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a b s t r a c t

An encompassing prior (EP) approach to facilitate Bayesian model selection for nested
models with inequality constraints has been previously proposed. In this approach,
samples are drawn from the prior and posterior distributions of an encompassing model
that contains an inequality restricted version as a special case. The Bayes factor in favor
of the inequality restriction then simplifies to the ratio of the proportions of posterior and
prior samples consistent with the inequality restriction. This formalism has been applied
almost exclusively to models with inequality or ‘‘about equality’’ constraints. It is shown
that the EP approach naturally extends to exact equality constraints by considering the
ratio of the heights for the posterior andprior distributions at the point that is subject to test
(i.e., the Savage–Dickey density ratio). The EP approach generalizes the Savage–Dickey ratio
method, and can accommodate both inequality and exact equality constraints. The general
EP approach is found to be a computationally efficient procedure to calculate Bayes factors
for nested models. However, the EP approach to exact equality constraints is vulnerable to
the Borel–Kolmogorov paradox, the consequences of whichwarrant careful consideration.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this article we focus on Bayesian model selection for nested models. Consider, for instance, a parameter vector
θ = (ψ, φ) ∈ Θ ⊆ Ψ×Φ and supposewewant to compare an encompassingmodelMe to a restricted versionM1 : ψ = ψ0.
Then, after observing the data D, the Bayes factor in favor ofM1 is

BF1e =
p(D|M1)
p(D|Me)

=

∫
p(D|ψ = ψ0, φ)p(ψ = ψ0, φ)dφ∫∫

p(D|ψ, φ)p(ψ, φ)dψdφ
.

Thus, the Bayes factor is the ratio of the marginal likelihoods of two competing models; alternatively, the Bayes factor can
be conceptualized as the change from prior model odds p(M1)/p(Me) to posterior model odds p(M1|D)/p(Me|D) (Kass and
Raftery, 1995). The Bayes factor quantifies the evidence that the data provide for one model versus another, and as such
it represents ‘‘the standard Bayesian solution to the hypothesis testing and model selection problems’’ (Lewis and Raftery,
1997, p. 648).
Unfortunately, for most models the Bayes factor cannot be obtained in analytic form. Several methods have been

proposed to estimate the Bayes factor numerically (see Gamerman and Lopes (2006, Chap. 7) for a description of 11 such
methods). Nevertheless, calculation of the Bayes factor often remains a computationally complicated task.
Here we first describe an encompassing prior (EP) approach that was recently proposed by Hoijtink, Klugkist, and

colleagues (Klugkist et al., 2005a,b; Hoijtink et al., 2008). The EP approach applies to nested models and virtually eliminates
the computational complications inherent in most other methods. Next we show that the EP approach is a generalization
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of the Savage–Dickey density ratio. Finally, we discuss the Borel–Kolmogorov paradox and examine the implications of this
paradox for the EP approach.

2. Bayes factors from the encompassing prior approach

For concreteness, consider two Normally distributed random variables with means µ1 and µ2, and common standard
deviation σ . We focus on the following hypotheses:

Me : µ1, µ2; σ ,
M1 : µ1 > µ2; σ ,
M2 : µ1 ≈ µ2; σ ,
M3 : µ1 = µ2; σ .

In the encompassing model Me, all parameters are free to vary. Models M1, M2, and M3 are nested in Me and stipulate
particular restrictions on the means; specifically, M1 features an inequality constraint, M2 features an ‘‘about equality’’
constraint, andM3 features an exact equality constraint. We now deal with these in turn.

2.1. Computing Bayes factors for inequality constraints

Suppose we compare two models, an encompassing model Me and an inequality constrained model M1. We denote the
prior distributions under Me by p(ψ, φ|Me), where ψ is the parameter vector of interest (e.g., µ1 and µ2 in the earlier
example) and φ is the parameter vector of nuisance parameters (e.g., σ in the earlier example).
Then, the prior distribution of the parameters under model M1 can be obtained from p(ψ, φ|Me) by restricting the

parameter space of ψ:

p(ψ, φ|M1) =
p(ψ, φ|Me)IM1(ψ, φ)∫∫
p(ψ, φ|Me)IM1(ψ, φ)dψdφ

. (1)

