β

2ζ , as well as a
posterior density for the effect size from sober to drunk, δβ

3ζ , which
was also estimated in a separate model.

To showcase one of the strengths of a hierarchical analysis,
we have estimated parameters of the 2-parameter model with
maximum likelihood. We have also estimated the parameters
Bayesian for each participant and for each condition separately
(labeled ‘‘individual Bayes’’). The left panel of Fig. 9 shows within-
subject effects of the maximum likelihood parameter estimates,
the middle panel shows within-subject effects of the posterior
means of the individual Bayes parameter estimates, and the right
panel shows within-subject effects of the posterior means of
the hierarchical Bayes parameter estimates (identical to the left
panel of Fig. 8). Fig. 9 shows that the 95% confidence intervals
are smaller for the hierarchical Bayes model than for both the
maximum likelihood and the individual Bayes models. The reason

7 Estimating the effect size of the contrasts sober–tipsy and sober–drunk
automatically constrains the effect size of the contrast tipsy–drunk. To obtain a
posterior for the effect size of the contrast tipsy–drunk, a separate model was
necessary to prevent identification problems.
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Fig. 7. Posterior predictives indicate that the model fits the data well. Lines: Posterior predictives, based on the model parameter estimates. Dots: experimental effects on
the mean number of pumps per participant. Error bars represent 95% confidence intervals of the data.
Fig. 8. Parameters γ + and β are not clearly affected by alcohol dose. Left Panel: Mean within-subject effects on the γ + and β parameters for alcohol dose. Error bars
represent 95% confidence intervals. Right Panel: Posterior densities of the effect sizes. Black: δ.

1ζ ; dark-gray: δ.
2ζ ; medium-gray: δ.

3ζ ; light-gray: prior for the effect sizes:
N(0, 1).
for this enhanced precision lies in the inclusion of the group-level
structure. Since both subject and condition parameters are now
drawn from an overarching distribution, parameter estimates will
shrink towards themean. This shrinkage effect ismore pronounced
for individuals whose parameters are estimated imprecisely, so
that the hierarchical Bayesian analysis does not suffer fromoutliers
to the extent that the other two analyses do.

4.2.4. Hierarchical Bayesian hypothesis testing using Bayes factors
So far, all our analyses were concerned with parameter

estimation. In this section we will carry out a Bayesian hypothesis
test using the Bayes factor. Hypothesis testing is important, because
95% confidence intervals cannot quantify evidence in favor of a
null-hypothesis that postulates the absence of an effect (Berger &
Delampady, 1987; Rouder et al., 2009). In Bayesian testing, every
hypothesis that is entertained — here the null-hypothesis H0 and
the alternative hypothesis HA — is assigned a prior probability. The
ratio between two prior model probabilities is known as the prior
odds, p(H0)/p(HA). The prior odds is updated by means of the data
and then becomes the posterior odds, p(H0|D)/p(HA|D). The change
from prior odds to posterior odds, p(D|H0)/p(D|HA), is known as
the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995). Thus,

BF0A =
p(H0|D)

p(HA|D)
=

p(D|H0)

p(D|HA)
×

p(H0)

p(HA)
. (21)
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Fig. 9. The 95% frequentist confidence interval of the within-subject effects are smaller for the hierarchical Bayes posterior means (right panel) than for the maximum
likelihood parameter estimates (left panel), and the individual Bayes posterior means (middle panel). The small figures in the top left panel indicate the extent of the
confidence intervals.
WhenH0 andHA are equally likely a priori, then the Bayes factor
is identical to the posterior odds. Bayes factors BF0A higher than
1 indicate support in favor of the null-hypothesis, whereas Bayes
factors BF0A lower than 1 indicate support in favor of the alternative
hypothesis.

