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Abstract

Most models of response time (RT) in elementary cognitive tasks implicitly assume that the

speed-accuracy trade-off is continuous: When payoffs or instructions gradually increase the level of

speed stress, people are assumed to gradually sacrifice response accuracy in exchange for gradual

increases in response speed. This trade-off presumably operates over the entire range from accurate

but slow responding to fast but chance-level responding (i.e., guessing). In this article, we challenge

the assumption of continuity and propose a phase transition model for RTs and accuracy. Analogous

to the fast guess model (Ollman, 1966), our model postulates two modes of processing: a guess mode

and a stimulus-controlled mode. From catastrophe theory, we derive two important predictions that

allow us to test our model against the fast guess model and against the popular class of sequential

sampling models. The first prediction—hysteresis in the transitions between guessing and stimulus-

controlled behavior—was confirmed in an experiment that gradually changed the reward for speed

versus accuracy. The second prediction—bimodal RT distributions—was confirmed in an experiment

that required participants to respond in a way that is intermediate between guessing and accurate

responding.

Keywords: Reponse times; Speed-accuracy trade-off; Sequential sampling models; Fast guess model;

Phase transitions; Catastrophe theory

1. Introduction

One of the key phenomena in response time (RT) research is the speed-accuracy trade-

off, by which a decision maker can speed up at the expense of accuracy and become more

accurate at the expense of speed (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
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2010; Schouten & Bekker, 1967; Wickelgren, 1977). The interdependence of RT and accu-

racy implies that people can be accurate and slow in one situation, yet fast and inaccurate in

another, although their efficiency in information processing does not change. The speed-

accuracy trade-off therefore frustrates a straightforward interpretation of RT in terms of cog-

nitive processing time and forces researchers to consider RT and accuracy jointly.

Most models that account for the speed-accuracy trade-off, including most sequential

sampling models, implicitly assume that the speed-accuracy trade-off is a continuous func-

tion. This assumption implies that a participant who is responding accurately on a certain

task can gradually increase speed at the cost of gradual decreases in accuracy, until speed

reaches ceiling and accuracy is at chance level (i.e., fast guessing). Here, we challenge this

assumption and hypothesize that with increasing pressure to respond quickly, relatively

accurate behavior suddenly collapses into guessing behavior, without going through all the

intermediate stages between accurate responding and guessing.

To account for this discontinuous shift in performance, we introduce a phase transition

model for the speed-accuracy trade-off. The model postulates that guessing and stimulus-

controlled responding are irreconcilable modes of processing. This means that when

experimental settings continuously change and force people to switch from one mode of

processing to the other, this switch will be abrupt. When participants are, for example,

forced to speed up over trials (and become less careful), at first they will be able to persist in

fairly accurate responding. However, with a gradual increase in speed stress, performance

will at some point break down completely and participants abruptly resort to fast guessing.

Our model predicts a similar abrupt switch when the experimental conditions gradually

encourage participants to stop guessing and be more careful (and respond more slowly).

Our phase transition model finds its roots in Ollman’s fast guess model (Ollman, 1966).

However, our model offers a more dynamic account of the speed-accuracy trade-off and

allows for a connection to sequential sampling models of RT such as Ratcliff’s diffusion

model (Ratcliff, 1978). The phase transition model has the form of a cusp model from catas-

trophe theory. Catastrophe theory is a mathematical theory that applies to dynamic systems

in which continuous changes of environmental variables lead to sudden changes in observed

behavior (e.g., Zeeman, 1976). From this model, we derive two signature predictions of the

phase transition model: hysteresis and bimodality. We test these two predictions in two

experiments.

The outline of this article is as follows: In the first section, we discuss sequential sampling

models and varied state models of the speed-accuracy trade-off. In the second section, we

introduce the phase transition model. In the third section, we explain the two experiments that

test the predictions of our model. Next, the experimental data are described and discussed by

means of quantitative models (i.e., a hidden Markov model and our cusp model).

2. The speed-accuracy trade-off

In many speeded choice tasks, participants are instructed to respond ‘‘as fast and

accurately as possible.’’ These instructions leave it to the participant to assess the relative
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importance of speed versus accuracy. This implies that both RTs and proportion of errors

depend largely on the participant’s judgment. Therefore, the separate analysis of either

mean RT or accuracy can be deceiving. Only through an understanding of how RT and

accuracy trade off can observed behavior be translated into conclusions in terms of psycho-

logically interesting constructs.

The exact nature of the trade-off between speed and accuracy has been studied for almost

a century (Henmon, 1911). Over the years, many studies have been devoted to the speed-

accuracy trade-off (from now on referred to as ‘‘SAT’’). One approach of studying the SAT

is to explore experimentally the entire range from chance performance (i.e., guessing) to

asymptotic accuracy (e.g., Pachella & Pew, 1968; Swensson & Center, 1968; Wickelgren,

1977; Yellott, 1971). In most of these studies, the trade-off is assumed to be under experi-

mental control through the use of response deadlines, response signals, differential pay-off,

and various other methods (e.g., Meyer, Irwin, Osman, & Kounios, 1988; Pachella & Pew,

1968; Schouten & Bekker, 1967; Verhelst, Verstralen, & Jansen, 1997). The objective of

these studies was to formulate a function that describes how participants move along the

hypothetical SAT-curve.

The behavior at the extremes of the hypothetical SAT curve is uncontroversial: When

rewards only emphasize accuracy, participants respond accurately but slowly; when rewards

only emphasize speed, participants respond fast, but at chance accuracy. The controversy,

however, is about how participants can shift from highly accurate to very fast performance.

Fig. 1 summarizes several conflicting points of view. Lines A1 and A2 in the left panel rep-

resent continuous accounts of this shift. Function A1 represents the predictions of the SAT

by most RT models, including sequential sampling models (Wickelgren, 1977, Fig. 1). This

functional form is also found in some empirical studies (e.g., Dosher, 1979; Ratcliff, 2006).

Another form of the SAT function that is reported in some empirical studies is represented

by sigmoid function A2 (e.g., Schouten & Bekker, 1967).

A very different account is given by models that assume that behavior originates

from different states. In particular, the fast guess model (Ollman, 1970) predicts the

(A) (B)

Fig. 1. The speed-accuracy trade-off. (A) Continuous trade-off of speed for accuracy, as predicted by most mod-

els of response time (RT) (A1), and as found in some empirical studies (A2). (B) Two discontinuous trade-off

functions. B1 is the functional form predicted by the fast guess model. B2 is the functional form predicted by the

phase transition model.
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stepwise (discontinuous) trade-off depicted by line B1. In this model, behavior originates

from one of two states. The phase transition model we present in this article also predicts a

discontinuous SAT and is represented by line B2.

3. Current models of the speed-accuracy trade-off

3.1. Sequential sampling models

Sequential sampling models form the dominant class of models to account for both RT

distributions and accuracy. Its members include, for instance, Ratcliff’s diffusion model

(Ratcliff, 1978), the leaky competing accumulator model (Usher & McClelland, 2001), the

linear ballistic accumulator model (Brown & Heathcote, 2005, 2008), and Poisson counter

models (e.g., Smith & Van Zandt, 2000). Sequential sampling models generally produce a

good fit to behavioral data, and they allow researchers to decompose effects on RT and

accuracy into effects on underlying psychological constructs (e.g., Dutilh, Vandekerckhove,

Tuerlinckx, & Wagenmakers, 2009; Ratcliff & Rouder, 1998). Motivated in part by the

availability of easy-to-use fitting routines, sequential sampling models are applied increas-

ingly often, both in experimental psychology (e.g., Wagenmakers, 2009) and in the neuro-

sciences (e.g., Bogacz et al., 2010; Forstmann et al., 2008).

All sequential sampling models postulate a decision-making system that samples stimulus

information over time. Often, but not always, this information is assumed to be noisy. The

accumulated information reflects the evidence for each of the possible response options (see

the meandering line in the left panel of Fig. 2). When the evidence for one response option
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Fig. 2. Illustration of a generic diffusion-style sequential sampling model. The lower left panel shows a possible

trajectory of how sampled information is accumulated until a response boundary is reached. The response time

(RT) distribution associated with this process is drawn above. The three hypothetical boundary settings (A, A¢,
and A¢¢) in the left panel are associated with three different RT distributions (right panel) and proportions of cor-

rect responses (given a positive drift).
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reaches a preset response criterion (boundary A), the response is initiated. The setting of the

response criterion in such a model governs the SAT. When the response criterion is high,

the system requires strong evidence before a response is initiated, and this results in

responses that are accurate, but slow. When the response criterion is low, the system

requires only weak evidence to decide, and this results in responses that are fast, but inaccu-

rate. The right panel of Fig. 2 shows how the distribution of RT changes when the response

criteria (boundaries) are set so as to generate percentages correct of 95% (boundary A),

75% (boundary A¢), and 55% (boundary A¢¢). Decreasing boundary separation leads not

only to lower accuracy but also to faster responses and smaller spread of the RT distribution.

Note that all intermediate values of speed and accuracy are accessible, that is, they can be

achieved by an intermediate setting of response criteria. In this sense, sequential sampling

models predict a continuous SAT.

It should be acknowledged that sequential sampling models assume only implicitly that

the transition from very fast to highly accurate behavior is smooth and continuous. Although

the stability of intermediate trade-offs seems a crucial assumption of sequential sampling

models, one could imagine a mechanism that governs discrete changes in boundary setting

that would result in discrete changes in behavior. However, as we will discuss in the con-

cluding remarks, we think that this a rather unnatural interpretation of the boundary princi-

ple and that the resulting RT model would not be very plausible.

3.2. The fast guess model

A different account of the SAT is given by varied state models, which assume that behav-

ior originates from various separate states. The most extensively studied varied state model

is Ollman’s simple fast guess model (Ollman, 1966, 1970). The simple fast guess model

assumes that the behavior in choice RT tasks is governed by two distinct processes, namely

a guess mode (GM) (sometimes called the pre-programmed mode) and a stimulus-controlled

mode (SCM).

