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Cognitive neuroscientists study how the brain imple-
ments particular cognitive processes such as perception,
learning, and decision-making. Traditional approaches
in which experiments are designed to target a specific
cognitive process have been supplemented by two re-
cent innovations. First, formal cognitive models can
decompose observed behavioral data into multiple la-
tent cognitive processes, allowing brain measurements
to be associated with a particular cognitive process more
precisely and more confidently. Second, cognitive neu-
roscience can provide additional data to inform the
development of formal cognitive models, providing
greater constraint than behavioral data alone. We argue
that these fields are mutually dependent; not only can
models guide neuroscientific endeavors, but under-
standing neural mechanisms can provide key insights
into formal models of cognition.

Introduction
The past decade has seen the emergence of a multidisci-
plinary field: model-based cognitive neuroscience [1–7].
This field uses formal cognitive models as tools to isolate
and quantify the cognitive processes of interest, to asso-
ciate them with brain measurements more effectively. It
also uses brain measurements such as single-unit electro-
physiology, magnetoencephalography, electroencepha-
lography (EEG), and functional magnetic resonance
imaging (fMRI) to address questions about formal models
that cannot be addressed from within the models them-
selves.

Figure 1 presents a schematic overview of the relation
between three different fields that all study human cogni-
tion: experimental psychology, mathematical psychology,
and cognitive neuroscience. These disciplines share the
common goal of drawing conclusions about cognitive pro-
cesses, but each branch has a distinct approach; experimen-
tal psychologists focus on behavioral data, mathematical
psychologists focus on formal models, and cognitive neuros-
cientists focus on brain measurements. The figure also
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illustrates how the ‘model-in-the-middle’ approach [1] can
unify these separate disciplines by using a formal model as
the pivotal element to bridge behavioral data and brain
measurements with estimates of pertinent cognitive pro-
cesses. By their nature these cognitive processes are latent;
that is, they are hypothetical and must be inferred from
data. Examples of latent cognitive processes includememo-
ry encoding, response caution, response inhibition, and
conflict monitoring.

This review focuses on one particular element of the
model-in-the-middle approach: the symbiotic relationship
between cognitive modeling and cognitive neuroscience
(Figure 1, red arrow). We begin by outlining the benefit
of using formal cognitivemodels to guide the interpretation
of neuroscientific data, a practice that has a relatively long
history in vision sciences [8–10] but is increasingly used to
formulate linking propositions of increasing complexity.
We then discuss the equally important issue of using
neuroscientific data to inspire and constrain cognitive
models, which is crucial when competing cognitive models
cannot be discriminated solely on the basis of behavioral
data [7,11,12]. Throughout the review we highlight recent
studies that exemplify the interaction between formal
cognitive models and cognitive neuroscience. The conclu-
sions from some of these individual studies will be refined
by future research efforts; what is important here is that
the studies under consideration combine formal cognitive
models and cognitive neuroscience, demonstrating the
recent trend towards increased integration of the two
research fields.

We conclude that the relationship between cognitive
modeling and cognitive neuroscience results in progress
towards the shared goal of better understanding of
the functional architecture of human cognition. This
relationship will accelerate the search for mechanistic
explanations of cognitive processes and will discourage
the assignment of cognitive functions to particular
neural substrates without first attempting to disentan-
gle the myriad operations that underlie a single behav-
ioral output measurement such as response time or
accuracy.
d. doi:10.1016/j.tics.2011.04.002 Trends in Cognitive Sciences, June 2011, Vol. 15, No. 6
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Figure 1. The ‘model-in-the-middle’ paradigm [1] unifies three different scientific disciplines. The horizontal broken arrow symbolizes experimental psychology, which

studies cognitive processes using behavioral data; the diagonal broken arrows symbolize cognitive neuroscience, which studies cognitive processes using brain

measurements and constraints from behavioral data; the top two arrows symbolize mathematical psychology, which studies cognitive processes using formal models of

cognitive processes constrained by behavioral data. The bidirectional red arrow symbolizes the symbiotic relationship between formal modeling and cognitive

neuroscience and is the focus of this review.
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Formal cognitive models
Formal models of cognition come in widely differing shapes
and sizes. Depending on the goal of the researcher, the
behavior under study, and the preferred level of explana-
tion, formal models of cognition range from the simple to
the complex; from the specific to the general; from the
superficial to the profound; and from the mathematical
to the computational. For example, signal-detection theory
[13] converts hits (i.e. correct identifications of a target
item, such as when a studied picture is correctly classified
as ‘old’) and false alarms (i.e. incorrect identification of a
distractor item, such as when a non-studied picture is
erroneously classified as ‘old’) to measures for bias and
Table 1. Ten formal models of cognition, their main domain of app
references