In order to test the null-hypotheses that the effect sizes for each
of the BART parameters (i.e., δγ +

1ζ , δγ +

2ζ , δγ +

3ζ , δβ

1ζ , δ
β

2ζ , and δ
β

3ζ ) equals
0, we calculated the Bayes factor for each of the contrasts using the
Savage–Dickeymethod (see e.g. Rouder et al., 2009;Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010; Wetzels et al., 2009). To
calculate a Bayes factor using the Savage–Dickey method, one
estimates the height of the posterior distribution for the parameter
of interest, at the point that is subject to test, and divides this
estimate by the height of the prior distribution at that same point.

For the γ + parameter, the Bayes factors BF0A for δ
γ +

1ζ , δγ +

2ζ , and

δ
γ +

3ζ were estimated to be 1.33, 1.17, and 1.51, respectively. These
Bayes factors are inconclusive, supporting the null hypothesis only
by the slightest ofmargins; consequently,we cannot drawany firm
conclusions as to whether or not there is an effect from alcohol
consumption on the γ + parameter. This conclusion echoes the one
based on the confidence intervals reported above.

For the β parameter, the Bayes factors BF0A for δ
β

1ζ , δ
β

2ζ , and
δ

β

3ζ were 1.68, 3.04, and 2.61, respectively. These Bayes factors are
higher than one, but are still barelyworthmentioning, according to
the taxonomyby Jeffreys (1961). Therefore, the data are ambiguous
with respect to the effect of alcohol on the β parameter.

5. Concluding comments

The first goal of this paper was to increase our knowledge about
how the BART models can be applied to empirical data. In order
to do so, we have assessed parameter recovery for a simplified
version of the BART model by Wallsten et al. (2005) with 4, 3,
and 2 parameters, of which the results for the 4- and 3-parameter
versions of the model are reported online. Our second goal was
to test the effects of alcohol on performance on the BART task in
an experimental setting. We have created a Bayesian hierarchical
implementation of the BART model and have applied it to this
empirical dataset.

Our simulations indicated that only the 2-parameter model
with the risk parameter γ + and behavioral consistency parame-
ter β could adequately recover its parameters. The learning pa-
rameters present in the full 4-parameter model can not be reliably
recovered and even reduce recovery of the other parameters (see
also Pleskac, 2008). This suggests that for the specific version of the
BART we used with a fixed bursting probability over trials, empiri-
cal BART data are not rich enough to warrant the use of more com-
plicated models. Note that even though the learning parameters
were statistically unidentified, these parameters are very plausible
psychologically. Researchers interested in the learning component
of risk taking may better resort to different tasks, such as the Iowa
gambling task (Busemeyer & Stout, 2002; Wetzels et al., 2010).

We also found that the 2-parameter model performs best when
the probability of the balloon bursting is in the range of 0.1 to 0.2;
researchers interested in applying the BART model to data are
advised to use values in this range. A cautionary remark here is
in order, as our results were obtained with a BART in which the
bursting probabilitywas constant for increasing number of pumps.
They may not generalize to the more conventional BART, in which
the bursting probability is governed by Eq. (1).

One necessary, but not sufficient, condition that has to
be met for every successful measurement model is reliable
parameter estimation. We have demonstrated this feature for
the 2-parameter model. However, another important condition is
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validation (e.g., Vanpaemel, 2009). In order for the BART model
to really prove its usefulness, parameter specificity tests would
have to be conducted. For instance, the gains for each pump could
be increased to see whether this would lead to an increase in
the risk taking parameter γ +; or the bursting probability could,
unbeknownst to the participant, be modulated between trials to
see whether that would lead to more variance in the number of
pumps between trials and a decrease in the behavioral consistency
parameter β .

In the empirical study, we examined the effects of alcohol con-
sumption on BART performance. In contrast to our expectations,
alcohol consumption did not affect the mean number of pumps
or the percentage of trials cashed. We then analyzed the behav-
ioral data with a Bayesian hierarchical implementation of the
2-parameter BART model. This analysis showed that alcohol con-
sumption leads to an increase in the risk taking parameter γ +, and
a decrease in the behavioral consistency parameter β . These ef-
fects were, however, relatively modest, and do not allow for clear
statistical conclusions. Perhaps our choice for using a BART with a
relatively high bursting probability is partially responsible for the
somewhat weak effects, as this leads to a relatively limited num-
ber of pumps per trial. On the other hand, the hierarchical nature of
our design guaranteed that we had plenty of data, so that we may
have some confidence in the results of our analyses.

