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Psychologists who seek quantitative models for their 
data face formidable challenges. Not only are data often 
noisy and scarce, but they may also have a hierarchical 
structure, they may be partly missing, they may have been 
obtained under an ill-defined sampling plan, and they may 
be contaminated by a process that is not of interest. In 
addition, the models under consideration may have mul-
tiple restrictions on the parameter space, especially when 
there is useful prior information about the subject matter 
at hand.

In order to address these kinds of real-world challenges, 
the psychological sciences have started to use Bayesian 
models for the analysis of their data (e.g., Hoijtink, Klug-
kist, & Boelen, 2008; Lee, 2008; Rouder & Lu, 2005). 
In Bayesian models, existing knowledge is quantified 
by prior probability distributions and is updated upon 
consideration of new data to yield posterior probability 
distributions. Modern approaches to Bayesian inference 
include Markov chain Monte Carlo (MCMC) sampling 
(e.g., Gamerman & Lopes, 2006; Gilks, Richardson, & 
Spiegelhalter, 1996), a procedure that makes it easy for 
researchers to construct probabilistic models that respect 
the complexities in the data, allowing almost any probabi-
listic model to be evaluated against data.

One of the most influential software packages for 
MCMC-based Bayesian inference is known as WinBUGS 
(BUGS stands for Bayesian inference using Gibbs sam-
pling; Cowles, 2004; Lunn, Spiegelhalter, Thomas, & 

Best, 2009; Lunn, Thomas, Best, & Spiegelhalter, 2000; 
Sheu & O’Curry, 1998). WinBUGS comes equipped with 
an array of predefined functions (e.g., sqrt for square 
root and sin for sine) and distributions (e.g., the binomial 
and the normal) that allow users to combine these elemen-
tary building blocks into complex probabilistic models.

For some psychological modeling applications, how-
ever, it is highly desirable to define one’s own functions 
and distributions. In particular, user-defined functions 
and distributions greatly facilitate the use of psychologi-
cal process models such as ALCOVE (Kruschke, 1992), 
the expectancy-valence (EV) model for decision making 
(Busemeyer & Stout, 2002), the SIMPLE model of mem-
ory (Brown, Neath, & Chater, 2007), or the Ratcliff diffu-
sion model of response times (RTs; Ratcliff, 1978).

The ability to implement these user-defined functions 
and distributions can be achieved through the use of the 
WinBUGS Development Interface (WBDev; Lunn, 2003), 
an add-on program that allows the user to hand-code 
functions and distributions in the programming language 
Component Pascal.1 To that end, we need BlackBox, a de-
velopment environment for programs such as WinBUGS, 
which are written in Component Pascal.

The use of WBDev brings several advantages. For in-
stance, complicated WBDev components lead to faster 
computation than do their counterparts programmed in 
straight WinBUGS code. Moreover, some models will 
work properly only when implemented in WBDev. An-
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follow the instructions at the top of the file. During the pro-
cess, WBDev will create its own directory, /WinBUGS14/
WBDev.

3. Install BlackBox Component Builder
BlackBox can be downloaded from www.oberon.ch/

blackbox.html. At the time of writing, the latest version is 
1.5. Install BlackBox in the default directory: ./Program 
Files/BlackBox Component Builder 1.5. Go 
to the WinBUGS directory and select all files (press 
“Ctrl1A”) and copy them (press “Ctrl1C”). Next, open 
the BlackBox directory and paste the copied files in there 
(press “Ctrl1V”). Select “Yes to all” if asked about 
replacing files. Once this is done, you will be able to open 
BlackBox and run WinBUGS from inside BlackBox. This 
completes installation of the software, and you can start to 
write your own functions and distributions.

Functions

The mathematical concept of a function expresses a de-
pendence between variables. The basic idea is that some 
variables are given (the input) and, with them, other vari-
ables are calculated (the output). Sometimes, complex 
models require many arithmetic operations to be performed 
on the data. Because such calculations can become com-
putationally demanding using straight WinBUGS code, 
it can be convenient to use WBDev and implement these 
calculations as a function. The first part of this section 
will explain a problem without using WBDev. We then 
will show how to use WBDev to program a simple and a 
more complex function.

Example 1: A Rate Problem
A binary process has two possible outcomes. It might 

be that something happens or does not happen, or either 
succeeds or fails, or takes one value rather than the other. 
An inference that often is important for these sorts of pro-
cesses concerns the underlying rate at which the process 
takes one value rather than the other. Inferences about the 
rate can be made by observing how many times the pro-
cess takes each value over a number of trials.

Suppose that someone plays a simple card game and 
can either win or lose. We are interested in the probability 
that the player wins a game. To study this problem, we 
formalize it by assuming that the player plays n games 
and wins k of them. These are known, or observed, data. 
The unknown variable of interest is the probability q that 
the player wins any one specific game. Assuming that 
the games are statistically independent (i.e., that what 
happened on one game does not influence the others, so 
that the probability of winning is the same for all of the 
games), the number of wins k follows a binomial distribu-
tion, which is written as

	 k ~ Binomial(q,n),	 (1)

and can be read “the success count k out of a total of n tri-
als is binomially distributed with success rate q.” In this 
example, we will assume a success count of 9 (k 5 9) and 
a trial total of 10 (n 5 10).

other advantage of WBDev is that it compartmentalizes 
the code, resulting in scripts that are easier to understand, 
communicate, adjust, and debug. A final advantage of 
WBDev is that it allows the user to program functions and 
distributions that are simply not available in WinBUGS 
but may be central components of psychological models 
(Donkin, Averell, Brown, & Heathcote, 2009; Vandekerck
hove, Tuerlinckx, & Lee, 2009).

This tutorial aims to stimulate psychologists to use 
WBDev by providing four thoroughly documented ex-
amples; for both functions and distributions, we provide a 
simple and a more complex example. All the examples are 
relevant to psychological research.2

Our tutorial is geared toward researchers who have ex-
perience with computer programming and WinBUGS. A 
gentle introduction to the WinBUGS program is provided 
by Ntzoufras (2009) and Lee and Wagenmakers (2009). 
Despite these prerequisites, we have tried to keep our tuto-
rial accessible for social scientists in general.