The GM corresponds to the way information is processed in simple detection tasks, that

is, no discrimination between stimuli occurs. Responses in this mode are fast and accuracy

is at chance level. In the SCM, discrimination between stimuli does occur and hence

responses are slower and accuracy approaches 100%. Consequently, intermediate values of

RT and accuracy can only be achieved by mixing responses from the two modes. On the

basis of this fast guess model, Yellott (1971) proposed an easy procedure to correct mean

RT estimates for fast guessing. Link (1982) discussed this correction for two-state models in

general.

The predictions of the fast guess model were supported by the studies of Swensson

(1972), Swensson and Edwards (1971), and Yellott (1971). In these studies, the pressure on

speed relative to accuracy was changed in small steps over the entire domain of the SAT.

The results showed that with stimuli that are difficult to discriminate, participants achieved

intermediate values of accuracy by mixing fast guesses and stimulus-controlled responses.

Luce (1986), Townsend and Ashby (1983), and Yantis, Meyer, and Smith (1991) review

several tests of the simple fast guess model and conclude that when the experimental stimuli
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are easy to discriminate, the results were ambiguous, supporting either a continuous SAT or

a discrete SAT.

From the perspective of the fast guess model, optimal performance involves choosing the

response strategy (i.e., guessing or stimulus-controlled responding) that is most profitable

for the current payoff settings, and to apply this strategy on every trial that features the same

payoff settings. Hence, in the fast guess model, changing demands on speed versus accuracy

yields a discrete and stepwise SAT, at least when people consistently apply one and the

same strategy for a specific payoff setting.

The consistent response strategy described above is optimal according to the fast guess

model. However, as suggested by the results of Swensson (1972), participants might use a

suboptimal ‘‘probability matching’’ strategy and meet increasing demands for speed by

increasing the proportion of fast guesses. This mixing of response modes would yield a con-

tinuous SAT when trials are averaged.

4. The phase transition model

4.1. Introduction

The fast guess model predicts a very simple trade-off function. As argued above, when

the relative payoff for speed versus accuracy is changed from emphasizing only accuracy

through emphasizing only speed, the model predicts that optimal behavior requires a step-

wise speed-accuracy trade-off (line B1 in Fig. 1). A more advanced model of the dynamics

can be formulated by use of the concept of phase transitions developed in research on non-

linear dynamic systems.

Phase transitions occur in all kinds of systems, ranging from those that are physical,

chemical, and biological (e.g., Poston & Stewart, 1978b) to those that are social and psycho-

logical (e.g., Jansen & Van der Maas, 2001; Latané & Nowak, 1994; Schöner, Haken, &

Kelso, 1986; Stewart & Peregoy, 1983; Zeeman, 1976). These phase transitions have been

studied from various theoretical perspectives, including catastrophe theory, synergetics, and

nonequilibrium thermodynamics. These perspectives are mathematically similar. Here, we

focus on the catastrophe perspective because it is especially useful in cases where it is not

feasible to derive an exact mathematical model of the transition process under investigation

(Wagenmakers, Van der Maas, & Molenaar, 2005).

4.2. Catastrophe theory

We limit our review of catastrophe theory to a small number of concepts that are

required for the present purposes (for more details, see Arnold, Afrajmovich, Ilyashenko,

& Shilnikov, 1999; Castrigiano & Hayes, 1993; Gilmore, 1993; Poston & Stewart,

1978a; Thom, 1975). Catastrophe theory, a branch of bifurcation theory, is a

mathematical theory about dynamic systems that are governed by the gradient of a poten-

tial function. Such systems optimize some quantity, like energy or profit. Consequently,
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the behavior in these systems attains those values, called equilibrium states, that lead to

a zero gradient (defined as the first derivative of the potential function). Catastrophe the-

ory describes and classifies changes in equilibrium behavior. These changes come about

when smooth changes in the system’s parameters lead to the sudden appearance or disap-

pearance of stable states. The simplest catastrophe, in which such discontinuities occur,

is the cusp catastrophe.

To get insight into the dynamics of the cusp catastrophe, Fig. 3 plots the equilibria

of the cusp catastrophe. To illustrate the function of the axes in Fig. 3, we use the

Fig. 3. The equilibrium of the cusp catastrophe describes behavior as a function of control variables a and b.

Jumps in behavior take place when the setting of control variables leaves the area within the bifurcation lines, in

which the system exhibits bimodality. The ball in the valleys represents the state that the system adopts when

possible states appear and disappear as a function of a.

G. Dutilh et al. ⁄ Cognitive Science 35 (2011) 217



famous example of the phase transition between the liquid and solid states of water

(Poston & Stewart, 1978b). For relatively high values of pressure (b), such as the

pressure at sea level, smooth changes in temperature (a) lead to sudden jumps between

the solid and liquid phase of water (Z). In cusp terminology, b is the splitting axis, and

a is the normal axis. Z represents a function of the behavioral variables, in this exam-

ple, the state of the water.

The cusp has eight distinguishing properties, which are known as catastrophe flags. These

catastrophe flags, formally derived by Gilmore (1981), can be used to test the model empiri-

cally and to detect phase transitions (Van der Maas & Molenaar, 1992). The most important

flags are illustrated in Fig. 3. Sudden jump is a sudden large change in behavior. In the water

example, this describes the sudden temperature-induced change from water to ice and vice

versa that takes place when pressure b is large. Bimodality means that two stable modes of

behavior exist for a range of values of the independent or control variables. Inaccessibility
means that the behavior in between these stable modes is unstable and repelling; no stable

state in between water and ice exists. However, when pressure b is low, such an intermedi-

ate, syrupy state exists. Hysteresis is a delay in the sudden jump when control variables are

changed up and down. In terms of the freezing water example, hysteresis refers to the fact

that, when the pressure is high and in perturbation-free conditions, water freezes at )4�C

and ice melts at 0�C. Divergence refers to a strong dependency on the initial conditions with

respect to the mode of behavior that will be selected. Anomalous variance refers to a strong

increase in variability in behavior near the sudden jump. The last two flags specify the effect

of external perturbations of the system: Critical slowing down refers to delayed recovery of

equilibrium behavior, and divergence of linear response refers to large oscillations induced

by perturbations. A more elaborate explanation of catastrophe theory and the catastrophe

flags can be found in, for example, Gilmore (1993) and Ploeger, Van der Maas, and

Hartelman (2002).

4.3. Critique of catastrophe theory

Catastrophe theory carried with it the prospect that all kinds of systems could be for-

mally described, as long as they exhibit phase transitions. This prospect caused a burst of

applications in the 1970s, until Sussmann and Zahler (1978) articulated strong reservations

about applications of catastrophe theory in the social and behavioral sciences.1 The main

concerns that were raised are the following. First, in contrast to its formal and determinis-

tic nature, catastrophe theory was often applied to qualitative concepts and stochastic vari-

ables. Second, the choice of control variables was often arbitrary and not well motivated.

Today, catastrophe theory has regained importance in many fields of science (e.g., K. M.

Newell, Liu, & Mayer-Kress, 2000; Tamaki, Torii, & Maeda, 2003; Wales, 2001). As in

other modern applications of catastrophe theory, our application to the SAT is scientifi-

cally informative and falsifiable. Both our control variables, payoffs for RT and accuracy,

and our dependent variables, RT and accuracy, are well defined and naturally observable

quantities. Furthermore, we test both the quantitative and qualitative predictions of the

cusp model.
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4.4. The phase transition model of SAT

Now that we have discussed the general properties of the cusp catastrophe, we formulate

a cusp model for the SAT. Below, we will first show how the SAT can be mapped onto the

cusp catastrophe. Second, we will describe the dynamics implied by this mapping. Then,

having formulated the SAT phase transition model, we will derive testable predictions.

4.4.1. Optimality
The use of potential functions in catastrophe theory is based on the assumption that the

system under investigation optimizes (minimizes or maximizes) some quantity. In RT

experiments, this assumption is uncontroversial as participants are asked to respond as

quickly and accurately as possible, or to maximize profits. The experimental settings thus

define the function that is optimized.

4.4.2. Definition of the behavioral variable
The main behavioral variables in RT experiments are RT and/or accuracy. As RT and

accuracy strongly covary in the SAT, we can take RT, accuracy, or some function of both as

the behavioral variable Z. For graphical representations of the behavior, we will use RT

here; RT is a continuous measure and therefore has better measurement properties than

accuracy. In the statistical analyses with hidden Markov models, we will fit both RT and

accuracy simultaneously.

In accordance with the fast guess model, we hypothesize that the stable states of these behav-

ioral variables are the GM—where responses are fast and accuracy is at chance level—and the

SCM—where responses are slow, but accuracy is high. The availability of these modes or

states will depend on the values of the control variables. Note that the phase transition model,

however, does not describe the process by which responses are generated in both modes.

4.4.3. Choice of control variables
The control variables in a cusp catastrophe are the normal factor (a), which is associated

with the hysteresis effect, and the splitting factor (b), which is associated with divergence. It

seems obvious to relate the normal factor a to the traditional manipulations of the SAT (e.g.,

deadlines, instructions, and payoffs), because they force the participant to select one of the

modes. Analogous to other catastrophe models in psychology (Latané & Nowak, 1994; Van

der Maas & Molenaar, 1992; Zeeman, 1976), we propose to relate the splitting factor b to

motivation or involvement. Involvement in RT tasks can be quantified, for instance, by the

reward that can be earned in the experiment. In a cusp catastrophe, the size of the jumps and

the magnitude of the hysteresis effect depend on the value of the splitting factor. Therefore,

we hypothesize that only when rewards are significant, strong discontinuities in behavior

occur. Below, we formulate this hypotheses more precisely in terms of payoffs.

4.4.4. Dynamics
Payoffs are factors that weigh the speed and accuracy of the response in the computation

of a reward, denoted Rt, that a subject receives on every trial t. We distinguish two types of
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payoffs, the payoff for speed PRT
t and the payoff for accuracy PAcc

t . When the payoff for

speed is near zero and the payoff for accuracy is large, we expect that participants select the

SCM. When PRT
t is large and PAcc

t is near zero, we expect that participants select the GM.