In this paper, we have tried to demonstrate the added value
of formal cognitive modeling of tasks used in developmental and
clinical psychology. We have also tried to show the benefits of hi-
erarchical Bayesianmodeling. Bayesian hierarchical models simul-
taneously take into account participants’ differences and similari-
ties, and they propagate uncertainty and information from differ-
ent sources in a coherent manner. The growth of cognitive mod-
els — Bayesian or otherwise — is increasing (e.g., Johnson, Blaha,
Houpt, & Townsend, 2010; Maddox, Filoteo, & Zeithamova, 2010;
Neufeld, Boksman, Vollick, George, & Carter, 2010; Speekenbrink,
Lagnado, Wilkinson, Jahanshahi, & Shanks, 2010; Wenger, Negash,
Petersen, & Petersen, 2010), and we hope and expect this trend to
continue in the future.

Appendix. WinBUGS code of the BART model

This appendix provides the WinBUGS code for fitting one
participant with the 2-parameter BART model. WinBUGS code for
the more complicated models is available on the first author’s web
page, http://www.donvanravenzwaaij.com/.

model
{

# Priors for the gamma plus and beta parameters:
gplus˜dunif(0, 10)
beta˜dunif(0, 10)
for (i in 1:Trials)
{

# Amount of pumps DM considers optimal:
Omega[i]<- -gplus/log(1-pBelief[i])
for(j in 1:Option[i])
{

# Probability that DM will cash for trial i for
pump j:

pCash[i,j] <- 1-(1/(1+exp(beta*(j-Omega[i]))))
# Choice contains the data as binary variables:
Choice[i,j]˜dbern(pCash[i,j])

}
}

}

The model requires three variables for input:

• pbelief is the participant’s belief about the probability that the
balloon will burst after any pump.
• option is the number of pump opportunities the participant had
for each trial.

• choice is a binary variable, containing the actual choice for each
pump opportunity.

To illustrate, suppose a participant completed a BART with two
trials. On the first trial, the participant pumped three times and
then cashed. On the second trial, the participant pumped twice and
then the balloon burst. The input variables would be represented
as follows:

option
4 2
choice
0 0 0 1
0 0

References

Adlaf, E. M., & Smart, R. G. (1983). Risk-taking and drug-use behaviour: an
examination. Drug and Alcohol Dependence, 11, 287–296.

Batchelder, W. H. (2007). Cognitive psychometrics: combining two psychological
traditions. In CSCA Lecture. 2007.

Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advanta-
geously before knowing the advantageous strategy. Science, 275, 1293–1295.

Berger, J. O., & Delampady, M. (1987). Testing precise hypotheses. Statistical Science,
2, 317–352.

Burian, S. E., Liguori, A., & Robinson, J. H. (2002). Effects of alcohol on risk-taking
during simulated driving. Human Psychopharmacology, 17, 141–150.

Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to
clinical assessment: decomposing performance on the Bechara gambling task.
Psychological Assessment , 14, 253–262.

Carlin, B. P., & Louis, T. A. (2000). Bayes and empirical Bayes methods for data analysis.
New York: Chapman & Hall/CRC.

Cherpitel, C. J. (1993a). Alcohol and injuries: a review of international emergency
room studies. Addiction, 88, 651–665.

Cherpitel, C. J. (1993b). Alcohol, injury, and risk-taking behavior: data from a
national sample. Alcoholism: Clinical and Experimental Research, 17, 762–766.

Cohen, J., Dearnaley, E. J., & Hansel, C. E. M. (1958). The risk undertaken in driving
under the influence of alcohol. British Medical Journal, 1, 1438–1442.