We start our tutorial by discussing the WBDev imple-
mentation of a simple function that involves the addition 
of variables. We then turn to the implementation of a 
complicated function that involves the EV model (Buse-
meyer & Stout, 2002; Wetzels, Vandekerckhove, Tuer-
linckx, & Wagenmakers, 2010). Next, we discuss the 
WBDev implementation of a simple distribution, first 
focusing on the binomial distribution, and then turning 
to the implementation of a more complicated distribu-
tion that involves the shifted Wald distribution (Heath-
cote, 2004; Schwarz, 2001). For all of these examples, 
we explain the crucial parts of the WBDev scripts and 
the WinBUGS code. The thoroughly commented code is 
available online at www.ruudwetzels.com. For each ex-
ample, our explanation of the WBDev code is followed 
by application to data and the graphical analysis of the 
output.

Installing WBDev (BlackBox)

Before we can begin hard-coding our own functions 
and distributions, we need to download and install three 
programs: WinBUGS, WBDev, and BlackBox.3 To make 
sure all programs function properly, they have to be in-
stalled in the order given below.

1. Install WinBUGS
WinBUGS is the core program that we will use. Down-

load the latest version from www.mrc-bsu.cam.ac.uk/
bugs/winbugs/contents.shtml (WinBUGS14.exe). Install 
the program in the default directory ./Program Files/
WinBUGS14.4 Make sure to register the software by ob-
taining the registration key and following the instructions; 
WinBUGS will not work without it.

2. Install WinBUGS Development  
Interface (WBDev)

Download WBDev from www.winbugsdevelopment 
.org.uk/ (WBDev.exe). Unzip the executable in the Win-
BUGS directory ./Program Files/WinBUGS14. Then 
start WinBUGS, open the“wbdev01_09_04.txt” file, and 
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the mode of .90, since our knowledge about the true value 
of q would have greatly increased.

Example 2: ObservedPlus
In this section, we examine the rate problem again, but 

now we change the variables. Suppose we learn that before 
we observed the current data, 10 games had already been 
played, resulting in a single win. To add this information, 
we design a function that adds 1 to the number of observed 
wins, and 10 to the number of total games. So, when we 
use k 5 9 and n 5 10 as before, we end up with

	 knew 5 kold 1 1 5 9 1 1 5 10	 (2)

and

	 nnew 5 nold 1 10 5 10 1 10 5 20.	 (3)

Hence, when we use our new function, the mode of the 
posterior distribution should no longer be .90 but .50 
(10/20 5 .50). Of course, this particular problem does not 
require the use of WBDev and could easily be handled 
using plain WinBUGS code. It is the simplicity of the 
present problem, however, that makes it suitable as an in-
troductory WBDev example.

In order to apply WBDev to the problem above, we are 
going to build a function called “ObservedPlus,” using 
the template “VectorTemplate.odc.” This template is lo-
cated in the folder “. . .\BlackBoxComponentBuilder1.5 \
WBdev \Mod.”

ObservedPlus: The WBDev script. The script file 
“ObservedPlus.odc” shows text in three colors. The 
parts that are colored black should not be changed. The 
parts in red are comments, and these are not executed by 
BlackBox. The parts in blue are the most relevant parts of 

A rate problem: The model file. A so-called model 
file is used to implement the model into WinBUGS. The 
model file for inferring q from an observed n and k looks 
like this:

model
{
  # prior on the rate parameter theta
  theta ~ dunif(0,1)

  # observed wins k out of total games n
  k ~ dbin(theta,n)

}

The twiddles symbol (~) means “is distributed as.” 
Because we use a uniform distribution between 0 and 1 
as a prior on the rate parameter q, we write theta ~ 
dunif(0,1). This indicates that, a priori, each value of q 
is equally likely. Furthermore, k is binomially distributed 
with parameters q and n (i.e., k ~ dbin(theta,n)). Note 
that dunif and dbin are two of the predefined distribu-
tions in WinBUGS. All the distributions that are pre-
defined in WinBUGS are listed in the distributions sec-
tion in the WinBUGS manual, which can be accessed by 
clicking the help menu and selecting user manual (or by 
pressing F1). The hash symbol (#) is used for comments. 
The lines starting with this symbol are not executed by 
WinBUGS.

Copy the text into an empty file and save it as “model_
rateproblemfunction.txt” in the directory from which you 
want to work. There are now various ways in which to 
proceed. One way is to work from within WinBUGS; 
another way is to control WinBUGS by calling it from a 
more general purpose program. Here, we use the statisti-
cal programming language R (R Development Core Team, 
2009) to call WinBUGS, but widely used alternative re-
search programming environments such as MATLAB are 
also available (Lee & Wagenmakers, 2009).

A rate problem: The R script. The next step is to 
construct an R script to call BlackBox from R.5 When 
we run the script “rscript_rateproblemfunction.R,” 
WinBUGS starts, the MCMC sampling is conducted,  
WinBUGS closes, and we return to R. The object 
that WinBUGS has returned to R is called “rateproblem,” 
and this object contains all the information about the 
Bayesian inference for q.

In particular, the “rateproblem” object contains a sin-
gle sequence of consecutive draws from the posterior 
distribution of q, a sequence that is generally known as 
an MCMC chain. We use the samples from the MCMC 
chain to estimate the posterior distribution of q. To arrive 
at the posterior distribution, the samples are not plotted as 
a time series but as a distribution. In order to estimate the 
posterior distribution of q, we applied the standard density 
estimator in R. Figure 1 shows that the mode of the distri-
bution is very close to .90, just as we expected. The poste-
rior distribution is relatively spread out over the parameter 
space, and the 95% credible interval extends from .59 to 
.98, indicating the uncertainty about the value of q. Had 
we observed 900 wins out of a total of 1,000 games, the 
posterior of q would be much more concentrated around 
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Figure 1. Posterior distribution of the rate parameter q after 
9 wins out of 10 games have been observed. The dashed gray line 
indicates the mode of the posterior distribution at q 5 .90. The 
95% credible interval extends from .59 to .98.
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of the variables into the function in the model file. We 
will return to this issue later.