Model Domain

ACT-R General

BART-M Risky decision making

DDM Fast decision making

EV Reinforcement learning

GCM Perceptual categorization

LBA Fast decision making

MPT General

PDP Memory

PT Deliberate decision making

REM Memory

Many more models exist, but few have been applied in the neurosciences. ACT-R, adap

drift diffusion model; EV, expectancy-valence model; GCM, generalized context model;

process dissociation procedure; PT, prospect theory; REM, retrieving effectively from
discriminability. This model is simple, relatively general,
superficial (in the sense that it stays very close to the
observed data), and mathematical (in the sense that no
computer is needed to apply the model). At the other
extreme, a model such as ACT-R [14,15] uses IF–THEN
production rules to solve reasoning tasks by retrieving and
updating information stored in memory. Compared to
signal-detection theory, ACT-R is complex, general, pro-
found, and computational.

Although formal models of cognition differ in many
dimensions, they all use observed behavior to infer some-
thing about an underlying cognitive process. Table 1 lists
ten formal models, the different domains in which they are
lication, examples of associated cognitive processes, and key

Cognitive processes References

Reasoning, arithmetic [14]

Risk-taking propensity [62]

Caution, bias, ability [63]

Response consistency [23]

Selective attention [64]

Caution, bias, ability [18]

Retrieval, guessing [65,66]

Recollection, familiarity [67,68]

Loss aversion [69–71]

Storage [72,73]

tive control of thought–rational; BART-M, balloon analogue risk task model; DDM,

LBA, linear ballistic accumulator; MPT, multinomial processing tree models; PDP,

memory.
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Figure 2. Flowchart for the assessment of model validity. First, simulation studies

must confirm that the model can recover known parameter values used to

generate synthetic data of realistic length. Failure to recover these values suggest

that the model needs to be simplified (i.e. parameters must be eliminated) or

additional data need to be collected [74]. Second, a test of specific influence must

verify that the model parameters correspond uniquely to the hypothesized

cognitive processes [52]. For example, instruction to respond more or less

carefully should affect only the parameter that corresponds to response caution.

Third, the model must fit the data well. Failure to do this suggests that the

estimated parameters do not accurately reflect the corresponding cognitive

processes. Moreover, a good fit must be achieved with relatively few degrees of

freedom; this usually means that parameters are constrained across experimental

conditions in a meaningful way [16].
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applied, and the cognitive processes that they attempt to
estimate. An exhaustive list of formal cognitive models
would be very long and our selective list of ten includes only
those models that are particularly prominent or discussed
later in this article. As can be seen from Table 1, some
models are from the same domain and estimate the same
cognitive processes (e.g. the linear ballistic accumulator
[LBA] model and the drift diffusion model); these models
can be thought of as either competing theoretical accounts
(but see [16]) or as complimentary measurement tools. In
other cases, the models may be general (e.g. ACT-R and
multinomial processing tree models) but the modeling
tradition might be fundamentally different. Most often,
different models describe different behaviors using differ-
ent mechanisms and processes (e.g. cumulative prospect
theory and the generalized context model).

Regardless of their variety, any particular formal model
must be subjected to several sanity checks before it is
applied in scientific practice. These sanity checks are
required to provisionally conclude that the model’s param-
eters are reliable and veridical reflections of hypothesized
latent cognitive process (Figure 2). Only when this is the
case can there exist a symbiotic relationship between
formal cognitive models and cognitive neuroscience.

How formal models inform cognitive neuroscience
Once a model has been validated, it can be used to inform
cognitive neuroscience in several ways.