In Eq. (1), IM1(ψ, φ) is the indicator function of model M1. This means that IM1(ψ, φ) = 1 if the parameter values are in
accordance with the constraints imposed by modelM1, and IM1(ψ, φ) = 0, otherwise. Note that this specification of priors
is only valid under the assumption that the nuisance parameters inMe andM1 fulfill exactly the same role (for a debate see
Consonni and Veronese (2008) and Del Negro and Schorfheide (2008)).
Under the above specification of priors, Klugkist and Hoijtink (2007) showed that the Bayes factor BF1e can be easily

obtained by drawing values from the posterior and prior distribution forMe:

BF1e =

1
m

m∑
i=1
IM1(ψ

(i), φ(i)|D,Me)

1
n

n∑
j=1
IM1(ψ (j), φ(j)|Me)

, (2)

wherem represents the total number of MCMC samples for the posterior ofψ , and n represents the total number of MCMC
samples for the prior ofψ . The numerator represents the proportion ofMe’s posterior samples forψ that obey the constraint
imposed byM1, and the denominator represents the proportion ofMe’s prior samples forψ that obey the constraint imposed
byM1.
To illustrate, consider again our initial example in whichMe : µ1, µ2; σ andM1 : µ1 > µ2; σ . Fig. 1(a) shows the joint

parameter space for µ1 and µ2; for illustrative purposes, we assume that the joint prior is uniform across the parameter
space. In Fig. 1(a), half of the prior samples are in accordance with the constraints imposed byM1. Fig. 1(a) also shows three
possible encompassing posterior distributions: A, B, and C . In case A, half of the posterior samples are in accordance with
the constraint, and this yields BF1e = 1. In case B, very few samples are in accordance with the constraint, and this yields
a Bayes factor BF1e that is close to zero (i.e., very large support against M1). In case C , almost all samples are in accordance
with the constraint, and this yields a Bayes factor BF1e that is close to 2.

2.2. Bayes factors for about equality constraints

In the EP approach, the Bayes factor for about equality constraints can be calculated in the samemanner as for inequality
constraints. To illustrate, consider our example in which Me : µ1, µ2; σ and M2 : µ1 ≈ µ2; σ . Fig. 1(b) shows as a gray
area the proportion of prior samples that are in accordance with the constraints imposed by M2, which in this case equals
about .20. Note that µ1 ≈ µ2 means |µ1 −µ2| < ε. The choice for ε defines the size of the parameter space that is allowed
by the constraint.
Now consider the three possible encompassing posterior distributions shown in Fig. 1(b). In case A, about 80% of the

posterior samples are in accordance with the constraint, and this yields a Bayes factor BF2e = .8/.2 = 4. In case B and
C , slightly less than half of the samples, about 40%, are in accordance with the constraint, and this yields a Bayes factor
BF2e = .4/.2 = 2.
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(a)M1 : µ1 > µ2 . (b)M2 : µ1 ≈ µ2 . (c)M3 : µ1 = µ2 .

Fig. 1. The encompassing prior approach for inequality, about equality, and exact equality constraints. For illustrative purposes, we assume that the
encompassing prior is uniform over the parameter space. The gray area represents the part of the encompassing parameter space that is in accordance
with the constraints imposed by the nested model. The circles A, B and C represent three different encompassing posterior distributions. Note that the
lower and upper bound for µ1 and µ2 are the same.

As before, the Bayes factors are calculated with relative ease—all that is required are prior and posterior samples from
the encompassing modelMe.

2.3. Bayes factors for exact equality constraints

In some situations, any difference between µ1 and µ2 is deemed relevant, and this requires a test for exact equality. For
instance, one may wish to test whether a chemical compound adds to the effectiveness of a particular medicine. In such
experimental studies, an exact null effect is a priori plausible. However, it may appear that the EP approach does not extend
to exact equality constraints in a straightforward fashion.
To illustrate, consider our example inwhichMe : µ1, µ2; σ and nowM3 : µ1 = µ2; σ . Fig. 1(c) shows that the only values

allowed by the constrained modelM3 are those that fall exactly on the diagonal. As µ1 and µ2 are continuous variables, the
proportion of prior and posterior samples that obey this constraint is zero. Therefore, the EP Bayes factor is 0/0, which
has led several researchers to conclude that the EP Bayes factor is not defined for exact equality constraints (Rossell et al.,
2008, pp. 111–112; Myung et al., 2008, p. 317; Klugkist, 2008, p. 71). The next two sections investigate in what sense the
EP Bayes factor can be defined for exact equality constraints, and its relation to the Savage–Dickey density ratio. Difficulties
that arise because of the Borel–Kolmogorov paradox are discussed in the subsequent sections.