(*4*) n, k: INTEGER;

The variables that are used in the calculations need to 
be defined. Both variables are defined as integers, be-
cause the binomial distribution allows only integers as 
input: Counts of successes and the total games that are 
played can only be positive integers.

(*5*)	n := SHORT(ENTIER(func.arguments[in]

	   [0].Value()));
	 k := SHORT(ENTIER(func.arguments[ik]

	   [0].Value()));

This code takes the input values (in and ik) and gives 
them a name. We defined two variables in (*4*), and 
we are now going to use them. What the script says here 
is: Take the input values in and ik and store them in the 
integer variables n and k. Because the input variables 
are not automatically assumed to be integers, we have to 
transform them and make sure the program recognizes 
them as integers. So, in other words, the first line says 
that n is the same as the first input variable of the func-
tion (see Figure 2), and the second line says that k is the 
same as the second input variable of the function.

(*6*)	 n:=n+10;
	 k:=k+1;
	 values[0] := n;

	 values[1] := k;

This is the part of the script where we do the actual 
calculations. At the end of this part, we fill the output 
array values with the new n and k.

(*7*) END WBDevObservedPlus.

Finally, we need to make sure that the name of the mod-
ule at the end is the same as the name at the top of the 
file. The last line has to end with a period. Hence, the 
last line of the script is “ENDWBDevObservedPlus.”

Now we need to compile the function by pressing 
“Ctrl1k.” Syntax errors cause WBDev to return an error 
message. Name this file “ObservedPlus.odc” and save 
it in the directory “. . .\BlackBoxComponentBuilder1.5\
WBdev\ Mod.”

the code, because these are the parts that can be changed 
to create the desired function.

The templates for coding the functions and distribu-
tions—written by David Lunn and Chris Jackson—come 
bundled with the WBDev software. These templates sup-
port the development of new functions and distributions, 
such that researchers can focus on the specific functions 
they wish to implement without having to worry about 
programming Component Pascal code from scratch.

We now give a detailed explanation of the Observed-
Plus WBDev function. The numbers (*X*) correspond 
to the numbers in the ObservedPlus WBDev script. For 
this simple example, we show some crucial parts of the 
WBDev scripts below.

(*1*) MODULE WBDevObservedPlus;

The name of the module is typed here. We have named 
our module ObservedPlus. The name of the module (so 
the part after MODULE WBDev . . .) must start with a 
capital letter.

(*2*) args := "ss";

Here, we must define specific arguments about the 
input of the function. We can choose between sca-
lars (s) and vectors (v). A scalar means that the input is 
a single number. When we want to use a variable that 
consists of more numbers (e.g., a time series), we need 
a vector. This line has to correspond with the constants 
defined at (*3*). In our example, we use two scalars, 
the number of successes k and the total number of ob-
servations n.

(*3*) in = 0; ik = 1;

Because of what has been defined at (*2*), WBDev 
already knows that there should be two variables here. 
We name them in and ik, with in at the first spot (with 
number 0) and ik at the second spot (with number 1). 
WBDev always starts counting at 0 and not at 1.
Note that we did not name our variables n and k, but 
in and ik. This is because it is more insightful to use n 
and k later on, and it is not possible to give two or more 
variables the same name. Finally, note that the positions 
of the constants correspond to the positions of the input 

Figure 2. Detailed explanation of part (*5*) of “ObservedPlus.odc.”
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Figure 3 shows the posterior distribution of q. The mode 
of the distribution is .50, because knew 5 10 and nnew 5 
20. Again, because the total number of games played is 
fairly small, the posterior distribution of q is relatively 
spread out (the 95% credible interval ranges from .30 to 
.70), reflecting our uncertainty about the true value of q.

Example 3: The EV Model
In the example described above, we could have used 

plain WinBUGS code instead of writing a script in 
BlackBox. But sometimes it can be very useful to write 
a BlackBox script instead of plain WinBUGS code, es-
pecially if the model under consideration is relatively 
complex. Implementing such a model into WBDev can 
speed up the computation time for inference substan-
tially. The reason for this speedup is that WBDev scripts 
are precompiled, whereas the WinBUGS model files are 
interpreted at runtime. The present example, featuring the 
EV model to understand risk-seeking behavior in deci-
sion making, provides a concrete demonstration of this 
general point.

Suppose a psychologist wants to study decision making 
of clinical populations under controlled conditions. A task 
that is often used for this purpose is the Iowa gambling 
task (IGT), developed by Bechara and Damasio (Bechara, 
Damasio, Damasio, & Anderson, 1994; Bechara, Damasio, 
Tranel, & Damasio, 1997).

In the IGT, participants have to discover, through trial 
and error, the difference between risky and safe decisions. 
In the computerized version of the IGT, the participant 
starts with $2,000 in play money. The computer screen 
shows players four decks of cards (A, B, C, and D), and 
then they have to select a card from one of the decks. Each 

We are not entirely ready to use the function yet. WBDev 
needs to know that there exists a function called Observed-
Plus; WBDev also needs to know what the input looks 
like (i.e., how many inputs are there, what order are they 
presented in, and are they scalars and vectors?), and what 
the output is. To accomplish this, open the file “functions 
.odc” in the directory “. . .\BlackBoxComponentBuilder1.5\
WBdev\Rsrc.” Add the line v<-"ObservedPlus"(s,s) 
"WBDevObservedPlus.Install" and then save the 
file. The next time that WBDev is started, it knows that 
there is a function named ObservedPlus, which has two 
scalars as input and a vector as output. The function is now 
ready to be used in a model file.

ObservedPlus: The model file. In order to use the 
newly scripted function ObservedPlus, we use a model 
file that is similar to the model file used in the earlier rate 
problem example.

model
{
  # Uniform prior on the rate parameter
  theta ~ dunif(0,1)

  # use the function to get the new n and 
    the new k
  data[1:2] <- ObservedPlus(n,k)

  # define the new n and new k as 
    variables
  newn <- data[1]
  newk <- data[2]

  # the new observed data
  newk ~ dbin(theta,newn)

}

We assume a uniform prior on q (i.e., theta  ~ 
dunif(0,1)). The function ObservedPlus takes as input 
the total number of games n and the number of wins k. 
From them, the new n and new k can be calculated (i.e., 
data[1:2] <- ObservedPlus(n,k)). Note that func-
tions require the use of the assignment operator (<-) in-
stead of the twiddles symbol (~). Remember that in the 
WBDev function, the location of in was 0 and the location 
of ik was 1. Because that order was used, the input has to 
have n first and then k.