First, formal cognitive models decompose observed be-
havior into constituent cognitive components and thereby
provide predictors that allow researchers to focus more
precisely on the process of interest and attenuate the
influence of nuisance processes [17]. In this capacity, cog-
nitive models help to enhance sensitivity in the analysis of
neuroscientific data, thereby allowing more specific infer-
ences. For example, the LBA model [18] decomposes re-
sponse choice and response time into meaningful cognitive
concepts such as the time needed for peripheral processes
(e.g. encoding the stimulus, executing the motor response),
response caution, and the speed of information processing.
This model-based decomposition was exploited in a recent
experiment on the neural mechanisms of response bias
[19]; see also [20]. In this experiment, participants had to
decide quickly whether a random dot kinematogram was
moving left or right [21]. Before the onset of the stimulus, a
cue provided probabilistic information about its direction,
intended to bias the participant’s decision; for example, the
cue ‘L9’ indicated that the upcoming stimulus was 90%
certain to move to the left. The behavioral data confirmed
that prior information biased the decision process; actions
consistent with the cue were executed quickly and accu-
rately, and actions inconsistent with the cue were executed
slowly and inaccurately. The LBA model accounted for
these data by changing only the balance between the
response caution parameters for the competing accumula-
tors. Despite the cue-induced bias being clearly visible in
the behavioral data, and themodel fitting the observations,
fMRI data did not reveal any reliable cue-induced activa-
tion. However, the inclusion of a response bias measure-
ment – estimated from the LBA parameters – as a
covariate in the regression equation revealed cue-related
274
activation in regions that, in most cases, matched the
theoretical predictions (e.g. putamen, orbitofrontal cortex,
hippocampus). This result suggests that, by increasing
corticostriatal activation, the human brain uses prior in-
formation to selectively disinhibit preferred responses.
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More generally, this example highlights the practical ben-
efits of using a formalmodel to simultaneously increase the
specificity of inferences made about underlying cognitive
processes and the sensitivity of neuroscientific measure-
ments.

Second, formal cognitive models allow researchers to
identify the latent process that is affected by their experi-
mental manipulation, in either a confirmatory or an ex-
ploratory manner. For example, Sevy et al. [22] used the
expectancy-valence model for the Iowa gambling task [23];
this task is complex and probably involves many cognitive
operations that are often not explicitly dissociated when
neuroscientific measurements are recorded. However, the
application of a formal model allowed the task to be
decomposed into separable latent variables, permitting
Yechiam et al. to argue that a reduction in dopaminergic
activity selectively increased the model’s recency parame-
ter. This finding reveals substantially more than the gen-
eral statement that dopaminergic depletion impairs
overall performance; instead, it specifically supports the
hypothesis that low dopaminergic activity enhances
Box 1. Case study

The subjective value of a stimulus has long been known to bias

behavioral choice, and neuroscientific investigations over the past

decade suggest that value directly modulates the operation of the

sensorimotor neurons that guide motor interactions with the

environment. Following the approaches employed by these early

single-unit recording studies, Serences used a combination of

linear-nonlinear-Poisson (LNP) models and logistic regression

models (based on [54–58]) to show that the subjective value of a

stimulus also modulates activation levels in areas of the early visual

cortex (e.g. V1, V2) that are typically thought to play a primary role in

representing basic low-level sensory features (as opposed to

regions more directly involved in mediating motor responses

[75]). The implication of this observation is that reward influences

not only late-stage response thresholding mechanisms, but also the

quality of the sensory evidence accumulated during decision

making.