2.3.1. Bayes factors for exact equality constraints: an iterative method
In order to estimate the EP Bayes factor for exact equality constrained models, Laudy (2006, p. 115) and Klugkist (2008)

proposed an iterative procedure. In the context of a test between Me : µ1, µ2; σ and M3 : µ1 = µ2; σ , the procedure
comprises the following steps:
Step 1: Choose a small value ε1 and defineM3.1 : |µ1 − µ2| < ε1;
Step 2: Compute the Bayes factor BF(3.1)e using Eq. (2);
Step 3: Define ε2 < ε1 andM3.2 : |µ1 − µ2| < ε2;
Step 4: Sample from the constrained (|µ1 − µ2| < ε1) prior and posterior and compute the Bayes factor BF(3.2)(3.1).

Repeat steps 3 and 4, with each εn+1 < εn, until BFn+1,n ≈ 1. Then the required Bayes factor BF3e can be calculated by
multiplication:

BF3e = BF(3.1)e × BF(3.2)(3.1) × · · · × BFn(n−1). (3)

In the limit (i.e., when εn → 0), this method yields the Bayes factor for the exact equality model M3 versus the
encompassingmodelMe. Although this iterativemethod solves the problemof having no samples that obey an exact equality
constraint, the method is only approximate and potentially time consuming.

2.3.2. Bayes factors for exact equality constraints: a one-step method—equivalence to the Savage–Dickey density ratio
The iterative procedure turns out to be identical to the Savage–Dickey density ratio method, a one-step method that is

both principled and fast. In order to understand this intuitively, Fig. 2 shows a fictitious prior and posterior distribution for
µ1−µ2, obtained under the encompassingmodelMe. The surface of the dashed areas equals the proportion of the prior and
posterior distribution that is consistent with the constraint |µ1 − µ2| < ε. In the EP approach, the Bayes factor is obtained
by integrating the posterior and prior distribution over the area defined by the constraint. However, it is clear that as ε→ 0,
the area of both regions equals 0.
The Bayes factor is given by the ratio of the two integrals. Hence, the Bayes factor for the equality constraint in the EP

approach is the limit

BF3e = lim
ε→0

∫ ε/2
−ε/2 p(ψ0 + ψ | D,Me)dψ∫ ε/2
−ε/2 p(ψ0 + ψ | Me)dψ

.
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Fig. 2. The encompassing prior approach for exact equality constraints is the Savage–Dickey density ratio. The top dot represents the value of the posterior
distribution at µ1 = µ2 and the bottom dot represents the value of the prior distribution at µ1 = µ2 . The ratio of the heights of both densities equals the
Bayes factor. Note that the posterior of ψ does not have to be centered around zero.

Here we generically formulated the hypothesis in terms of the parameter ψ . In the example hypothesis H0 : µ1 = µ2 this
corresponds to defining ψ = µ1 − µ2 and ψ0 = 0. We also marginalized over any nuisance parameters not of interest; σ
in our example, i.e., p(µ1, µ2 | D,Me) =

∫
∞

−∞
p(µ1, µ2, σ | D,Me)dσ . Then, in the example, ψ = µ1 − µ2 has marginal

posterior density p(ψ |D,Me) =
∫
p(µ1, µ1 − ψ |D,Me)dµ1 (see e.g., Miller and Miller, 2004, pp. 246). These integrals can

be evaluated analytically, with quadratures, or can be approximated using MCMC sampling (Gamerman and Lopes, 2006).
To calculate the Bayes factor, only the marginal posterior density of interest needs to be considered.
Clearly the limit above approaches the form 0/0 and so l’Hôpital’s 0/0 rule can be employed to obtain

BF3e = lim
ε→0

p(ψ0 + ε/2 | D,Me)/2+ p(ψ0 − ε/2 | D,Me)/2
p(ψ0 + ε/2 | Me)/2+ p(ψ0 − ε/2 | Me)/2

=
p(ψ0 | D,Me)
p(ψ0 | Me)