Next, newn is the first number in the vector data, and 
newk is the second (i.e., newn <- data[1], newk <- 
data[2]). Remember that when scripting in WBDev, the 
first element has index 0, but in the model file, the first 
element has index 1. Finally, we use our new variables 
to do inference on the rate parameter q (i.e., newk ~ 
dbin(theta,newn)).

Copy the text from the model file into an empty text file 
and name this file “model_observedplus.txt.” Copy this 
file to the location of the model file that was used in the 
rate problem example.

ObservedPlus: The R script. To run this model from 
R, we can use the script of the original rate problem. The 
only thing that needs to be changed is the name of the 
model file. This should now be “model_observedplus.txt.” 
Change this name and run the R script.
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Figure 3. Posterior distribution of the rate parameter q after 
using the function ObservedPlus. The dashed gray line indicates 
the mode of the posterior distribution at q 5 .50. The 95% cred-
ible interval extends from .30 to .70.
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where c is the response consistency or sensitivity param-
eter. In fits to data, this parameter is usually constrained to 
the interval [25, 5]. When c is positive, response consis-
tency q increases (i.e., the temperature 1/q decreases) with 
the number of observations. This means that choices will 
be more and more guided by the expected valences. When 
c is negative, choices will become more and more random 
as the number of card selections increases.

In sum, the EV model decomposes choice behavior in 
the IGT into three components or parameters: (1) an at-
tention weight parameter w that quantifies the weighting 
of losses versus rewards, (2) an updating rate parameter a 
that quantifies the memory for rewards and losses, and 
(3) a response consistency parameter c that quantifies the 
level of exploration.

The EV model: The WBDev script. To implement the 
EV model as a function in WBDev, it is useful to first de-
scribe what data are observed and passed on to WinBUGS. 
In this example, we examine the data of 1 participant who 
has completed a 250-trial IGT. Hence, the observed data 
are an index of which deck was chosen at each trial and the 
sequence of wins and losses that the participant incurred. 
Please see the script file called “EV.odc.”

(*1*) We name our module EV.

(*2*) In the EV example, we use three scalars for the 
three parameters and three vectors for the wins, losses, 
and index at each trial.

(*3*) We start with the data vectors (the order is arbitrary 
but needs to correspond to the one used in the model 
file), and we name these constants iwins, ilosses, 
and iindex. After that, the function has as input the 
parameters of the EV model, iw, ia, and ic.

(*4*) In this section, we define all the variables that we 
need to use in our calculations. Several mathematical 
functions are already available in WBDev. Information 
about these functions can be found by right-clicking 
the word “Math” in the script and then by clicking 
“documentation.”

(*5*) Here, we take our input EV parameters and assign 
them to the variables that we defined in part (*4*).

(*6*) This is the part of the script where we do the actual 
calculations. At the end of this part, we fill the output 
variable called “values” with the output of our EV func-
tion, the probability of choice for a deck.

(*7*) Make sure that the name of the module at the end 
is the same as the name at the top of the file. The last 
line has to end with a period.

(*11*) The DrawSample(.) procedure returns a pseudo-
random number from the new distribution.

Name this file “EV.odc” and save it in the directory 
“. . .\BlackBoxComponentBuilder1.5 \WBdev\Mod.”

Open the file “functions.odc” in the directory “.  .  .\ 
BlackBox Component Builder 1.5 \WBdev\Rsrc.” Add the 
line v <- "EV"(v,v,v,s,s,s) "WBDevEV.Install" 

card is associated with either a reward or a loss. The de-
fault payoff scheme is presented in Table 1.

At the start of the IGT, participants are told that they 
should maximize net profit. During the task, they are pre-
sented with a running tally of the net profit, and the task 
finishes after 250 card selections.

The EV model proposes that choice behavior in the IGT 
comes about through the interaction of three latent psy-
chological processes. Each of these processes is vital for 
successful performance, typified by a gradual increase in 
preference for the good decks over the bad decks. First, 
the model assumes that the participant, after selecting a 
card from deck k, k  {1, 2, 3, 4} on trial t, calculates the 
resulting net profit or valence. This valence vk is a combi-
nation of the experienced reward W(t) and the experienced 
loss L(t):

	 vk(t) 5 (1 2 w)W(t) 1 wL(t).	 (4)

Thus, the first parameter of the EV model is w, the atten-
tion weight for losses relative to rewards, w  [0, 1].

On the basis of the sequence of valences vk experienced 
in the past, the participant forms an expectation Evk of the 
valence for deck k. In order to learn, new valences need 
to update the expected valence Evk. If the experienced va-
lence vk is higher or lower than expected, Evk needs to be 
adjusted upward or downward, respectively. This intuition 
is captured by the equation

	 Evk(t 1 1) 5 Evk(t) 1 a[vk(t) 2 Evk(t)],	 (5)

in which the updating rate a  [0, 1] determines the im-
pact of recently experienced valences.

The EV model also uses a reinforcement learning 
method called softmax selection or Boltzmann explora-
tion (Kaelbling, Littman, & Moore, 1996; Luce, 1959) to 
account for the fact that participants initially explore the 
decks and, only after a certain number of trials, decide to 
always prefer the deck with the highest expected valence:

	

Pr S t
t Ev

t Ev
k
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jj

( )
exp ( )
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θ

θ
..

	 (6)
In this equation, 1/q(t) is the “temperature” at trial t and 
Pr(Sk) is the probability of selecting a card from deck k. 
In the EV model, the temperature is assumed to vary with 
the number of observations according to

	 q(t) 5 (t/10)c,	 (7)

Table 1 
Rewards and Losses in the Iowa Gambling Task

Bad Decks Good Decks

  A  B  C  D

Rewards per trial 100 100 50 50
Number of losses per 10 cards 5 1 5 1
Loss per 10 cards 1,250 1,250 250 250
Net profit per 10 cards 2250 2250 250 250

Note—Cards from Decks A and B yield higher rewards than do cards 
from Decks C and D, but they also yield higher losses. The net profit is 
highest for cards from Decks C and D.
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for all decks. So, at each trial, four probabilities are cal-
culated, and for 250 trials, this totals 1,000 probabilities. 
However, we are interested only in the probability of the 
chosen deck.