Congdon, P. D. (2010). Applied Bayesian hierarchical methods. Boca Raton: CRC Press.
Edwards, A. L. (1957). The social desirability variable in personality assessment and

research. Ft Worth: Dryden Press.
Edwards, A. W. F. (1992). Likelihood. Baltimore, MD: The Johns Hopkins University

Press.
Estes, W. K. (1956). The problem of inference from curves based on group data.

Psychological Bulletin, 53, 134–140.
Estes, W. K. (2002). Traps in the route to models of memory and decision.

Psychonomic Bulletin & Review, 9, 3–25.
Eysenck, S. B., & Eysenck, H. J. (1977). The place of impulsiveness in a dimensional

system of personality description. British Journal of Social Clinical Psychology, 16,
57–68.

Fromme, K., Katz, E., & D’Amico, E. (1997). Effects of alcohol intoxication on the per-
ceived consequences of risk taking. Experimental Clinical Psychopharmacology,
5, 14–23.

Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116,
439–453.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge: Cambridge University Press.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation usingmultiple
sequences. Statistical Science, 7, 457–472.

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed:
the case for an exponential law of practice. Psychonomic Bulletin & Review, 7,
185–207.

Hintze, J., & Nelson, R. (1998). Violin plots: a box plot-density trace synergism. The
American Statistician, 52(2).

Hopko, D., Lejuez, C., Daughters, S., Aklin, W., Osborne, A., & Simmons, B. (2005).
Construct validity of the Balloon Analogue Risk Task (BART): relationship
with MDMA use by inner-drug users in residential treatment. Journal of
Psychopathology and Behavioral Assessment , 28, 95–101.

Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.
Johnson, S. A., Blaha, L. M., Houpt, J. W., & Townsend, J. T. (2010). Systems factorial

technology provides new insights on global–local information processing in
autism spectrum disorders. Journal of Mathematical Psychology, 54, 53–72.

Kalichman, S. C., Heckman, T., & Kelly, J. A. (1996). Sensation seeking as an
explanation for the association between substance use and HIV-related risky
sexual behavior. Archives of Sexual Behavior , 25, 141–154.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90, 773–795.

http://www.donvanravenzwaaij.com/


D. van Ravenzwaaij et al. / Journal of Mathematical Psychology 55 (2011) 94–105 105
Lee, M. D., & Wagenmakers, E.-J. (2009). A course in Bayesian graphical modeling
for cognitive science. Course notes available at
http://users.fmg.uva.nl/ewagenmakers/BayesCourse/BayesBook.pdf.

Lee, M. D., & Webb, M. R. (2005). Modeling individual differences in cognition.
Psychonomic Bulletin & Review, 12, 605–621.

Leigh, B. C., & Stall, R. (1993). Substance use and risky sexual behavior for exposure
to HIV: issues in methodology, interpretation, and prevention. American
Psychologist , 48, 1035–1045.

Lejuez, C. W., Aklin, W. M., Zvolensky, M. J., & Pedulla, C. M. (2003). Evaluation of
the balloon analogue risk task (BART) as a predictor of adolescent real-world
risk-taking behaviors. Journal of Adolescence, 26, 475–479.

Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., & Stuart, G. L.
(2002). Evaluation of a behavioral measure of risk taking: the balloon analogue
risk task (BART). Journal of Experimental Psychology: Applied, 8, 75–84.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project:
evolution, critique and future directions. Statistics in Medicine, 28, 3049–3067.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS — a Bayesian
modelling framework: concepts, structure, and extensibility. Statistics and
Computing , 10, 325–337.

Maddox,W. T., Filoteo, J. V., & Zeithamova, D. (2010). Computational models inform
clinical science and assessment: an application to category learning in striatal-
damaged patients. Journal of Mathematical Psychology, 54, 109–122.

McEwan, R. T., McCallum, A., Bhopal, R. S., & Madhok, R. (1992). Sex and the risk of
HIV infection: the role of alcohol. British Journal of Addiction, 87, 577–584.

Merkle, E., Smithson, M., & Verkuilen, J. (2011). Hierarchical models of simple
mechanisms underlying confidence in decisionmaking. Journal of Mathematical
Psychology, 55(1), 57–67.