More importantly, the computational models that were employed

provided trial-by-trial estimates of the subjective (and latent) value

assigned to each of two stochastically rewarded choice alternatives

based on the prior reward and prior choice history of each option

(Figure I). These trial-by-trial estimates open up several analysis

alternatives ranging from within-subject sorting of trials into several

discrete bins based on the subjective value of the selected

alternative [54,56], to evaluation of the continuous mapping

between value and neural responses. This ability is crucial because

the strategies employed by individual subjects vary [58], and thus

within-subject estimates are inherently more sensitive than simply

comparing the values of two stimulus classes on a between-subject

basis. In the case of reward-based learning, some subjects heavily

weight recent rewards while disregarding past rewards, and thus

are fast to adapt to transitions in reward probability at the expense

of choice stability. Other subjects employ a much longer integration

window that trades-off improved stability for decreased flexibility to

adapt as reward ratios change over time. These formal models may

provide a powerful tool to classify reward sensitivity (and many

other cognitive factors of interest) on a within-subject basis, thereby

opening up new avenues of clinical inquiry. For example, a

predilection for overweighting recent rewards might be associated

with traits such as impulsivity [76]. Thus, the use of relatively simple

computational models can reveal how individuals represent latent

cognitive factors, providing a powerful tool for gaining insights into

both normal and abnormal behavioural tendencies and their

underlying neural mechanisms.
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Figure I. (a) Influence of rewards earned n trials in the past on the log odds of

choosing one of two options in the current trial (a clockwise or counter-

clockwise rotated grating), where each option was stochastically rewarded

at an independent rate. (b) Similar to A, but depicts influence of prior

choices on current choice; a prior choice decreases the probability of the

same choice being made in the current trial because the task included a

‘baiting’ scheme to encourage switching between alternatives [54,55,57,58].

(c) Estimated influence of prior rewards and choices (a, b) can be combined

to generate a trial-by-trial estimate of the probability that one of the options

will be selected (in this case, the probability of the clockwise grating being

selected is shown by the black line after the application of a causal

Gaussian filter to smooth the data [57,58]. The green line depicts the

expected choice probabilities for each block of trials based on the relative

reward probability assigned to each choice alternative. For this subject, the

estimated choice probability (black line) closely tracked the expected

probabilities, supporting the notion that the estimated choice probability

can serve as a stand-in for the subjective value of each alternative. Note,

however, that there are local trial-by-trial fluctuations away from the

expected choice probabilities, consistent with momentary changes in the

subjective value of an option given the stochastic reward structure of the

task. Data based on [58].
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Box 2. Outstanding questions

� How can we apply our knowledge from formal models and

cognitive neuroscience to psychiatric and neurological disorders

[59]? Can parameters from cognitive models provide endopheno-

types that are more sensitive and specific than those based on

observed behavior?

� What are the benefits for cognitive neuroscience when relatively

abstract cognitive models are combined with more concrete

neurocomputational models? As the fields of cognitive neu-

roscience and cognitive modeling grow closer, abstract models

should ideally start to incorporate assumptions about the neural

substrate.

� Can we carefully validate the linking hypotheses that relate

neuroscientific data to the formal cognitive models? These linking

hypotheses are important for drawing valid conclusions from

data, and they are often also interesting research questions in

their own right.

� Can we strengthen our inferences through development of

integrated approaches that combine data-driven cognitive neu-

roscience with cognitive modelling techniques? Initial work with

analysis methods such as ancestral graph theory [60] and single

trial estimation based on multivariate decomposition [61] point in

this direction.

� What are the benefits for cognitive neuroscience when mixture

models are used to classify participants or trials into separate

categories? This approach could, for example, be applied to allow

the probabilistic identification of task-unrelated thoughts (TUTs);

that is, trials on which the participant experiences a lapse of

attention.
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attention to recent outcomes at the expense of outcomes
obtained in the more distant past.

Third, formal cognitive models can be used to associate
patterns of brain activation with individual differences in
cognitive processes of interest. For example, in an fMRI
experiment on the speed–accuracy trade-off, Forstmann
et al. [24] found that instructions to respond quickly
resulted in focused activation of the right anterior striatum
and the right pre-supplementary motor area (pre-SMA).
Application of the LBA model to the behavioral data
revealed that the effect of speed instruction was to selec-
tively lower the LBA response caution parameter. Howev-
er, speed instructions affected some participants more
than others, and participants who had a relatively large
decrease in LBA-estimated response caution also showed a
relatively large increase in right anterior striatum and
right pre-SMA activation. This example illustrates how an
individual difference analysis can increase confidence in
the association between a particular cognitive process and
activation in a specific brain network [25].