Finally, when both factors are large and thus the involvement is high, the typical speed-

accuracy conflict is expected to arise. In this conflict situation, we expect sudden mode

switches. We can express these predictions in the cusp catastrophe, in which the normal and

splitting axis are functions of the payoff factors. The payoff factor for speed induces the

GM and the payoff factor for accuracy induces the SCM (see Fig. 4). A rotation of 45� of

these factors leads to clear definitions of the normal and splitting axis of the cusp. They are

simple functions of the difference and the sum of the payoff factors, respectively.

a ¼ aðPAcc � PRTÞ

b ¼ bðPAcc þ PRTÞ;

where a and b are scaling parameters.

Given these choices of the behavioral and control variables, we can derive clear predic-

tions about behaviors corresponding to the catastrophe flags. When involvement PAcc + PRT

Fig. 4. Graphical representation of the phase transition model. At high values of PRT + PAcc, the system consists

of two irreconcilable modes, the stimulus-controlled mode and the guess mode. At intermediate values of

PRT ) PAcc, both states are possible. Which state is adopted at a certain moment depends on whether the system

was in either the guessing state or the stimulus-controlled state before that moment.
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is high, Sudden jumps between the modes should occur when payoff factors are varied.

Bimodality and inaccessibility are expected within the bifurcation lines. Hysteresis should

occur when PAcc ) PRT varies at a high constant value of PAcc + PRT. Jumps to the SCM

occur when PAcc
t is (much) higher than PRT

t , whereas jumps to the GM are expected when

PRT
t is (much) higher than PAcc

t (hysteresis). If both payoff factors are zero, behavior is in

the vicinity of the neutral point (0,0,0) and neither mode is selected. Here participants may

either guess slowly or not respond at all. This seems reasonable as they cannot win or loose

anything (i.e., there is no involvement whatsoever). Divergence is expected when we

increase involvement PAcc + PRT but hold PAcc ) PRT at zero. The participant may then

choose the SCM or the GM, but the participant cannot maintain an intermediate position

(inaccessibility). Anomalous variance implies that the variance of Z (i.e., RT and accuracy)

in each of the modes increases strongly near the jump. If the subject is perturbed (by incor-

rect feedback, for instance), behavior should show large oscillations (divergence of linear
response), which take a long time to fade away (critical slowing down).

4.5. Empirical predictions

The phase transition model we propose here can be considered a generalization of the

fast guess model. As in the fast guess model, the phase transition model assumes two sta-

ble states, a guessing state and an accurate state. However, in the fast guess model, the

switches between these states take place at the same point in either direction, that is, when

PAcc ¼ PRT. The phase transition model, on the other hand, predicts that when the stakes

PAcc + PRT are high enough, hysteresis occurs in the switching between the two states,

that is, the switches between these states do not take place at the same point in either

direction. In catastrophe theory, the size of the hysteresis effect depends on noise in or

perturbations of the system (Gilmore, 1981). Without noise, the hysteresis effect will be

strong (so-called Delay convention); with noise, the hysteresis effect diminishes until

switches between modes take place at the same point (the Maxwell convention), as in the

fast guess model.

This hysteresis prediction implies that when the subject has to speed up, accurate

responding might persist well beyond the point where the fast guess model, with its stepwise

trade-off, predicts a collapse of accurate responding. This phenomenon relates to a phenom-

enon that many chess players experience when playing a game with less and less time on

the chess clock. Although difficult to test, in many sports and activities, performance seems

to be relatively unaffected, albeit within a certain range, by time pressure.2

Standard manipulations of the SAT are not able to reveal the presence of hysteresis.

Therefore, to discriminate between the phase transition model and the fast guess model, we

designed an experiment where changing payoffs push a participant from accurate behavior

SCM to guessing (GM) and vice versa, thereby switching in either direction between the

two hypothesized states. A possible limitation of this procedure is that participants may per-

ceive changes in payoffs with a delay, potentially resulting in an artificial hysteresis effect.

To exclude this possibility, we included an extra experiment (1c), based on a ‘‘modified

method of limits’’ (Hock, Kelso, & Schöner, 1993).
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The difference between the phase transition model and most sequential sampling models

is arguably more structural. Whereas sequential sampling models assume that all responses

originate from a single unitary process, the phase transition model predicts that two distinct

modes of processing underlie the behavior. When the two modes of processing that underly

the behavior are clearly separated, bimodality of the behavioral variables is expected. Stan-

dard manipulations of the SAT (‘‘respond as fast and accurately as possible’’) cannot reveal

this bimodality, as participants usually respond at above 90% correct, where the phase tran-

sition model does not predict bimodality. Bimodality is expected at intermediate values of

accuracy (e.g., 75% correct). Therefore, to test the phase transition model against pure

sequential sampling models, we designed an experiment in which participants were pressed

to respond at 75% correct, as fast as possible.

Below, we describe two experiments designed to detect hysteresis and bimodality. We

first present the hysteresis experiment and a follow-up extension that corroborates the initial

results. Second, we present the bimodality experiment.

5. Experiment 1: Hysteresis

The hysteresis experiment was conducted in two stages. In Experiment 1a, three partici-

pants (A–C) were tested. Experiment 1b was conducted as an autonomous replication of

Experiment 1a. In this replication, eight more participants (D–K) were tested with a slightly

improved experimental design. The modified method of limits experiment is discussed in

the next section.

5.1. Method Experiment 1a

In the hysteresis experiments, we aimed to force the participants to perform over the

entire range of the SAT. Therefore, we applied a reward function that incorporates both

speed and accuracy, enabling us to change the emphasis on speed versus accuracy in small

steps. By smoothly changing the reward for speed versus accuracy back and forth from a sit-

uation with complete emphasis on speed to a situation with complete emphasis on accuracy,

it is possible to reveal hysteresis in the transitions between guessing and stimulus-controlled

responding.

5.1.1. Participants
Three students from the University of Amsterdam participated for course credit. Students

were native speakers of Dutch and did not participate in any of the other experiments.

5.1.2. Materials and procedure
We used a lexical decision task, in which participants were required to discriminate word

from non-word stimuli by pressing either the ‘‘z’’ button (for ‘‘word’’) or the ‘‘/’’ button

(for ‘‘non-word’’). We chose to use a lexical decision task, because RTs from accurate

responses are expectedly easy to distinguish from fast guesses. The stimuli were sampled

222 G. Dutilh et al. ⁄ Cognitive Science 35 (2011)



randomly without replacement from a list of 120 words and 120 non-words. When all stim-

uli were used, sampling started from the whole list again. Macromedia’s Authorware for

Macintosh was used to both present the stimuli (black on white) and register the response

(at a resolution of 60 Hz, i.e., precision of 16.6 ms). The response stimulus interval varied

randomly between 1000 and 3000 ms, to prevent anticipatory responses. To discourage this

behavior further, responses faster than 80 ms resulted in a ‘‘too early’’ warning message.

On every trial, the participant was rewarded according to

Rt ¼ RRT
t þ RAcc

t ; ð1Þ

where Rt is the total reward earned on the current trial, and RRT
t and RAcc

t are the rewards

for speed and accuracy, respectively. First, RRT
t is given by

RRT
t ¼ PRT

t �
RT

SCM �RTt

� �

RT
SCM �RT

GM
� � ; ð2Þ

where PRT
t (PRT 2 [0,24])3 is the payoff weight for speed at trial t, RTSCM is the mean RT

in the SCM, RTGM is the mean RT in the GM, and RTt is the RT at trial t. Equation 2

ensures that responding at guessing speed (RTt ¼ RTGM) yields an expected reward of

RRT
t ¼ PRT

t .4 At the same time, responding slow enough to yield perfect accuracy (i.e.,

RTt ¼ RTSCM) yields no reward for speed at all (RRT
t ¼ 0).

Second, RAcc
t is given by

RAcc
t ¼ PAcc

t �Acct; ð3Þ

where PAcc
t is the current payoff weight for accuracy and Acct is )1 when the response on

trial t is an error and 1 when the response is correct. This rule rewards responding accurately

by the amount of PAcc
t .5 At the same time, guessing yields an expected reward of zero, as

half of the time, Acc will be )1, and half of the time Acc will be +1.

The reward for speed and accuracy and the total reward were presented to the participant

on a feedback screen (Fig. 5). The values of the rewards were represented by horizontal

bars, that, when positive, were green and rightwards, and that, when negative, were red and

leftwards.

The values for RTSCM and RTGM were determined by each participant’s performance in

two training blocks. In one block, PRT
t was set to zero (for estimating RTSCM). In the other

block, PAcc
t was set to zero (for estimating RTGM).

To test for hysteresis, PAcc
t þ PRT

t was kept constant at the arbitrary value of 24, whereas

the difference PAcc
t � PRT

t was varied step by step between )24 and +24. We used a simple

adaptive algorithm to adjust the payoff factors. A session always started with PRT
t ¼ 24

and PAcc
t ¼ 0. At these payoff settings, the participant was supposed to engage in fast

guessing, because only speed is rewarded. Once it was established that the participant

indeed engaged in fast guessing (mean RT over the last five trials smaller than

RTGM + 50 ms), we increased PAcc and decreased PRT, in steps of 1 on each new trial.

When the participant had given five consecutive correct responses, the direction of the steps
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reversed, that is, PRT was increased and PAcc was decreased, until the participant again met

the aforementioned criteria for guessing. By following this simple algorithm, the direction

of change of the payoff factors reversed as soon as the participant was stable, either in the

GM or the SCM. The algorithm ensures that participants passed the bifurcation set (i.e., the

area where sudden jumps can take place) as often as possible, generating the essential data

for a test of the hysteresis hypothesis.