, (4)

where ψ0 represents the point of exact equality specified by the constrained model; in our example, M3 : ψ0 means
µ1 − µ2 = 0.
Eq. (4) shows that the Bayes factor BF3e simplifies to the ratio of the height of the marginal posterior and the height of

the marginal prior at the point of interest, if the limiting processes in the numerator and the denominator are chosen to be
equal. This result is known as the Savage–Dickey density ratio (Dickey and Lientz, 1970; O’Hagan and Forster, 2004; Dickey,
1971; Verdinelli and Wasserman, 1995). For the example shown in Fig. 2, the Bayes factor in favor of the exact equality
model, BF3e, is approximately 2.
For completeness, we now sketch the proof that the Savage–Dickey density ratio equals the Bayes factor (cf. O’Hagan and

Forster, 2004). As before, letψ be the parameter of interest andφ the nuisance parameter; letMe be the encompassingmodel,
a restricted version of which is defined asM3 : ψ = ψ0. The Savage–Dickey density ratio is equal to the Bayes factor if the
prior of the nuisance parameter in the restrictedmodelM3 is defined by conditioning, that is, if p(φ|M3) = p(φ|ψ = ψ0,Me)
(cf. Eq. (1)).
The foregoing allows us to rewrite the marginal likelihood forM3:

p(D|M3) =
∫
p(D|φ,M3)p(φ|M3)dφ,

=

∫
p(D|φ,ψ = ψ0,Me)p(φ|ψ = ψ0,Me)dφ,

= p(D|ψ = ψ0,Me). (5)

We now apply Bayes’ rule to the end result of Eq. (5) and obtain

p(D|M3) =
p(ψ = ψ0|D,Me)p(D|Me)

p(ψ = ψ0|Me)
. (6)

Dividing both sides of Eq. (6) by p(D|Me) results in

BF3e =
p(D|M3)
p(D|Me)

=
p(ψ = ψ0|D,Me)
p(ψ = ψ0|Me)

, (7)

which shows that the Bayes factor equals the ratio of the posterior and prior ordinate under Me at the point of interest
(i.e., ψ = ψ0).
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Fig. 3. A comparison of the Savage–Dickey density ratio and the iterative encompassing prior approach for simulated data. The Bayes factor favoring
the null hypothesis, BF3e , is 2.011. The dashed line shows the Savage–Dickey Bayes factor. The dots represent the iterative Bayes factor calculated by
systematically decreasing the interval surrounding the exact equality of interest (Eq. (3)).

2.3.3. An example comparing the iterative EP approach to the Savage–Dickey method
In order to illustrate how the results from the two methods converge, we randomly drew 100 samples from a Normal

distribution with mean 0.2 and variance 1, and found a corresponding one-sample t-statistic of 1.945. We then used a
Bayesian t-test with a Cauchy(0,1) prior on effect size δ = µ/σ and a folded Cauchy(0,1) on σ (for details see Rouder et al.,
2009) to compute the Bayes factor in favor of H0 : δ = 0 relative to H1 : δ ∼ Cauchy(0,1), which yielded BF3e = 2.011.
Fig. 3 compares the behavior of the iterative encompassing prior approach to that of the Savage–Dickey density ratio.

The dashed horizontal line shows the result from the Savage–Dickey implementation of the Bayesian t-test (Wetzels et al.,
2009). The dots show the result from the iterative encompassing prior approach (Eq. (3)), as a function of the size of the
smallest interval ε. When ε = 0.01, the iterative EP Bayes factor has converged to the correct Bayes factor.
Note that the iterative EP approach involves the product of multiple Bayes factors (cf. Eq. (3)). In contrast, the

Savage–Dickey procedure involves only one Bayes factor. Because the computation of each Bayes factor requires many
MCMC samples, the computational demands are likely to be much higher in the iterative EP approach than in the
Savage–Dickey approach.

3. The Borel–Kolmogorov paradox

Themain drawback of the EP approach to exact equalities is that it is subject to the Borel–Kolmogorov paradox (DeGroot
and Schervish, 2002; Jaynes, 2003; Lindley, 1997; Proschan and Presnell, 1998; Rao, 1988; Singpurwalla and Swift, 2001).
This paradox arises when one conditions on events of probability zero. In the case of exact equality constraints, priors for
the constrained model are constructed by conditioning on a null-set, and this gives rise to the Borel–Kolmogorov paradox.