To handle this problem, we make four vectors, deckA, 
deckB, deckC, and deckD, which are rows of length 250. 
Each vector contains a sequence of numbers where the 
number at position t is calculated by adding four to the 
number at position t21 (xt 5 xt21 1 4). The vector deckA 
starts with number 1, deckB starts with number 2, deckC 
starts with number 3, and deckD starts with number 4. 
Using these vectors, we can disentangle the probabilities 
for each deck at each trial; evprobs[deckA[i]] cor-
responds to the probabilities of choosing deck 1 at each 
trial  i, evprobs[deckB[i]] to the probabilities of 
choosing deck 2 at each trial i, evprobs[deckC[i]] to 
the probabilities of choosing deck 3 at each trial i, and 
evprobs[deckD[i]] to the probabilities of choosing 
deck 4 at each trial i.

Finally, we state that the choice for a deck at trial i (the 
observed data vector ind) is categorically distributed (i.e., 
ind[i] ~ dcat(p.EV[i,])). The categorical distribu-
tion (which is a special case of the multinomial distribution) 
is the probability distribution for the choice of a card deck. 
This distribution is a generalization of the Bernoulli distri-
bution for a categorical random variable (i.e., the choice for 
one of the four decks at each trial of the IGT). Copy the text 
from the model into an empty file and save it as “model_
ev.txt” in the directory from which you want to work.

The EV model: The R script. To run this model and 
to supply WinBUGS with the data, we use the R script 
called “rscript_expectancyvalence.r.” Change the working 
directory (in the R script) to the directory where the model 
file is located on the computer. This script contains ficti-
tious data from a person who completed a 250-trial IGT.

Figure 4 shows that the posterior mode of the atten-
tion weight parameter w is .43, the posterior mode of the 
update parameter a is .25, and the posterior mode of the 
consistency parameter c is 0.58.

On an average computer, it takes about 85 sec to gen-
erate these posterior distributions. Had we used plain 
WinBUGS instead of WBDev code to compute these 
distributions, the calculation time would have been ap-

and then save the file. The next time that WBDev is started, 
it knows that there is a function named EV that has three 
vectors and three scalars as input and a vector as output.

The EV model: The model file. In order to use the 
EV model, we need to implement the graphical model 
in WinBUGS. The following model file is used in this 
example:

model
{
  # EV parameters are assigned prior 
    distributions
  w ~ dunif(0,1)
  a ~ dunif(0,1)
  c ~ dunif(-5,5)

  # data from the EV function
  evprobs[1:1000] <- EV(wi[],lo[],ind[],
    w,a,c)

  # only use the information from the 
    chosen deck
  # see explanation below
  for (i in 1:250)
  {
    p.EV[i,1] <- evprobs[deckA[i]]
    p.EV[i,2] <- evprobs[deckB[i]]
    p.EV[i,3] <- evprobs[deckC[i]]
    p.EV[i,4] <- evprobs[deckD[i]]
    ind[i] ~ dcat(p.EV[i,])
  }

}

The parameters of the model, w, a, c, are assigned uni-
form prior distributions. w and a are bounded between 
0 and 1, and c is bounded between 25 and 5 (i.e., w ~ 
dunif(0,1), a ~ dunif(0,1), c ~ dunif(-5,5)). 
The wins and the losses from the 250 trials are stored in 
the vectors wi and lo. The indices from the decks that were 
chosen are stored in the vector ind. Together with the EV pa-
rameters, they are input for the EV function that calculates 
the probability per choice (i.e., evprobs[1:1000] <- 
EV(wi[],lo[],ind[],w,a,c)).

Note that this function calculates 1,000 probabilities 
for a 250-trial data set, because the probability for each 
deck is calculated not only for the chosen deck, but also 

D
en

si
ty

0 .5 1.0

w

95%

0 .5 1.0

a

95%

–1 0 1

c

95%

Figure 4. Posterior distributions of the three expectancy-valence parameters, w, a, and c. The dashed gray lines indicate the modes 
of the posterior distributions at w 5 .43, a 5 .25, and c 5 0.58. The 95% credible intervals for w, a, and c extend from .38 to .57, from 
.17 to .36, and from 0.31 to 0.74, respectively.
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The other thing that is defined in this part of the script 
is whether the cumulative distribution is to be provided. 
If so, canIntegrate should be set to true. If this is set to 
true, an algorithm should be provided at (*11*). We 
set canIntegrate to false because we did not implement 
the cumulative distribution.

(*6*) This part of the code should define the natural 
bounds of the distribution. In our case, we take 0 as a 
lower bound and n as an upper bound, because k can 
never be larger than n.

(*7*) As the name implies, this is the part where the 
full log likelihood of the distribution is defined. This 
is an implementation of the log likelihood as defined 
in Equation 8.

(*8*) Sometimes WinBUGS can ignore the normaliz-
ing constants. When that is the case, WinBUGS calls 
LogPropLikelihood(.). In our example, we refer back 
to the full log likelihood function.

(*9*) Occasionally, WinBUGS can make use of the Log-
Prior(.) procedure, which is proportional to the real log-
prior function. In other words, this procedure omits the 
additive constants on the log scale. In our example, we 
just refer back to the full log likelihood function.

(*10*) This is the part where the cumulative distribution 
is defined when in part (*7*) canIntegrate is set to 
true. Because we set this to false, we do not define 
anything in this section.

(*11*) The DrawSample(.) procedure returns a pseudo-
random number from the new distribution.

(*12*) The last thing that needs to be done is to make 
sure that the name of the module at the end is the same 
as the name at the top of the file. The last line has to 
end with a period.

Save this f ile as “BinomialTest.odc” and copy this 
file into the appropriate BlackBox directory, “.  .  .\
BlackBoxComponentBuilder1.5\WBdev\Mod.”