The lexical decision task was administered in blocks of 100 to 200 trials, depending on

how many trials a participant took to engage in the required mode of responding. Participant

A was tested on three occasions within 3 weeks and the other participants were tested once

for an hour. The participants were trained on a slightly different task for about 20 min. In

this training task, the payoff factors were fixed within blocks of trials. Each block ended

when the total reward exceeded 200, which took between 10 and 25 trials. In each block,

the payoff setting was different, so the participants learned to optimize their performance at

each payoff setting. This training was very important, as naive participants tend to show

suboptimal behavior when PAcc
t is small and PRT

t is large. Specifically, participants tend to

display stimulus-controlled behavior, whereas, at these payoff settings, fast guessing is

much more rewarding.

5.2. Results Experiment 1a

Below, we will refer to a set of trials in which the participants switched from guessing to

accurate responding and vice versa as a series (in which PAcc first increases and then

decreases6). The first series for each participant served as training on the main task, leaving

372, 436, and 299 trials for A, B, and C, in which they completed 12, 14, and 10 series,

respectively.

Fig. 5. On the feedback screen, the reward for speed, accuracy, and the summed total were represented with

three horizontal bars underneath the stimulus. These bars were green when positive (gray in figure, note the

reward for accuracy) and red when negative (black in figure, note the negative reward for speed). The horizontal

bar above the stimulus was displayed only in Experiment 1b and c. This bar contained an orange portion on the

left side (gray in figure) that represented the current value of PRT
t , and a blue portion on the right side (black in

figure) that represented the current value of PAcc
t .
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5.2.1. Descriptive results
For each participant, mean RT was calculated at each value of PAcc, for both directions

of change in PAcc separately, as shown in Fig. 6. As expected, we found that high values of

PAcc provoked slow and accurate responding, whereas low values of PAcc provoked fast and

inaccurate behavior. Note, however, that mean RTs at intermediate values of PAcc are higher

when the participants are directed away from slow, accurate responding (i.e., decreasing

PAcc) than when they are directed away from fast and inaccurate responding (i.e., increasing

PAcc). In support of this finding, model selection based on the Bayesian Information Crite-

rion (BIC) prefers a linear model that regresses RT on both PAcc and direction of change

over a linear model that regresses RT on PAcc only (see BIC values in Fig. 6). BICs quantify

the relative performance of the models by striking a balance between goodness-of-fit and

parsimony (Schwarz, 1978). Along with the BICs, the Pr values show the accompanying

Schwartz weights, that is, the posterior probabilities for both models (given equal prior

probabilities for the models, Raftery, 1999; Wagenmakers & Farrell, 2004). The finding that

RT depends on both PAcc and the direction of change is consistent with the hysteresis

hypothesis. Due to the binary nature of the response variable, the results for accuracy

(Fig. 7) are less clear. Our statistical analysis, reported later, is based on multivariate hidden

Markov models that take mean RTs and proportion correct into account simultaneously.

This analysis strongly supports the hysteresis hypothesis. However, we first describe Experi-

ment 1b, which differs from Experiment 1a only by minor methodological improvements.

5.3. Method Experiment 1b

Experiment 1b was conducted to replicate the results of Experiment 1a. We only describe

the method of Experiment 1b insofar as it differs from Experiment 1a.
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Fig. 6. Experiment 1a: Mean response time (RT) increases with PAcc. When PAcc decreases (and participants

are speeding up), participants are slower at intermediate values of PAcc than when PAcc increases (slowing

down). The Bayesian Information Criterions (BICs) allow for comparison between a linear model in which RT

is regressed on both PAcc and direction of change (two-factor), and the model with only PAcc as predictor (one-

factor). Lower BICs indicate the better model. In addition, the posterior probabilities (Schwarz weights) for both

models are reported.
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5.3.1. Participants
Eight first-year psychology students participated for course credit. None of these students

participated in either Experiment 1a or Experiment 2.

5.3.2. Materials and procedure
We used two different tasks: one lexical decision task, as in Experiment 1a, and one per-

ceptual task. In this perceptual task, participants were asked to judge, by pressing the appro-

priate button, whether a horizontal line crossing a vertical reference line extended more to

the right or to the left. When the line extended more to the right, the distance to the right

was about 1 mm larger than the distance to the left and vice versa. Participants were either

presented the lexical decision task (participants D–G) or the visual perception task (H–K).

In this experiment, we used Presentation� software (Version 9.90, http://www.neurobs.

com) to present the stimulus and register the responses. Two response buttons attached to

the parallel port were used to maximize timing accuracy. The response stimulus interval var-

ied randomly between 1000 and 3500 ms, to prevent anticipatory responses. To discourage

this behavior further, responses before stimulus onset resulted in a warning message.

For both tasks in Experiment 1b, the payoff structure was equivalent to the one used in

Experiment 1a. The only difference was that in Experiment 1b RTSCM and RTGM were

updated during the experiment. When it was established that a participant was performing

accurately, evidenced by five consecutive correct responses, these five responses were used

to update RTSCM. Likewise, when it was established that the participant was guessing, evi-

denced by five consecutive responses faster than RTGM + 50 ms, these five responses were

used to update RTGM.

An improvement to Experiment 1a was that we added a bar in the top portion of the

screen (permanently visible for the participant), that visually displayed the current value of

PAcc
t and PRT

t , respectively. The portion of this bar that was blue/orange represented the

amount of pressure on accuracy/speed (see Fig. 5). This bar ensured that the participant was

aware of the current payoff setting at any time during the experiment.
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Fig. 7. Experiment 1a: Mean accuracy increases with PAcc. With sparse data, visual inspection of the binary

variable accuracy does not allow one to draw clear conclusions about the presence or absence of hysteresis.

226 G. Dutilh et al. ⁄ Cognitive Science 35 (2011)



Participants were tested in two sessions; the first one lasted 2 h and the second one lasted

1 h. Participants were allowed a short break every 20 min.

5.4. Results Experiment 1b

As in Experiment 1a, we discarded the first series for each participant. Participants D, E,

F, and G (lexical decision task) contributed respectively 1021, 569, 1137, and 449 trials, in

which they completed 39, 19, 32, and 10 series. Participants H, I, J, and K (visual task) con-

tributed respectively 589, 920, 860, and 481 trials, in which they completed 16, 20, 26, and

13 series.

5.4.1. Descriptive results
Again, for each participant, the mean of RT was calculated at each value of PAcc, for both

directions of change in PAcc separately, as shown in Fig. 8 (participants D–G) and Fig. 9

(participants H–K). Again, as expected, high values of PAcc invoke stimulus-controlled

behavior, whereas low values of PAcc invoke guessing behavior. More notable, in both the

lexical decision version and the perceptual version, we again found hysteresis effects on

RT, indicated by higher mean RT at intermediate values of PAcc
t when decreasing PAcc than

when increasing PAcc. Again, visual inspection of response accuracy (Figs. 10 and 11) does

not allow one to draw strong conclusions, and this may be due to the aforementioned binary

character of the response variable. However, naturally, accuracy is low when PAcc
t is low

and high when PAcc
t is high.

In sum, visual inspection of changes in mean RT and consideration of the difference in

model fit between the one-factor and two-factor model both suggest that hysteresis is present

for about half of the participants—for the same payoff settings, these participants were fas-

ter coming out of the GM that they were coming out of the SCM.

The visual inspection of the descriptive results has two important drawbacks. First, aver-

aging over series might have masked sudden shifts in behavior. Second, the univariate

descriptives above do not reflect the multivariate character of RT data. To address these

issues and provide a more formal test of the hysteresis hypothesis, we now turn to an analy-

sis using hidden Markov models.

5.5. Hidden Markov analyses

The SAT phase transition model assumes that, as participants switch from one pro-

cessing mode to the other, RT and accuracy undergo sudden jumps. This implies that

RT and accuracy can be considered a multivariate time series that follows a two-state

mixture distribution. Such data can be analyzed using hidden Markov models (HMMs,

e.g., Böckenholt, 2005; Vermunt, Langeheine, & Böckenholt, 1999; Visser, Raijmakers,

& Van der Maas, 2009; Wickens, 1982). HMMs allow one to learn about a number of

latent states that cannot be observed directly. Additional parameters describe the transi-

tion dynamics of these unobserved states and their connection to the observed behavioral

variables.
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Thus, a hidden Markov model consists of two main parts: the measurement model and

the transition dynamics (Visser et al., 2009). The measurement model defines latent states

in terms of the observed variables. In our case, the measurement model defines the states

(GM and SCM) in terms of RT and accuracy. The transition dynamics are defined by the

transition probabilities, that is, the probabilities of switching from one state (in our case

GM) to the other SCM and vice versa.

5.5.1. HMM for the phase transition model
The phase transition model posits two modes of behavior that can be captured by a two

state hidden Markov model (see Fig. 12). The two states differ in mean and variance of RT
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Fig. 8. Experiment 1b (lexical decision): Mean response time (RT) increases with PAcc. For participants F and

G, responses are slower at intermediate values of PAcc
t when PAcc decreases (and participants are speeding up)

than when PAcc increases (and participants are slowing down). The Bayesian Information Criterions (BICs)

allow for comparison between a linear model in which RT is regressed on both PAcc and direction of change

(two-factor), and the model with only PAcc as predictor (one-factor). Lower BIC’s indicate the better model. In

addition, the posterior probabilities (Schwarz weights) for both models are reported.
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and in proportion correct. In our analysis, one state GM has a mean accuracy of 0.5 and rela-

tively short RTs and another state SCM has a high mean accuracy and longer and more vari-

able RTs.

Furthermore, the phase transition model predicts that the probability to switch from GM

to SCM (pGS in Fig. 12) increases when PAcc increases and that the probability to switch

from SCM to GM (pSG in Fig. 12) increases when PAcc is lowered. We incorporate this pre-

diction by regressing the transition probabilities on PAcc via a logit link.