3.1. The Borel–Kolmogorov paradox: an example

Consider the following situation, inspired by an example from Lindley (1997). Suppose that a point P is described by its
Cartesian coordinates X and Y . Furthermore, suppose that 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1, and that P has a uniform distribution
on the unit square. Suppose you are told that P lies on the diagonal through the origin, event B. What is your probability that
X , associated with that P , and hence also Y , is less then 1/2 (i.e., event A)?
The paradox lies in the fact that the answer to this question depends on howwe parameterize the diagonal. We examine

two situations: Z1 = X − Y = 0 (see Fig. 4(a)) and Z2 = X/Y = 1 (see Fig. 4(b)). Note that because X and Y are continuous,
the probability that X = Y is zero. Because conditioning on an eventwith probability zero is problematic, we consider values
of X and Y that lie in the proximity of the line X = Y .
From the geometry of the problem, the associated probability in the first case is

P(Y − ε ≤ X ≤ Y + ε) = 2(1/2− 1/2(1− ε)2) = (2− ε)ε,

while the associated probability for the second case is

P(Y − εY ≤ X ≤ Y − εY ) = 2(1/2− 1/2 · 1 · (1− ε)) = ε.

Now consider the probabilities that (X, Y ) lies in the left lower quadrant of the square (i.e., X, Y ≤ 1/2) and either that
|X − Y | < ε and or that |X/Y − 1| < ε. Again from geometry, the probability of the first case is

P(|X − Y | < ε ∩ X, Y ≤ 1/2) = (1− ε)ε,
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(a) X − Y = 0. (b) X/Y = 1.

Fig. 4. Example of the Borel–Kolmogorov paradox. The shaded areas indicate the acceptable values of X and Y for the two parameterizations. In panel (a),
all values of X are equally likely while in panel (b), the wedge shaped area implies that values close to 1 are more likely than those close to 0.

and for the second case

P(|X/Y − 1| < ε ∩ X, Y ≤ 1/2) =
1
4
ε.

Hence, the corresponding conditional probabilities of the events that (X, Y ) lies in the left lower quadrant of the square,
given that either the event |X − Y | ≤ ε or that the event |X/Y − 1| ≤ ε occurred, are respectively

P(X, Y ≤ 1/2 | |X − Y | < ε) =
1− ε
2− ε

,

and

P(X, Y ≤ 1/2 | |X/Y − 1| < ε) =
1
4
.

If we now take to the limit ε → 0, both the events |X − Y | ≤ ε and |X/Y − 1| ≤ ε coincide with the lower left half of the
diagonal of the square. However, although the first probability coincides with our intuition that P(X, Y ≤ 1/2 | X = Y ) =
1/2, the second has it that the probability for this seemingly equal event should be 1/4!
This example shows that the probability of an event conditioned on a limiting event of zero probability depends on

the way in which the limiting event was generated, that is, on the parameterization that was chosen to generate the zero
probability event. In effect, conditional probability is not invariant under coordinate transformations of the conditioning
variable. This paradox is resolved if one accepts that conditional probability cannot be unambiguously defined with respect
to events of zero probability without specifying the limiting process from which it should result (Jaynes, 2003). It is on
random variables, not on singular events, that conditioning is unambiguous (see Kolmogorov (1956), Billingsley (2008)
and Wolpert (1995)).

3.2. Implications for the limiting encompassing prior and the Savage–Dickey density ratio

The foregoing implies that in the EP approach to exact equalities, the resulting Bayes factor may depend on the choice of
the parameterization, a feature that is clearly undesirable (Dawid and Lauritzen, 2001; Schweder and Hjort, 1996; Wolpert,
1995). Note that the Borel–Kolmogorov paradox does not occur in the case of inequality constraints, where one conditions
on an interval, rather than on a single point.
Eq. (4) shows that the EP Bayes factor for exact equality constraints is equal to the Savage–Dickey ratio. However, the

rectangular regions of integration and the use of the same limiting processes in both the numerator and the denominator
are arbitrary choices. Different choices of the limiting process can lead to different Bayes factors, as shown next. To this
end, let γi(ε) ≥ 0 and δi(ε) > 0, differentiable in a neighborhood (0, ε), such that limε→0 γi(ε) = limε→0 δi(ε) = 0 and
γ ′i (0) + δ

′

i(0) 6= 0, for i = 1, 2. Here prime
′ indicates derivative. Then, without loss of generality, these functions can be

chosen to suit any form of the limiting process in the EP process

BF3e = lim
ε→0

∫ δ1(ε)
−γ1(ε)

p(ψ0 + ψ | D,Me)dψ∫ δ2(ε)
−γ2(ε)

p(ψ0 + ψ | Me)dψ
.