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47, 90–100.

Neufeld, R. W. J., Boksman, K., Vollick, D., George, L., & Carter, J. R. (2010).
Stochastic dynamics of stimulus encoding in schizophrenia: theory, testing, and
application. Journal of Mathematical Psychology, 54, 90–108.

Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical Bayesian
parameter estimation for cumulative prospect theory. Journal of Mathematical
Psychology, 55(1), 84–93.

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken: Wiley.
Pleskac, T. J. (2008). Decision making and learning while taking sequential risks.

Journal of Experimental Psychogy — LearningMemory and Cognition, 34, 167–185.
Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with

an application in the theory of signal detection. Psychonomic Bulletin & Review,
12, 573–604.

Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A hierarchical
process dissociation model. Journal of Experimental Psychology: General, 137,
370–389.
Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical model
for estimating response time distributions. Psychonomic Bulletin & Review, 12,
195–223.

Rouder, J. N., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-Benjamin, M.
(2007). Signal detection models with random participant and item effects.
Psychometrika, 72, 621–642.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian
t-tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin &
Review, 16, 225–237.

Sheu, C.-F., & O’Curry, S. L. (1998). Simulation-based Bayesian inference using BUGS.
Behavioral Research Methods, Instruments, & Computers, 30, 232–237.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London:
Chapman & Hall.

Speekenbrink, M., Lagnado, D. A., Wilkinson, L., Jahanshahi, M., & Shanks, D.
R. (2010). Models of probabilistic category learning in Parkinson’s disease:
strategy use and the effects of L-dopa. Journal of Mathematical Psychology, 54,
123–136.

Vanpaemel, W. (2009). BayesGCM: software for Bayesian inference with the
generalized context model. Behavior Research Methods, 41, 1111–1120.

Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. (2008). Bayesian versus
frequentist inference. InH.Hoijtink, I. Klugkistand, & P. A. Boelen (Eds.),Bayesian
evaluation of informative hypotheses (pp. 181–207). New York: Springer.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. P. P. P. (2010).
Bayesian hypothesis testing for psychologists: a tutorial on the Savage–Dickey
method. Cognitive Psychology, 60, 158–159.

Wallach, M. A., Kogan, N., & Bem, D. J. (1962). Group influence on individual risk
taking. Journal of Abnormal and Social Psychology, 65, 75–86.

Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2005). Modeling behavior in a clinically
diagnostic sequential risk-taking task. Psychological Review, 112, 862–880.

Watson, P. E., Watson, I. D., & Batt, R. D. (1981). Prediction of blood alcohol
concentrations in human subjects. Journal of Studies on Alcohol, 42, 547–556.

Wenger, M. J., Negash, S., Petersen, R. C., & Petersen, L. (2010). Modeling and
estimating recall processing capacity: sensitivity and diagnostic utility in
application to mild cognitive impairment. Journal of Mathematical Psychology,
54, 73–89.

Wetzels, R., Raaijmakers, J. G. W., Jakab, E., & Wagenmakers, E.-J. (2009). How
to quantify support for and against the null hypothesis: a flexible WinBUGS
implementation of a default Bayesian t-test. Psychonomic Bulletin & Review, 16,
752–760.

Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2010).
Bayesian parameter estimation in the expectancy valence model of the Iowa
gambling task. Journal of Mathematical Psychology, 54, 14–27.

http://users.fmg.uva.nl/ewagenmakers/BayesCourse/BayesBook.pdf

	Cognitive model decomposition of the BART: Assessment and application
	The BART models
	Bayesian parameter estimation
	Hierarchical extension
	Implementation

	Parameter recovery simulations
	Experiment
	Method
	Participants
	Materials
	Procedure
	Design

	Results
	Hierarchical Bayesian parameter estimation
	Posterior predictives
	Experimental effects
	Hierarchical Bayesian hypothesis testing using Bayes factors


	Concluding comments
	WinBUGS code of the BART model
	References