Open the distribution file “distributions.odc” in the 
directory “. . .\BlackBoxComponent Builder 1.5\WBdev\ 
Rsrc.” Add the line s ~ "BinomialTest"(s,s) 

"WBDevBinomialTest.Install" and then save it.
Binomial distribution: The model file. To use the 

scripted binomial distribution, we write a model file that 
is very similar to the model file used in the rate problem 
example. We only need to change the name of the distribu-
tion from dbin to BinomialTest.

model
{
  # prior on rate parameter theta
  theta~dunif(0,1)

  # observed wins k out of total games n
  k~BinomialTest(theta,n)

  # compute the posterior predictive of k
  postpred.k~BinomialTest(theta,n)

}

proximately 15 min. Hence, implementing the function 
into WBDev speeds up the analysis by a factor of 10.

Distributions

Statistical distributions are invaluable in psychologi-
cal research. For example, in the simple rate problem dis-
cussed earlier, we use the binomial distribution to model 
our data. WinBUGS comes equipped with an array of pre-
defined distributions, but it does not include all distribu-
tions that are potentially useful for psychological model-
ing. Using WBDev, researchers can augment WinBUGS 
to include these desired distributions.

The next section explains how to write a new distribu-
tion, starting with the binomial distribution as a simple 
introduction, and then considering the more complicated 
shifted Wald distribution.

Example 4: Binomial Distribution
The binomial distribution is already hard-coded in 

WinBUGS. But, because it is a very well-known and 
relatively simple distribution, it serves as a useful first 
example.

To program a distribution in WBDev, we can use the 
distribution template that is already in the BlackBox di-
rectory. This file is located in the folder “. . .\BlackBox-
ComponentBuilder1.5\WBdev\Mod.” In order to program 
the distribution, we first need to write out the log likeli-
hood function:
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Binomial distribution: The WBDev script. Here, we 
describe the WBDev script for the binomial distribution 
(see the file “BinomialTest.odc”).

(*1*) We name our module BinomialTest.

(*2*) The parameters of the input of the binomial distri-
bution, q and n.

(*3*) Here, global variables can be declared. By global 
is meant that it is loaded only once, whereas the value 
of the variable may be needed many times. This part 
of the template does not need to be changed for this 
example.

(*4*) We have to declare what type of arguments are the 
input of the distribution. In this case, these are two sca-
lars (i.e., two single numbers), q and n.

(*5*) This describes whether the distribution is dis-
crete or continuous. When the distribution is discrete, 
isDiscrete should be set to true. When the distribution 
is continuous, it should be set to false. For the binomial 
distribution, isDiscrete is set to true.
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pirical RT distributions. As an illustration, Figure 7 shows 
changes in the shape of the shifted Wald distribution as 
a result of changes in the shifted Wald parameters v, a, 
and Ter.

The shifted Wald parameters have a clear psychologi-
cal interpretation (e.g., Heathcote, 2004; Luce, 1986; 
Schwarz, 2001, 2002). Participants are assumed to ac-
cumulate noisy information until a predefined threshold 
amount is reached and a response is initiated. Drift rate v 
quantifies task difficulty or participant ability, response 
criterion a quantifies response caution, and the shift pa-
rameter Ter quantifies the time needed for nondecision 
processes (Matzke & Wagenmakers, 2009). Experimental 
paradigms in psychology for which it is likely that there 

This example is essentially the same statistical prob-
lem as the first example, the rate problem. Ten games 
are played (i.e., n 5 10), and nine games are won (i.e., 
k 5 9). We assume a uniform prior on q (i.e., theta ~ 
dunif(0,1)). The observed wins k are distributed as 
our newly made BinomialTest with rate parameter  q 
and total games n (i.e., k~BinomialTest(theta,n)). 
With q and k  defined, this completes the model for 
BinomialTest. The Drawsample feature of the function 
([(*11*)]) produces the posterior predictive values for 
k (i.e., postpred.k~BinomialTest(theta,n)). Save 
this file as “model_rateproblemdistribution.txt” and copy 
it to the working directory.

Binomial distribution: The R script. The last thing 
that we need to do is to start R and open the appropri-
ate R script “rscript_rateproblemdistribution.r.” Change 
the working directory (in the R script) to the directory 
in which the model file is located on the computer. After 
running the code, the results should be similar to those 
shown in Figure 1.

After you have observed those data, the prediction of 
future data can be of interest. The so-called posterior pre-
dictive distribution gives the relative probability of dif-
ferent outcomes after the data have been observed. First, 
a sample is drawn from the joint posterior distribution. 
Next, data are generated using the posterior sample.

In this example, these different outcomes can be k 5 
1, 2, . . . , 10. The posterior predictive is often used for 
checking the assumptions of a model. If a model describes 
the data well, the posterior predictive generated under the 
model should resemble the observed data. Large differ-
ences between the observed data and the posterior predic-
tive imply that the model is not suitable for the data at 
hand. Figure 5 shows the posterior predictive of k. The 
median of the posterior predictive is k 5 9, which cor-
responds to the observed data.

Example 5: Shifted Wald Distribution
Many psychological models use RTs to infer latent 

psychological properties and processes (Luce, 1986). 
One common distribution used to model RTs is the in-
verse Gaussian or Wald distribution (Wald, 1947). This 
distribution represents the density of the first passage 
times of a Wiener diffusion process toward a single 
absorbing boundary, as shown in Figure 6, using three 
parameters.