Finally, the hysteresis hypothesis posits that the switching probabilities depend on the

direction of change of PAcc. This asymmetry is expressed in the difference between the

intercepts of the regression function that describes the probability to switch from GM to
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Fig. 9. Experiment 1b (perceptual task): Mean response time (RT) increases with PAcc. When PAcc decreases

(speeding), participant I is slower at intermediate values of PAcc
t than when PAcc increases (slowing down). The

Bayesian Information Criterions (BICs) allow for comparison between a linear model in which RT is regressed

on both PAcc and direction of change (two-factor), and the model with only PAcc as predictor (one-factor). Lower

BICs indicate the better model. In addition, the posterior probabilities (Schwarz weights) for both models are

reported.
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SCM and the intercepts of the regression function that describes the probability to switch

from SCM to GM (see Fig. 13).

5.5.2. HMMs for competitor models
The model described above represents the phase transition model. We tested this model

against three competitor models that contrast with various predictions of the phase transition

model.

5.5.2.1. Model (1): The first competitor model is a model that assumes that there is only

one (latent) state and that the behavior in this state is completely independent from the

covariate PAcc. This model serves as a reference model and contrasts the phase transition

model’s prediction of the existence of two qualitatively different modes of behavior.
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Fig. 10. Experiment 1b (lexical decision): Mean accuracy increases with PAcc. With sparse data, visual inspec-

tion of the binary variable accuracy does not allow one to draw clear conclusions about the presence or absence

of hysteresis.
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5.5.2.2. Model(2): The second competitor model also comprises a single state, but here, the

payoff for speed and accuracy PAcc is included as a linear predictor of both RT and accu-

racy. This model can be seen as a representation of the predictions of sequential sampling

models in which there is a continuous trade-off between speed and accuracy. This continu-

ous trade-off contrasts the phase transition model’s prediction of a discrete trade-off.

5.5.2.3 Model(3): The third competitor model comprises two states and PAcc is modeled to

affect the transition probabilities. This model represents the predictions of the fast guess

model and thus comprises symmetric transition dynamics between the two states. This sym-

metry contrasts the phase transition model’s prediction of hysteresis that implies asymmetric

transition dynamics.
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Fig. 11. Experiment 1b (perceptual task): Mean accuracy increases with PAcc. With sparse data, visual inspec-

tion of the binary variable accuracy does not allow one to draw clear conclusions about the presence or absence

of hysteresis.
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The three competitor models described above are from now on referred to as model 1, 2,

and 3, and the phase transition model is referred to as model 4. To fit the models, we used

the r-package depmixS4 (Visser, 2007). This package allows one to fit HMMs to time series

Fig. 12. Graphical representation of a two-state hidden Markov model. Both states (circles) are defined by two

observed measures (squares). The transition probabilities are represented by pGS (from GM to SCM) and pSG

(from SCM to GM), respectively. These pGS and pSG are regressed on PAcc via a logit transformation, as is

captured in the regression functions below. In the hysteresis model, bSG
1 ¼ �brmGS

1 . The difference between

intercepts bGS
0 and bSG

0 quantifies the hysteresis effect.
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Fig. 13. The logit link function is used to regress the probability of switching from SCM to GM (pSG) and from

GM to SCM (pGS) on the payoff for accuracy PAcc (see Fig. 12). Note that we plot Pr(stay in SCM) here, which

is equivalent to 1-Pr(switch from SCM to GM).
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of multiple variables with different distributions (using maximum likelihood). In our case,

these differently distributed variables are RT and accuracy. We chose to model RT by a log

normal distribution, so we could estimate a mean and variance of log (RT) in each state.

Accuracy was modeled as binomial, so, for each state, the binomial parameter was to be

estimated. Furthermore, the depmixS4 package allows us to put various constraints on the

parameters of the models and to include a covariate on the transition probabilities. In the

formalization of the phase transition model, we will include PAcc as a covariate on the tran-

sition probabilities.

5.5.3. Hidden Markov results Experiment 1a and 1b
Table 1 shows the BICs and accompanying Schwarz weights (column Pr) for the dif-

ferent models fitted to each participant’s data. For nine of 11 participants, the best-fitting

model is model 4, the model that represents our hypothesis of a two-state system exhibit-

ing hysteresis. For eight of those, the odds are strongly in favor of the hysteresis model.

For participant G, the odds only weakly favor the hysteresis model. For participants E

and H, the model that represents the fast guess model fits best, although the odds are not

convincing.

For each participant, Table 2 shows the response parameters and the transition

parameters for the hysteresis model 4 (model 3 for participants E and H). The response

parameters are mean RT and accuracy for both the guess and the SCM.7 The response

parameters show that for each participant, the modes are clearly separated in terms of

mean RT. It is also clear that the spread of RT is larger in the SCM than in the GM.

Accuracy in the stimulus-controlled mode is relatively high, but not perfect, suggesting

Table 1

For each participant, the model that postulates two states and hysteresis outperforms the competitor models, as

evidenced by BIC values. Columns Pr show the associated posterior probabilities (assuming the models are

equally likely a priori). 1s and 2s stand for one state and two states, respectively. Experiment code 1bL indicates

lexical decision version of 1b, 1bV indicates visual version. Numbers in boldface are the lowest BIC values per

subject

Experiment Participant

Model 1: 1s

Model 2: 1s

w/covariate

Model 3: 2s fast

guess

Model 4: 2s

hysteresis

BIC Pr BIC Pr BIC Pr BIC Pr

1a A 970.12 <.001 749.51 <.001 490.15 <.001 442.41 >.999

1a B 995.28 <.001 708.14 <.001 389.33 <.001 358.10 >.999

1a C 692.19 <.001 526.68 <.001 415.66 <.001 376.39 >.999

1bL D 2,738.43 <.001 1,929.94 <.001 1,063.29 <.001 982.65 >.999

1bL E 1,263.54 <.001 810.07 <.001 701.81 ¼.578 702.44 ¼.422

1bL F 2,468.40 <.001 1,507.48 <.001 1,066.25 ¼.003 1,054.70 ¼.997

1bL G 972.91 <.001 754.51 <.001 656.46 ¼.465 656.18 ¼.535

1bV H 1,574.63 <.001 970.32 <.001 931.90 ¼.668 933.30 ¼.332

1bV I 2,468.01 <.001 1,897.47 <.001 1,692.40 <.001 1,650.41 >.999

1bV J 2,042.91 <.001 1,314.84 <.001 1,117.39 <.001 1,093.78 >.999

1bV K 1,269.36 <.001 817.67 <.001 760.30 ¼.052 754.50 ¼.948

G. Dutilh et al. ⁄ Cognitive Science 35 (2011) 233



that participants were able to trade-off accuracy for speed within the stimulus-controlled

mode, at least to some extent.

The three rightmost columns of Table 2 show the parameters of the function that links

PAcc to the transition probabilities. The values of b1 confirm that for all participants, increas-

ing PAcc leads to an increased probability to switch toward the stimulus-controlled mode.

Table 2

Response parameters (Mean of RT, SD of RT, and proportion correct) estimated for the hysteresis model (Model

4). State 1 is fast with accuracy at chance level. State 2 is slower and accuracy is relatively high. Spread of RT is

larger in the accurate state. The rightmost columns display the parameters of the link functions, estimated for the

hysteresis model (for participants E and H, for the fast guess model with bSG
1 ¼ bSG

1 ). For all participants, the

intercept is smaller for the function linking PAcc to the probabilities to switch to SCM (a1) than the intercept for

linking PAcc to the probability to switch to GM (a2). b1 was constrained to be equal in the regression functions

on both YSG and YGS (see Fig. 12)

Participant RT state 1 SD RT state 1 PC state 1 RT state 2 SD RT state 2 PC state 2 b1 bGS
1 bSG

1

A 250.09 45.33 0.50 617.66 148.68 0.91 6.48 1.39 4.35

B 242.03 28.23 0.50 542.81 112.92 0.90 4.95 1.43 3.66

C 262.65 55.06 0.50 570.85 119.29 0.89 4.55 1.02 3.96

D 192.81 32.84 0.50 500.76 93.33 0.91 5.14 )0.15 2.05

E 258.65 51.73 0.50 508.42 98.95 0.90 7.15 1.38

F 258.54 51.33 0.50 504.38 96.52 0.89 9.30 0.17 1.60

G 253.37 33.78 0.50 486.00 118.87 0.75 3.74 0.29 1.23

H 203.14 27.27 0.50 541.60 168.31 0.78 11.42 7.44

I 215.67 37.48 0.50 521.09 154.82 0.75 3.03 )0.20 1.64

J 205.32 30.32 0.50 455.21 103.17 0.76 5.46 1.22 3.08

K 196.48 25.77 0.50 476.44 137.56 0.81 3.61 )0.06 1.21

Table 3

Parameter estimates (intercept and slope) of the linear functions that relate PAcc to the a and b axes of the cusp

(columns one through four) for participants A to K. The sixth and seventh column display the parameters of the

linear function that relates the cusp surface (Z) to log (RT). In all cases the cusp model gave the best explanation

of the data. The phase transition model predicts positive coefficients aPAcc and zero values for bPAcc, as PAcc in

our model is associated with the normal axis a. For participants B, D, E, F, and K, bPAcc could be constrained to

zero

Participant a0 aPAcc b0 bPAcc Z0 ZPAcc

A )1.42 0.18 2.27 )0.16 )14.76 2.43

B )1.17 0.18 1.84 0.00 )20.11 3.42

C )1.07 0.19 1.48 )0.08 )16.61 2.78

D )2.27 0.22 2.02 0.00 )16.54 2.88

E )2.14 0.22 0.84 0.00 )17.90 3.05

F )2.26 0.21 0.94 0.00 )18.34 3.13

G )1.71 0.13 1.71 )0.08 )18.22 3.05

H )3.49 0.40 1.27 )0.40 )11.36 1.85

I )1.47 0.12 1.68 )0.06 )14.14 2.40

J )2.42 0.28 1.25 )0.11 )15.40 2.67

K )2.54 0.21 1.18 0.00 )16.09 2.79
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The difference between intercepts bGS
0 and bSG

0 quantifies the hysteresis effect (for all partic-

ipants but E and H).