Fourth, formal cognitive models can directly drive the
principled search for brain areas associated with a pro-
posed cognitive function. This approach has been used
successfully in the field of reinforcement learning, which
is one of the earliest applications of model-based cognitive
neuroscience [2,6,26–28]. In fMRI research, this means
that a formal cognitive model is designed to make predic-
tions that are then convolved with the hemodynamic re-
sponse function. Next, the predicted blood oxygenation
level dependent signal (BOLD) response profiles are used
to search for areas of the brain with similar activation
profiles. For example, Noppeney et al. [29] used the com-
patibility bias model for the Eriksen flanker task [30] to
generate predicted BOLD response profiles to locate a
brain region involved in the accumulation of audiovisual
evidence. A similar but more confirmatory approach was
taken by Borst et al. [31], who used the ACT-R model to
predict hemodynamic responses in five brain regions, with
each region corresponding to a cognitive resource in the
model [14,32,33]).

In summary, there are many ways in which cognitive
models have informed cognitive neuroscience. There is no
standard procedure and the single best way to proceed
depends on the model, the brain measurement technique,
and the substantive research question. Although the
above examples focus primarily on fMRI studies, the
general principles apply regardless of the measurement
technique (see [34] for an application involving EEG), and
can be used to gain insight into the relationship between
latent processes and neural mechanisms on both within-
and between-subject bases (at least with data from
humans, Box 1).

How cognitive neuroscience informs cognitive models
Until a few years ago, neuroscientific data played a modest
role in constraining cognitive models and guiding their
development (with the exception of neurocomputational
models specifically designed to account for neural data
[35,36]). One example of a prominent cognitive model that
has undergone a transformation as a result of neuroscience
data is ACT-R [14,32,33], in which particular brain areas
276
are now associated with separate cognitive modules, there-
by placing severe constraints on the model. For example, if
a task is found to evoke activity in a certain area of the
posterior parietal cortex, the ACT-R model is constrained
to employ the ‘imaginal module’ to account simultaneously
for the observed behavior and the BOLD response. The
specific subdivision of cognitive modules in the ACT-R
model was informed by the neuroscience data [14,32,33]).

In general, brain measurements can be viewed as an-
other variable to constrain a model or select between
competing models that could not otherwise have been
distinguished [6,7]. For example, two competing models
may have fundamentally different information processing
dynamics but nonetheless generate almost identical pre-
dictions for observed behavior. When brain measurements
can be plausibly linked to the underlying dynamics, this
provides a powerful way to adjudicate competing models.
We illustrate this approach with three closely related
examples.

Churchland et al. [37] studied multi-alternative deci-
sion making in monkeys using single-cell recordings. Mon-
keys performed a random dot discrimination task (Box 2)
with either two or four response alternatives. Mathemati-
calmodels ofmulti-alternative decisionmaking such as the
LBA (Box 2) often assume that when the number of choice
alternatives increases, participants compensate for the
concomitant increase in task difficulty by increasing their
response caution; that is, by increasing the distance from
starting point to response threshold [38]. However, behav-
ioral data cannot discriminate between a decrease in start-
ing point and an increase in response threshold, and in the
formal models these mechanisms are conceptually distinct
but mathematically equivalent. The results of Churchland
et al., however, support the decrease-in-starting point
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account and not the increase-in-threshold account; in the
four-alternative task, neural firing rates in the lateral
intraparietal area started at a relatively low level but
finished at a level that was the same as that in the two-
alternative task.

A second example comes from Ditterich [11], who com-
pared a range of formal models for multi-alternative per-
ceptual decisionmaking. All of themodels integrated noisy
information over time until the response threshold, but
they differed inmany other important aspects: information
was integrated with or without leakage, competition be-
tween accumulators was accomplished by feedforward or
feedback inhibition, and accumulator outputwas combined
across alternatives by linear or nonlinear mechanisms.
After fitting the models to the data, Ditterich concluded
that ‘it seems to be virtually impossible to discriminate
between these different options based on the behavioral
data alone’. However, this does not mean that the models
cannot be discriminated at all. In fact, Ditterich demon-
strated that the internal dynamics of the models have
unique signatures that could be distinguished – at least
in principle – using neurophysiological data [37]).