The parameter v reflects the drift rate of the diffusion 
process. The parameter a reflects the separation between 
the starting point of the diffusion process and the absorb-
ing barrier. The third parameter, Ter, is a positive-valued 
parameter that shifts the entire distribution. The probabil-
ity density function for this shifted Wald distribution is 
given by
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which is unimodel and positively skewed. Because of these 
qualitative properties, it is a good candidate for fitting em-
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Figure 6. Diffusion process with one boundary. The shifted 
Wald parameter a reflects the separation between the starting 
point of the diffusion process and the absorbing barrier, v reflects 
the drift rate of the diffusion process, and Ter is a positive-valued 
parameter that shifts the entire distribution.
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Figure 5. Posterior predictive of k, the number of wins out of 
10 games. The median of the posterior predictive is k 5 9.
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  # Non-decision time
  Ter ~ dunif(0,1)

  # data are shifted Wald distributed
  for (i in 1:nrt)
  {
    rt[i] ~ ShiftedWald(v,a,Ter)
  }

}

The priors for v and a are uniform distributions that 
range from 0 to 10 (i.e., v ~ dunif(0,10), i.e., a ~ 
dunif(0,10)). The prior for Ter is a uniform distribu-
tion that ranges from 0 to 1 (i.e., Ter ~ dunif(0,1)). 
With the priors in place, we can use our ShiftedWald 
function to estimate the posterior distributions for the 
three model parameters v, a, and Ter (i.e., rt[i] ~ 

ShiftedWald(v,a,Ter)). Save the lines as a text file 
and name it “model_shiftedwaldind.txt.”

Shifted Wald distribution: The R script. Now, open 
the R script “rscript_shiftedwald_individual.r” for the 
individual analysis into an R file and run it. Change the 
directory of the location of the model file and the location 
of the copy of BlackBox to the appropriate directories. 
The R script loads a real data set from a lexical decision 
task (Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). 
Nineteen participants had to quickly decide whether a vi-
sually presented letter string was a word (e.g., table) or 
a nonword (e.g., drapa). We will fit the RTs of correct 
“word” responses of the first participant to the shifted 
Wald distribution. The RT data can be downloaded from 
www.ruudwetzels.com.

Figure 8 shows the posterior distribution of the three 
shifted Wald parameters, v, a, and Ter. One thing that 
stands out is that the posterior distributions of the shifted 
Wald parameters are very spread out across the param-
eter space. The 95% credible intervals for v, a, and Ter 
extend from 4.12 to 8.00, from 0.80 to 3.52, and from 
.09 to .36, respectively. It seems that data from only 
1 participant are not enough to yield very accurate es-
timates of the shifted Wald parameters. In the following 
section, we show how our estimates will improve when 
we use a hierarchical model and analyze all participants 
simultaneously.

is only a single absorbing boundary include saccadic eye 
movement tasks with few errors (Carpenter & Williams, 
1995), go/no-go tasks (Gomez, Ratcliff, & Perea, 2007), 
or simple RT tasks (Luce, 1986, pp. 51–57). Here, we 
show how to implement the shifted Wald distribution in 
WBDev.

Shifted Wald distribution: The WBDev script. 
Code for the WBDev script is available at the first author’s 
Web site. Open BlackBox, and open the file “ShiftedWald 
.odc.”

(*1*) We name our module ShiftedWald.

(*2*) The parameters of the distribution, which, in this 
case, are the drift rate v, response caution a, and shift 
Ter.

(*4*) We have to declare what type of arguments are the 
input of the distribution. In this case, these are the three 
scalar parameters of the shifted Wald distribution.

(*6*) This part of the code should define the natural 
bounds of the distribution. In our case, we take Ter as 
a lower bound and INF (meaning 1) as an upper 
bound. Save this file as “ShiftedWald.odc” and copy 
this file into the appropriate BlackBox directory, “. . .\
BlackBoxComponentBuilder1.5\WBdev\Mod.”

Open the distribution file “distributions.odc” in the di-
rectory “. . .\BlackBox Component Builder 1.5\WBdev\ 
Rsrc.” Add the line s ~ "ShiftedWald"(s,s,s) 
"WBDevShiftedWald.Install" and then save it.

Shifted Wald distribution: The model file. Once we 
have implemented the WBDev function in BlackBox, we 
can use the function ShiftedWald in the model. The model 
file is as follows:

model
{
  # prior distributions for shifted Wald 
    parameters
  # drift rate
  v ~ dunif(0,10)

  # boundary separation
  a ~ dunif(0,10)
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Figure 7. Changes in the shape of the shifted Wald distribution as a result of changes in the parameters v, a, and Ter. Each panel shows 
the shifted Wald distribution with different combinations of parameters.
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    # individual parameters drawn from 
      group level
    # normals censored to be positive 
      using the
    # I(0,) command:
    v.i[i] ~ dnorm(v.g,lambda.v.g)I(0,)
    a.i[i] ~ dnorm(a.g,lambda.a.g)I(0,)
    Ter.i[i] ~ dnorm(Ter.g,lambda.Ter.g)
      I(0,)

    # for each participant,
    # data are shifted Wald distributed
    for (j in 1:nrt[i])
    {
       rt[i,j] ~ ShiftedWald(v.i[i],
         a.i[i],Ter.i[i])
    }
  }

}

The hierarchical analysis of the RT data proceeds as 
follows. The prior for the group means is a uniform distri-
bution, ranging from 0 to 10 (i.e., v.g ~ dunif(0,10), 
a.g ~ dunif(0,10)) or from 0 to 1 (i.e., Ter.g ~ 
dunif(0,1)). The standard deviations are drawn 
from a uniform distribution ranging from 0 to 5 (i.e., 
sd.v.g ~ dunif(0,5), sd.a.g ~ dunif(0,5)) 
or from 0 to 1 (i.e., sd.Ter.g ~ dunif(0,5)). Next, 
the standard deviations have to be transformed to pre-
cisions (i.e., lambda.v.g  <- pow(sd.v.g,-2), 
lambda.a.g  <- pow(sd.a.g,-2) , lambda 
.Ter.g <- pow(sd.Ter.g,-2)). Then, the individual 
parameters v.i, a.i, and Ter.i are drawn from normal dis-
tributions with corresponding group means and group 
precisions (i.e., v.i[i] ~ dnorm(v.g,lambda.v.g)
I(0,), a.i[i] ~ dnorm(a.g, lambda.a.g)I(0,), 
Ter.i[i] ~ dnorm(Ter.g, lambda.Ter.g)I(0,)). 
The I(0,) command indicates that the distribution is left-
censored at 0. For each individual, the data are distributed 
according to a shifted Wald distribution with their own 
individual parameters. Save the model file as a text file 
and name it “model_shiftedwaldhier.txt.”