5.6. Cusp model results

As a final analysis, we used the r-package CUSP (Grasman, van der Maas, &

Wagenmakers, 2009) to fit the data of each participant to the stochastic cusp equation by

Cobb and Watson (1981). In this model, the normal and splitting variable a and b are modeled

as linear functions of the experimental variable PAcc. So, for each axis, an intercept parameter

(i.e., a0 and b0) and a slope parameter (i.e., aPAcc and bPAcc) are estimated. The behavioral vari-

able Z is modeled as a linear function of log (RT) (with parameters Z0 and ZPAcc). All para-

meters of the fitted cusp model can be found in Table 3. For all participants, the cusp model

fitted better than a linear model according to BIC model selection, which indicates that the

cusp model gives a proper description of the data. For participants B, D, E, F, and K, bPAcc

could be constrained to zero, which indicates that for these participants, the experimental var-

iable PAcc only related to the normal axis, which is predicted by the phase transition model.

Fig. 14 shows the best fitting model for each participant. The plotted symbols show how

the participant’s behavior at different settings of PAcc maps onto the a–b plain. The shaded

area is the bifurcation set, that is, the area where two stable behaviors exist. The phase tran-

sition model predicts that a substantial part of the behavior falls in this bifurcation set, which

is the case for most of the participants.
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Fig. 14. The best fitting cusp model for each participant. The plotted symbols show how the participant’s behav-

ior at all different settings of PAcc maps onto the a–b plain. The phase transition model predicts that a significant

part of the behavior lies in the shaded area, the bifurcation set.
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6. Interim conclusion

Experiments 1a and b were designed to detect hysteresis. When we changed payoff fac-

tors gradually, hysteresis was observed in the behavior of about half of our participants. Hid-

den Markov analyses confirmed that two modes of responding exist and that the phase

transitions between these states displayed hysteresis for the majority of the participants. The

fit of a stochastic cusp model provided converging evidence that the SAT can be described

as a cusp catastrophe. Still, there are two important reasons to doubt that the SAT can be

conceptualized generally as a cusp catastrophe. First, the hysteresis effect could be artifi-

cially enlarged by the speed of change of the payoff factors. Although we tried to make the

change in PAcc gradual, it could still be the case that hysteresis occurs as an effect of a par-

ticipant’s delayed awareness of change in PAcc. To test this possible artifact, we applied a

so-called modified method of limits in Experiment 1c. Second, although hidden Markov

analyses showed that a two-state mixture describes the data best, the hysteresis experiments

described above do not prove that the behavior is governed by two distinct modes. (The

bimodality in the data could, indeed, be caused by the experimental manipulations.) To test

whether behavior is indeed bimodal, which is a necessary criterion for the existence of phase

transitions, we designed the ‘‘75%-task’’ in Experiment 3.

7. Experiment 1c: Modified method of limits

7.1. Method Experiment 1c

To test whether the hysteresis effect found in Experiment 1a and b is an artifact caused

by delayed awareness of PAcc we applied a modified method of limits. This method is based

on a procedure used by Hock et al. (1993) to study bistability in the perception of apparent

motion. We apply the method by gradually changing PAcc but eventually pausing at prede-

termined settings of PAcc
t and PRT

t . To understand this procedure, consider a payoff setting

at which optimal behavior requires that a participant switches from his or her current mode

to another mode. Now, the participant refuses to switch at this payoff setting. This reluc-

tance to switch can have one of two reasons: First, the participant was not yet fully aware of

the current payoff setting. Second, the current mode of processing is very stable (hysteresis

as predicted by the phase transition model). If the first reason holds, then waiting for a cou-

ple of trials at the same value of PAcc would result in a switch, because the participant will

become aware of the current payoff settings. If the second reason holds, the participant

would stay in the current mode of processing, even after waiting some trials at that value of

PAcc. The latter finding would be strong evidence for hysteresis.

7.1.1. Participants
The method applied in this experiment is demanding in that it requires relatively many

trials. Therefore, we tested only two participants. We chose to test two participants whose

data clearly displayed hysteresis in Experiment 1b. This allows us to determine whether the
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hysteresis effect observed in Experiment 1b stands the litmus test of a ‘‘modified method of

limits.’’ We tested participant F from the lexical decision version of Experiment 1b, and

participant I from the perceptual version of Experiment 1b.

7.1.2. Materials and procedure
In this experiment, both participants performed the same task they did in Experiment 1b.

The difference with Experiment 1a and b is the way PAcc changed over trials.

Based on the results of Experiment 1a and b, six critical levels of PAcc were chosen

(PAcc
crit ), at which most of the jumps between modes appeared to take place. These are the

levels at which it is interesting to examine what happens when PAcc does not change for a

couple of trials. The levels of PAcc
crit we chose to examine were 8, 9, 10, 11, 12, and 13.

The experiment consisted of sets of trials. Every set of trials started with a value of PAcc
t

that was clearly favoring either guessing or stimulus-controlled responding. Then, PAcc was

changed, step by step, toward a predetermined PAcc
crit (e.g., PAcc

crit ¼ 10). When the sequence

of PAcc arrived at PAcc
crit , it remained at this value for five more trials. These are the five wait-

ing trials where a delayed switch might or might not happen. After these five trials, a new

set was started at a PAcc
t value that either clearly favored guessing or stimulus-controlled

responding. As is illustrated in Fig. 15, PAcc was increased from a low value, that favored

fast guessing, upwards to PAcc
crit for two sets. Then, PAcc was decreased from a high value,

that favored stimulus-controlled behavior, downwards to PAcc
crit for two sets. Over the entire

experiment, the direction of change was alternated in this two-by-two manner. Each set’s

value of PAcc
crit was chosen semi-randomly from the selected values 8 to 13.

7.2. Results Experiment 1c

The above procedure resulted in 6 · 4 · 2 ¼ 48 sequences containing a total of 814

trials per participant. In this procedure, however, the only trials of interest are the waiting

Trial

P
A

cc

1 10 20 30 40 50 60

0

6

12

18

24

Pcrit = 10

Pcrit = 13

Pcrit = 11 Pcrit = 10

Fig. 15. Illustration of the way PAcc changed in the modified methods Experiment 1c. Each dot represents a

trial. After a sequence of a few trials with increasing or decreasing PAcc, the value of PAcc was kept constant for

six trials at a PAcc
t value of PAcc

crit .

G. Dutilh et al. ⁄ Cognitive Science 35 (2011) 237



trials. We chose to use only the last four waiting trials from each sequence. We did so,

because it is reasonable to assume that after two trials with the same PAcc value

(PAcc
t ¼ PAcc

crit ), the participant is aware of this setting. Thus, the total amount of trials used

for calculating the descriptives below are 48 · 4 waiting trials.

Fig. 16 shows the data of both participants. The data of participant F clearly show hyster-

esis, that is, both RT and accuracy are higher for decreasing PAcc than for increasing PAcc.

Again, we compared the fit of a linear model regressing waiting trials’ RT on both PAcc and

direction of change (BIC ¼ 2428.72, Schwarz weight Pr ¼ 1.00), with a model that

regressed RT on PAcc only (BIC ¼ 2443.69, Pr ¼ .00). We conducted the same analysis to

accuracy data (be it a logistic regression), in which the two-factor model again performed

better (AIC ¼ 212.29, Pr ¼ 1.00) than the one-factor model (AIC ¼ 498.10, Pr ¼ .00).
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Fig. 16. Experiment 1c: Mean response time (RT) and accuracy of the ‘‘waiting’’ trials. Participant F’s RT and

accuracy are higher when PAcc was decreased (speeding) than when it was increased (slowing). Participant I’s

data are less clear, but RT is usually higher on slowing trials.
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These analyses suggest that both RT and accuracy depend on direction of change, which

supports the hysteresis hypothesis. The data of participant I are less clear, yet for all but one

critical value of PAcc, mean RT is higher for decreasing PAcc than for increasing PAcc, which

is consistent with our hypothesis of hysteresis. Also for this participant, the two-factor

model (BIC ¼ 2443.91, Pr ¼ .79) outperformed the one-factor model (BIC ¼ 2446.55,

Pr ¼ .21) in predicting RT. In the prediction of accuracy also, the two-factor model

(AIC ¼ 267.71, Pr ¼ 1.00) outperformed the one-factor model (AIC ¼ 498.10, Pr ¼ .00).

Thus, also the results of participant I support the hysteresis hypothesis.

7.3. Discussion Experiment 1

Hysteresis was present in the data of Experiment 1a and was replicated with the slightly

improved method of Experiment 1b. For all participants in Experiments 1a and 1b, the hid-

den Markov analyses showed that the hysteresis model outperformed the competitor models.

Furthermore, hysteresis was still present for one participant when put to the strict test of the

modified method of limits, carried out in Experiment 1c. These results favor the phase tran-

sition model over the fast guess model that predicts that the jumps from GM to SCM and

the jumps from SCM to GM should take place at the same setting of PAcc
t . However, as

argued before, to contrast our model against the pure sequential sampling models, evidence

for hysteresis is not enough. When we would also find bimodality in the SAT, this would

provide complementary evidence to favor the phase transition model over pure sequential

sampling models.

8. Experiment 2: Bimodality

The phase transition model predicts bimodality in behavior when the pressure on both

speed and accuracy is high (i.e., the area between the two dotted bifurcation lines in Fig. 4).

Bimodality occurs because the intermediate behavior (e.g., responding at 75% correct) is

inaccessible. When a participant nonetheless wants to meet the experimenter’s demands to

respond at 75% correct, this can only be achieved by mixing responses from the two stable

modes, that is, responding accurately on some of the trials and fast guessing on the others.

This mixing of strategies yields bimodal distributions of the behavioral variables. In con-

trast, according to most sequential sampling models, participants can simply adjust the

bounds of the decision process to reach an accuracy of 75% (see Fig. 2), which would lead

to a unimodal distribution of the behavioral variables.

We set out to test these diverging predictions in the second experiment by making partici-

pants respond at 75% correct. To evoke 75% correct performance, deadline or response sig-

nal procedures could be applied. However, RTs in these tasks are under control of the

deadline manipulation or response signal and only accuracy is left as a dependent variable.