A third example comes from Purcell et al. [39], who used
a speeded visual search task in which monkeys were
required to make an eye movement toward a single target
presented among seven distractors. They measured single-
cell firing rates in visual and movement neurons from the
frontal eye field (FEF) in an attempt to distinguish various
accumulator models for evidence integration and decision.
Constraint for the models was gained by using the neural
data (spike rates) as inputs for the cognitive models (to
drive the accumulators to threshold). A crucial aspect of
this procedure is that the models must determine the point
in time at which the accumulators start to be driven by the
stimulus, because before stimulus onset neural activity is
dominated by random noise and is best ignored. For this
reason, all models with perfect integration failed, because
they were overly impacted by early spiking activity that
was unrelated to the stimulus. However, two classes of
model were able to account for the behavioral data; leaky
integration models effectively attenuate the persistent
influence of early noise inputs, and gated integration
models block the influence of noise inputs until a certain
threshold level of activation has been reached. Once again,
behavioral data alone could not distinguish between these
competing accounts. However, this model mimicry was
resolved by evaluating empirical data collected frommove-
ment neurons during the decision making task. Models
with leaky integration failed to account for the detailed
dynamics in the movement neurons, whereas models with
gated integration accounted for these neurophysiological
data with impressive precision.

An important remaining challenge is to reconcile the
fact thatmany empirical reports suggest an important, and
potentially similar, role for multiple brain regions in per-
ceptual decision making tasks. For example, what is the
relationship between integration neurons in the lateral
intraparietal (LIP) region, the FEF, and subcortical areas
such as the superior colliculus? These areas all exhibit
superficial similarities, but neuroanatomical differences –

in their connectivity and their respective influence on
sensory and motor processes – may play a key role in
distinguishing the functional role that each region plays
in decision making [40–43].

These case studies highlight ways in which data from
neuroscientific experiments might constrain models aimed
at characterizing the cognitive architecture of human in-
formation processing. This is also a virtue of the cognitive
models themselves; the detailed predictions about under-
lying dynamics that follow from formal cognitive models
allow competing accounts to be tested critically given the
appropriate constraints – and these constraints may in-
creasingly come in the form of neuroscientific data. The
major limitation of this mutually constraining synthesis,
and a major challenge for future research, is the need
further to validate hypotheses linking neural activity
and behavior. ‘Linking hypotheses’ [12,44] are theories
about how the specific, observable aspects of the neurosci-
entific data should be related to specific, but often latent,
aspects of the formal models. For example, are the neural
generators that govern behavioral output in a visual two-
alternative forced-choice (2AFC) task adequately charac-
terized by single-unit spiking activity in the LIP or FEF?
Certainly a great deal of evidence supports this conclusion
[21,39], but these conclusions are far from resolved because
other areas might contribute to decision processes [45,46].
This lack of resolution highlights the fact that important
functional properties may emerge only when neural dy-
namics are examined across many interconnected brain
regions [47,48]. Many important functional characteristics
might arise only at the systems level, and such observa-
tions will often require a re-evaluation of existing hypoth-
eses linking activity within a specific region and cognition.

Concluding remarks
Model-based cognitive neuroscience is an exciting field that
unifies several disciplines that have traditionally operated
in relative isolation (Figure 1). We have illustrated how
cognitive models can help cognitive neuroscience reach
conclusions that are more informative about the cognitive
process under study, and we have shown how cognitive
neuroscience can help distinguish between cognitive mod-
els that provide almost identical predictions for behavioral
data.

Within the field of model-based cognitive neuroscience,
new trends may evolve in the near future (Box 2). For
example, cognitive models are already being extended to
account formore detailed aspects of information processing
at the level of a single trial [49–51]. As the models become
more powerful, the experimental tasks may increase in
complexity and ecological validity [26]. In addition, new
models may be developed to identify differences in infor-
mation processing among subsets of participants [52] or
subsets of trials [53]. Categorization of different partici-
pants and trials may greatly increase the specificity with
which neuroscientists draw their conclusions, and the
ability of fMRI to examine these differences across large
groups of subjects offers an exciting opportunity that com-
plements single-unit recording methods applied to non-
human primates.

In summary, the recent focus on combining modeling
and cognitive neuroscience holds significant promise for
277
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the field. By fostering this mutually constraining relation-
ship, faster progress will be made, and empirical results
will be more firmly grounded in formal theoretical frame-
works.
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