When we run this model using the R script for the hi-
erarchical analysis, we first focus on the group mean pa-

Shifted Wald distribution: A hierarchical exten-
sion. In an experimental setting, the problem of few data 
per participant can be addressed by hierarchical modeling 
(Farrell & Ludwig, 2008; Gelman & Hill, 2007; Rouder, 
Sun, Speckman, Lu, & Zhou, 2003; Shiffrin, Lee, Wagen-
makers, & Kim, 2008). In our shifted Wald example, each 
participant is assumed to generate their data according to 
the shifted Wald distribution, but with different param-
eter values. We extend the individual analysis and assume 
that the parameters for each participant are governed by a 
group normal distribution. This means that all individual 
participants are assumed to have their shifted Wald param-
eters drawn from the same group distribution, allowing 
the data from all the participants to be used for inference, 
without making the unrealistic assumption that the par-
ticipants are identical copies of each other.

The model file that implements the hierarchical shifted 
Wald analysis is shown below:

model
{
  # prior distributions for group means:
  v.g ~ dunif(0,10)
  a.g ~ dunif(0,10)
  Ter.g ~ dunif(0,1)

  # prior distributions for group standard
    deviations:
  sd.v.g ~ dunif(0,5)
  sd.a.g ~ dunif(0,5)
  sd.Ter.g ~ dunif(0,1)

  # transformation from group standard 
    deviations to group
  # precisions (i.e., 1/var, which is 
    what WinBUGS expects
  # as input to the dnorm distribution):
  lambda.v.g <- pow(sd.v.g,-2)
  lambda.a.g <- pow(sd.a.g,-2)
  lambda.Ter.g <- pow(sd.Ter.g,-2)

  # data come from a shifted Wald 
    distribution
  for (i in 1:ns) #subject loop
  {
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Figure 8. Posterior distribution of the three Wald parameters v, a, and Ter. The dashed gray lines indicate the modes of the posterior 
distributions at v 5 5.57, a 5 1.09, and Ter 5 .33. The 95% credible intervals for v, a, and Ter extend from 4.12 to 8.00, from 0.80 to 3.52, 
and from .09 to .36, respectively.
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eters, for both the hierarchical analysis and the individual 
analysis. It is clear that the posterior distributions of the 
shifted Wald parameters are less spread out in the hierar-
chical analysis than in the individual analysis. Also, the 
parameter estimates from the hierarchical analysis are 
slightly different from those from the individual analysis. 
In particular, they seem to have moved toward their com-
mon group mean. This effect is called shrinkage and is a 
standard and important property of hierarchical models 
(Gelman, Carlin, Stern, & Rubin, 2004).

In sum, the WBDev implementation of the shifted Wald 
distribution enables researchers to infer shifted Wald pa-
rameters from RT data. Not only does WinBUGS allow 
straightforward analyses on individual data, it also makes 
it easy to add hierarchical structure to the model (Lee, 
2008; Rouder & Lu, 2005). This can greatly improve the 
quality of the posterior estimates and is often a very sen-
sible and informative way of analyzing data.

Discussion

In this article, we have shown how the WinBUGS De-
velopment Interface (WBDev) can be used to help psy-
chological scientists model their sparse, noisy, but richly 

rameters v.g, a.g, and Ter.g. Figure 9 shows the posterior 
distributions of the shifted Wald group mean parameters. 
The distributions indicate that there is relatively little un-
certainty about the parameter values. The posterior distri-
butions of the group mean parameters are concentrated 
around their modes v.g 5 4.27, a.g 5 0.97, and Ter.g 5 
.36. The 95% credible intervals for v.g, a.g, and Ter.g ex-
tend from 3.80 to 4.70, from 0.85 to 1.10, and from .34 to 
.38, respectively.

It is informative to consider the influence of the hierar-
chical extension on the individual estimates for the shifted 
Wald parameters. Specifically, we can examine the poste-
rior distributions for the same participant that we analyzed 
in the individual shifted Wald analysis, but now in the hi-
erarchical setting.

The hierarchical extension leads to a practical improve-
ment, through a speedup of the MCMC estimation process. 
However, the hierarchical extension also leads to a theo-
retical improvement, because, as compared with the indi-
vidual analysis, the posterior distributions appear much 
less spread out. This shows that the hierarchical model 
leads to a better understanding of the model parameters.

To underscore this point, Figure 10 shows the poste-
rior distributions of the individual shifted Wald param-

D
en

si
ty

3 6 9

v.i [1]

95%

0 2 4

a.i [1]

95%

0 .25 .50

Ter.i [1]

95%

95% 95% 95%

Figure 10. Posterior distribution of the three individual shifted Wald parameters v.i, a.i, and Ter .i from the hierarchical analysis 
(solid lines) and the individual analysis (dotted lines). The dashed gray lines indicate the modes of the posterior distributions from the 
hierarchical analysis at v.i[1] 5 4.57, a.i[1] 5 0.96, and Ter .i[1] 5 .34. The 95% credible intervals in the hierarchical model for v.i[1], 
a.i[1], and Ter .i[1] extend from 3.86 to 5.49, from 0.75 to 1.24, and from .31 to .37, respectively.
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Figure 9. Posterior distribution of the three “group-level” shifted Wald parameters v.g, a.g, and Ter .g. The dashed gray lines indicate 
the modes of the posterior distributions at v.g 5 4.27, a.g 5 .97, and Ter .g 5 .36. The 95% credible intervals for v.g, a.g, and Ter .g extend 
from 3.80 to 4.70, from 0.85 to 1.10, and from .34 to .38, respectively.
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structured data. We have shown how a relatively complex 
function such as the EV model can be incorporated into 
a fully Bayesian analysis of data. Furthermore, we have 
shown how to implement statistical distributions, such as 
the shifted Wald distribution, that have specific applica-
tion in psychological modeling but are not part of a stan-
dard set of statistical distributions.

The WBDev program is set up for Bayesian modeling 
and is equipped with modern sampling techniques such as 
MCMC. These sampling techniques allow researchers to 
construct quantitative Bayesian models that are nonlinear, 
highly structured, and potentially very complicated. The 
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3. At the time of writing, all programs are available without charge. 
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4. On the Windows Vista operating system, install the program in the 
directory c:/WinBUGS14.
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6. www.mathstat.helsinki.fi/openbugs/.
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