Accuracy, unfortunately, is a discrete variable and discrete variables cannot be bimodally

distributed. For that reason, deadline or response signal procedures could not be used to

study bimodality.
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Thus, in the experiment below, we chose not to manipulate speed but instead manipulate

accuracy, allowing RT to be used as the dependent variable. We refer to the task as ‘‘the

75% task.‘‘ In the 75% task, participants are instructed to respond at an accuracy level of

75% correct, and to do so as fast as possible. For comparison, we also administered a 50%

task and a 100% task, in which participants were asked to respond as fast as possible at 50%

correct (guessing) and at 100% correct. Whereas the predictions of the phase transition

model and sequential sampling differ for the 75% task, they agree for the 50% and 100%

tasks. For both tasks, the models predict unimodal RT distributions: fast and chance-level

RTs for the 50% task, slow and almost error-free RTs for the 100% task.

It is interesting to note that we could only find a 75% instruction in experiments of

Lappin and Disch (1972). Yet, from a statistical point of view, and assuming that the

speed-accuracy trade-off is continuous, such an instruction would give estimates of mean

RT with much lower standard errors than we get at the more typical 95% correct target. As

Wickelgren (1977) points out, it is precisely at high levels of accuracy where the variation

in RT is very large for very small differences in error percentage.

8.1. Method Experiment 2

8.1.1. Participants
Thirteen students at the University of Amsterdam participated for a small monetary

reward.

8.1.2. Materials and procedure
We used the same lexical decision task as used in Experiment 1a. Stimuli were selected

and presented in the same way as in Experiment 1a. Also, the screen refresh rate, response

stimulus intervals, and response button assignment were also identical to those used in

Experiment 1a.

Trials were presented in blocks and sets. A set consisted of a random number of trials

(between 15 and 25), and a block consisted of a number of sets (5 to 10, depending of the

number of trials in each set, such that a block had never more than 150 trials). At the end of

each set, participants received feedback about their performance (i.e., their penalty score,

the ranking of this score on a personal high score list, and a general high score list). After

each set, the penalty score (PS) was computed as follows:

PS ¼ j%correctset �%correcttargetj
25

þ ðRTset � 100Þ
700

Participants were instructed to minimize this penalty score PS. Note that, because the par-

ticipants did not know in advance the amount of trials in each set, their best strategy was to

try to maintain a mean accuracy close to 75% correct throughout a set.

Note that the PS is heavily dependent on how close the participant is to the accuracy tar-

get (75%) and that speed is of secondary importance. Nevertheless, a small deviation from

the optimal percentage correct could be compensated by faster responses. For instance, a
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5% deviation from the goal can be compensated with an increase in speed of 140 ms. Speed

was also included in the PS to prevent that participants used a stimulus-controlled strategy

and intentionally erred on every fourth trial.

8.1.3. Design
The experiment featured four conditions. In the first condition, the stated target was to

obtain 50% correct. In the second condition, the target was to respond at 100% correct. In

the third and fourth condition participants were instructed to respond at 75% correct. The

latter two conditions—denoted 75%PT and 75%SS—differed with respect to the instruc-

tions. In the 75%PT (phase transition) condition, the instructions were given in terms of the

phase transition and fast guess model. The participants were told that optimal performance

implied an alternation of guessing and accurate responding. In the 75%SS (sequential sam-

pling) condition, on the other hand, the instruction of the task was given in terms of sequen-

tial sampling models. The participants were told that they should respond at such a high

speed that accuracy, on average, reaches 75%. In a pilot study, the 75% condition was intro-

duced to participants without any specific instruction, but it turned out that most participants

then persisted in adapting the highly inefficient strategy of slow responding with intentional

errors in one of four cases. RTs associated with this inefficient strategy are equal to, or

slower than, those in the 100% condition. It is important to note that, if the sequential sam-

pling models’ prediction of a continuous SAT is correct, instructions in terms of sequential

sampling models would yield lower penalty scores than instructions in terms of the phase

transition model.

A complete experimental session consisted of a series of blocks. For example, the experi-

ment could start with a block of five sets of the 100% condition, then a block with five sets

of 50%, then a block with 10 sets of 75%SS, and finally a block with 10 sets of 75%PT.

Each experimental session was comprised of a total of 40 sets · 15 to 25 items �800 trials,

and took about an hour to complete.

There were three groups (A, B, and C) of participants. The experimental session of group

A (participants 1 to 5) was organized as follows: six sets with %correcttarget ¼ 100%, six

sets with %correcttarget ¼ 50%, seven sets with %correcttarget ¼ 75% (PT), seven sets with

%correcttarget ¼ 75% (SS). The session of group B (participants 6 to 13) was organized as

follows: six sets with %correcttarget ¼ 100%, six sets with %correcttarget ¼ 50%, seven sets

with %correcttarget ¼ 75% (SS), seven sets with %correcttarget ¼ 75% (PT). Two weeks

later, six participants were retested. This group C (participants 1, 7, 8, 9, 11, 13) received

eight sets with %correcttarget¼50%, seven sets with %correcttarget ¼ 75% (SS), seven sets

with %correcttarget ¼ 75% (PT). So group A received the phase transition model instruc-

tions first, and groups B and C received the sequential sampling model instructions first.

8.1.4. Data analysis
Data were inspected visually for bimodality, analyzed using the distributional RT analy-

sis program of Dolan, Van der Maas, and Molenaar (2002), and the mode testing program

of Hartelman, van der Maas, and Molenaar (1998). Using the distributional RT analysis pro-

gram, mixtures of 1, 2, and 3 Ex-Gaussian components were fitted to RT distributions
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obtained in each condition. The choice for the Ex-Gaussian distribution is pragmatic and, as

explained earlier, the present phase transition model does not make any critical distribu-

tional predictions. The BIC was used to determine the number of components. The number

of components is, however, not always equal to the number of modes, as components can

have equal means but differ in variance. Therefore, when the BIC favored the two or three

component mixture, and the data and fitted distribution are clearly bimodal (and not trimo-

dal), we concluded that the reaction times in that condition were bimodally distributed.

Finally, we confirmed the results from the mixture analysis using a kernel density mode-

testing program (e.g., Hartelman et al., 1998; Silverman, 1981, 1986).

8.2. Results Experiment 2

8.2.1. Penalty scores
In the 75% task, the phase transition model instructions (75%PT) yielded lower penalty

scores PS than the sequential sampling model instruction (75%SS).8 Participants in group A

(75%PT first) had a mean PS of 0.86 (SD ¼ 0.33) in the 75%PT condition and a mean PS of

0.98 (SD ¼ 0.39) in the 75%SS condition. For participants in group B and C (75%SS first),

these means were 0.78 (SD ¼ 0.28) and 0.96 (SD ¼ 0.36), respectively. An anova with PS

as dependent variable and instruction (phase transition model vs. sequential sampling

model) and group (A vs. B, and C) as independent variables showed that the phase transition

model instructions yielded lower penalty scores PS than sequential sampling instructions

(F(1) ¼ 16.5, p < .001).

8.2.2. Distributional analyses
Fig. 17 shows histograms of the RT data of Experiment 2 per experimental manipulation

(50%, 100%, 75%PT, and 75%SS) and per participant group (A, B, C). In each group, the

data were aggregated over participants. The rightmost column of histograms displays the

data when aggregated over all participants in all groups using the ‘‘Vincentizing’’ technique

described by Ratcliff (1979). Individual participants’ RT distributions can be found on the

first author’s website.

As expected, the distributions of RT in the 50% and 100% condition were clearly unimo-

dal for almost all participants, as is suggested by the group-averages shown in the upper two

rows of panels in Fig. 17. In contrast, visual inspection of the RT distributions of individual

participants in the 75%PT and 75%SS condition suggested bimodality in the data of the

majority of participants. This bimodality is also suggested by the group distributions in the

lower two rows of Fig. 17.

These results were checked with the mode testing method. The distributions of about half

of the participants in conditions 75%PT and 75%SS were identified as bimodal. For the

majority of participants, the mixture analyses also supported a two-component solution.

However, individual-subject analyses were plagued by computational problems due to

outliers, sensitivity to starting values, and occasional failures to convergence.

More robust results were obtained by aggregating the data of participants across groups

A, B, and C. As can be seen in the rightmost histograms of Fig. 17, the aggregated RT
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distributions were unimodal in the 50% and 100% conditions and bimodal in both 75% con-

ditions. These conclusions were confirmed by mode testing using kernel density estimates,

using an alpha level of 0.05. (For details about this analysis, see Hartelman et al., 1998.)

We also inspected the results of the 10% lowest penalty scores in conditions 75%PT

and 75%SS separately because sequential sampling models predict that (close to) optimal

behavior would involve intermediate, unimodal behavior. Visual inspection showed that the

bimodality of the distribution in the condition was preserved when only data were included
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Fig. 17. Experiment 2: For each group and each condition, the data were aggregated over participants. The con-

dition’s accuracy targets (%correcttarget) are shown in the left margin of the figure. The affixes PT and SS stand

for phase transition and sequential sampling model instructions, respectively. The histograms of these aggre-

gated sets are displayed in the left three columns. Strong evidence for bimodality is found in both versions of the

75% task. The data of all participants (from all groups) were then aggregated using the ‘‘Vincentizing’’ method

described by Ratcliff (1979). The resulting histograms are plotted in the rightmost column.
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of sets with the 10% of lowest penalty scores. This was checked with the mode testing

method. We found that in both the 75%PT and the 75%SS condition, the hypothesis of only

one mode was rejected (h-crit ¼ 86.5, p < .001, and h-crit ¼ 67.5, p < .05, respectively).

Finally, we checked whether fast responses were inaccurate and slow responses were

accurate. As expected, in the 75% conditions, the probabilities correct of responses of RTs

below and above 450 ms were .53 and .82, respectively.

8.3. Discussion Experiment 2

The data of Experiment 2 generally support the hypothesis that the instruction to

respond at intermediate levels of accuracy (75%) lead to bimodality of behavior, regard-

less of the instructions given. With both instructions, participants managed to respond at

75% correct by alternating between two modes, which are presumably the GM and the

stimulus-controlled mode. Instructing participants to try to reach 75% by adjusting their

response criteria did not result in data that are consistent with the continuous SAT pre-

dicted by sequential sampling models. Furthermore, the instruction based on the phase

transition model leads to lower penalty scores than the instruction based on sequential

sampling models. As noted before, this is important, as, when the sequential sampling

model account was correct, instructions according to the sequential sampling model

would yield the lowest penalty scores. These findings strongly suggest that no intermedi-

ate mode of processing is available. Furthermore, both instructions resulted in bimodal

RT distributions.

One could argue that grouping data of participants could be the source of spurious bimo-

dality. However, this would only be the case, when some of the participants always guessed

and others always responded accurately (which would still evidence the absence of an inter-

mediate mode of processing). Both the Vincentized distributions and the distribution of RT

for the 10% best sets suggest that this is not the case. If anything, averaging might have

partly masked bimodality, as the locations of the two modes of processing vary over partici-

pants.

For some participants, we were unable to convincingly demonstrate bimodality. This could

be due to a lack of power (the mode testing method is known to be very conservative, for

example, Fisher & Marron, 2001), or to the fact that some participants find it difficult to

engage in guessing behavior. We suspect that more training is required for these participants.

9. Concluding remarks

In this article, we presented a model that departs radically from much current theorizing

about RTs (e.g., Ratcliff & McKoon, 2008). The phase transition model predicts a sudden

collapse in the accuracy of responding when the participant is instructed to speed up,

whereas most models predict a continuous trade-off between speed and accuracy.

It should be noted, however, that in sequential sampling models, it is not precisely

specified how manipulations of response strategy, such as payoffs and deadlines, relate
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mathematically to the effective boundary values. This issue is addressed by several models,

most of which describe how performance is monitored and optimized (e.g., Bogacz, 2007).

One model that describes an autonomous mechanism to adapt response thresholds is

Vicker’s self-regulating PAGAN model. This model provides an algorithm that adjusts

threshold settings on the basis of discrepancies between experienced and desired response

confidence (Vickers, 1979; Vickers & Lee, 1998; Vickers & Lee, 2000). Another model that

describes how performance is optimized is the neural network model proposed by Simen,

Cohen, and Holmes (2006) in which response thresholds are adjusted to maximize reward

rate. One of these or related models could describe the relationship between manipulations

and threshold setting as a cusp function. One could argue that this implies that our current

results are perfectly consistent with sequential sampling models.

Our objection to this line of reasoning is two-fold. First, although the precise relationship

between boundary manipulations and the effective boundary setting is rarely specified, it is

safe to say that a continuous function is assumed implicitly. A cusp function for boundaries

does not really explain the inaccessible region at around 75% and we do not see a concep-

tual justification for this extension.9 On the contrary, in the standard explanation of the SAT

in sequential sampling models, it is essential that subjects can select any boundary setting.

Second, sequential sampling models, such as the diffusion model, have not been designed

to account for guessing. In these models, guessing occurs when boundary separation

approaches zero. In that case, no evidence accumulation occurs and the response process

reduces to residual processes combined in Ter. One could argue that Ter incorporates the

guessing process, so that guessing is just normal decision making without one (important)

component. It remains unclear, however, how such an account could explain inaccessibility

and hysteresis, phenomena that require competition or conflict between guessing and stimu-

lus-controlled processing. In two-state models, guessing and stimulus-controlled processing

compete for the same cognitive resources such as attention, motor preparation, and stimulus

encoding. This competition results in intermediate behavior that is inherently unstable: One

either attempts to answer correctly or one guesses.

Therefore, we believe that the current findings are best explained in terms of a phase tran-

sition between two states or processes. Such a two-state explanation should be connected to

models that describe how participants select response strategies. Relevant models would be,

for example, those of Rieskamp and Otto (2006) and B. R. Newell and Lee (2010) that

describe how response strategies may be selected and adjusted according to environmental

variables such as pay-off and difficulty.

Yet the phase transition model is clearly too simple to explain all empirical facts. Fig. 17

shows the RT distributions of the 50%, 75%, and 100% conditions. The 100% distribution’s

peak is shifted to the right compared to the accurate and slow component of the 75% distri-

butions. This is not predicted by the current formulation of the phase transition model. In a

sequential sampling framework, however, this can be explained naturally by assuming two

different criterion settings; one that results in very slow but almost 100% correct responses

and one that results in, for example, 90% correct and somewhat quicker responses. There-

fore, it would be of great value to formulate our model by integrating nonlinear sequential

sampling models (Heath, 2000; Roe, Busemeyer, & Townsend, 2001; Smith, 1995; Usher &
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McClelland, 2001) in the phase transition model. It could be feasible to do so because math-

ematically, stochastic catastrophe models are very similar to continuous time diffusion mod-

els (Cobb & Watson, 1981). In the light of this integration of both frameworks, it is

interesting to observe that the qualitative form of the continuous trade-off (e.g., A2 in

Fig. 1) may well be described as a fold catastrophe (see Fig. 18).

Considering that a cusp catastrophe consists of two coupled fold catastrophes, as illus-

trated in Fig. 18, it seems plausible to specify the upper fold as representing a sequential

sampling process and the lower fold as representing a model of simple RT. As simple RTs

can also be modeled as a sequential sampling process (Luce, 1986), a complete phase transi-

tion model that includes a sequential sampling explanation for both the stimulus-controlled

mode and the GM seems within reach.

Notes

1. For a detailed response to Sussmann and Zahler (1978), see the online appendix avail-

able on the first author’s website.

2. Based on the phase transition model, one could argue that trading off accuracy for

speed is not so much a free strategic choice, but a competence in itself. It requires a

competence to operate close to the transition point, at a high speed, very near a col-

lapse to complete inaccurate responding. This competence may be an age-related fac-

tor in the explanation of trade-off differences in age groups (e.g., Botvinick, Braver,

Barch, Carter, & Cohen, 2001; Rabbitt, 1979).

3. The value of 24 of the payoff weights was chosen arbitrarily to scale the reward rule.

4: EðRt jGMÞ ¼ PRT
t

RT
SCM �RT

GM
� �

RT
SCM �RT

GM
� �þ 0:5��PAcc þ 0:5� PAcc

� �
¼ PRT

t :

Fig. 18. The cusp catastrophe consists of two coupled fold catastrophes. This figure shows that the upper fold 1

could represent the SAT according to sequential sampling models and that the lower fold 2 could represent a

model for simple RT. In this figure, the y-axis represents accuracy, but the same pattern holds for RT.
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5: EðRt j SCMÞ ¼ PRT
t

RT
SCM �RT

SCM
� �

RT
SCM �RT

GM
� � þ PAcc

t ¼ PAcc
t :

6. We only write the change of PAcc for brevity. Note that the change in PRT is implied,

as: PRT
t ¼ 24� PAcc

t .

7. In the fitting routine, the proportion correct of one mode (the GM) was fixed at 0.5.

Preliminary analyses showed that this restriction improved any two-state model’s BIC

performance. Therefore, in Table 2, the accuracy parameter in the GM is 0.5 for each

participant.

8. Although the majority of participants understood the task well, a small minority found

it difficult to engage in guessing. These participants found it hard to ignore the primary

task of discriminating words from nonwords. After some training, however, all partici-

pants were able to perform reasonably well (i.e., attained a low penalty).

9. Other sequential sampling models, of the accumulator type, are more promising in this

respect. Guessing could, for instance, be modeled by excitation instead of inhibition

of accumulators.
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Schöner, G., Haken, H., & Kelso, J. (1986). A stochastic theory of phase transitions in human hand movement.

Biological Cybernetics, 53, 247–257.

Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143–153.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 43, 97–99.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall/CRC.

Simen, P., Cohen, J. D., & Holmes, P. (2006). Rapid decision threshold modulation by reward rate in a neural

network. Neural Networks, 19, 1013–1026.

Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time. Psychological Review,

102, 567–593.

Smith, P. L., & Van Zandt, T. (2000). Time-dependent poisson counter models of response latency in simple

judgment. British Journal of Mathematical and Statistical Psychology, 53, 293–315.

Stewart, I. N., & Peregoy, P. L. (1983). Catastrophe theory modeling in psychology. Psychological Bulletin, 94,

336–362.

Sussmann, H. J., & Zahler, R. S. (1978). Catastrophe theory as applied to the social and biological sciences: A

critique. Synthese, 37, 117–216.

Swensson, R. G. (1972). The elusive tradeoff: Speed vs. accuracy in visual discrimination tasks. Perception &
Psychophysics, 12, 16–32.

Swensson, R. G., & Center, M. U. A. A. H. P. (1968). The elusive tradeoff: Speed versus accuracy in choice
reaction tasks with continuous cost for time. Technical Report 13. Ann Arbor, MI: Human Performance Cen-

ter, Department of Psychology, University of Michigan.

Swensson, R. G., & Edwards, W. (1971). Response strategies in a two-choice reaction task with a continuous

cost for time. Journal of Experimental Psychology, 88, 67–81.

Tamaki, T., Torii, T., & Maeda, K. (2003). Stability analysis of black holes via a catastrophe theory and black

hole thermodynamics in generalized theories of gravity. Physical Review D, 68(2), 024028.

Thom, R. (1975). Structural stability and morphogenesis: An outline of a general theory of models. Reading,

MA: Benjamin.

Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes.

Cambridge, England: Cambridge University Press.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator

model. Pshychological Review, 108, 550–592.

Van der Maas, H. L. J., & Molenaar, P. C. M. (1992). Stagewise cognitive development: An application of catas-

trophe theory. Psychological Review, 99, 395–417.

Verhelst, N., Verstralen, H., & Jansen, M. (1997). A logistic model for time-limit tests. In W. J. van der Linden,

& R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 169–186). New York: Springer.
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