Intuitively this would seem to go to the same limit as earlier, but in fact it does not, as l’Hôpital’s rule shows:
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BF3e = lim
ε→0

p(ψ0 + δ1(ε) | D,Me)δ′1(ε)+ p(ψ0 − γ1(ε) | D,Me)γ
′

1(ε)

p(ψ0 + δ2(ε) | Me)δ′2(ε)+ p(ψ0 − γ2(ε) | Me)γ
′

2(ε)

=
p(ψ0 | D,Me) [δ′1(0)+ γ

′

1(0)]
p(ψ0 | Me) [δ′2(0)+ γ

′

2(0)]
. (8)

This is the above Savage–Dickey ratio if and only if δ′1(0)+ γ
′

1(0) = δ
′

2(0)+ γ
′

2(0). As both δ
′

1(0)+ γ
′

1(0) and δ
′

2(0)+ γ
′

2(0)
measure the rate at which the numerator and denominator approach zero, the limit of the EP approach equals the
Savage–Dickey ratio if and only if both numerator and denominator approach 0 at the same rate. If the rate at which the
numerator and the denominator approach zero is not the same, any desired value of the Bayes factor can be obtained.
In light of the Borel–Kolmogorov paradox, it is important to understand when the Savage–Dickey ratio method is

invariant under smooth transformations of the chosen parameterization, especially when nuisance parameters are present.
To this end, suppose the chosen set of (absolute continuous) parameters is θ with prior p(θ |Me) and posterior p(θ |D,Me).
Let g be a differentiable invertible transform (a diffeomorphism) with inverse h so that

χ = g(θ) and h(χ) = θ.

The implied prior is denoted p̃(χ |Me) and the implied posterior is denoted p̃(χ |D,Me). In general, the parameter vector can
be partitioned as θ = (ψ, φ), where φ contains nuisance parameters that are not involved in the evaluation of the null
hypothesis. We are interested in evaluating the evidence for the simple hypothesis

M3 : ψ = ψ0,

which, in terms of χ = (ν, ξ) can often be cast equivalently as M3 : ν = ν0. We wish to know under what circumstances
the Savage–Dickey ratios are equal. That is, we want to determine conditions on g under which the desired equality

BF3e =
p(ψ0|D,Me)
p(ψ0|Me)

=
p̃(ν0|D,Me)
p̃(ν0|Me)

, (9)

is true. It turns out that this equality holds, as long as the transformation g does not depend on the data D, and as long as the
parameters on which M3 imposes a simple hypothesis transform independently of the nuisance parameters. This follows
from the following considerations.
By the ‘‘change of variables’’ rule,

p̃(χ |D,Me) = p(h(χ)|D,Me)|h′(χ)|+,
p̃(χ |Me) = p(h(χ)|Me)|h′(χ)|+,

where |h′(χ)|+ denotes the absolute value of the determinant of the Jacobian matrix h′(χ) = ∂χh(χ) of the transformation
h. Partition h(χ) as θ = h(χ) = (ψ, φ) = (ψ(ν, ξ), φ(ν, ξ)). In terms of hypothesis and nuisance parameters these can be
expressed as

p̃(ν, ξ |Me) = p(ψ(ν, ξ), φ(ν, ξ)|Me) |φξ (ν, ξ)|+|ψν(ν, ξ)− φν(ν, ξ)φξ (ν, ξ)−1ψξ (ν, ξ)|+, (10)

and similarly for p̃(ν, ξ |D,Me). Here φξ (ν, ξ) denotes the matrix of partial derivatives of φ with respect to ξ , ψν of ψ with
respect to ν, etc.
The implicit function theorem ensures the existence of a function ν(ψ, ξ), such thatψ0 = ψ(ν(ψ0, ξ), ξ), for all ξ . Then,

by the chain rule,∫
p(ψ0, φ|Me)dφ =

∫
p(ψ(ν(ψ0, ξ), ξ), φ(ν(ψ0, ξ), ξ)|Me) |∂ξφ(ν(ψ0, ξ), ξ)|+ dξ .

The Jacobian in the last integral can be expressed as

|∂ξφ(ν(ψ0, ξ), ξ)|+ = |φν(ν(ψ0, ξ), ξ)νξ (ψ0, ξ)+ φξ (ν(ψ0, ξ), ξ)|+.

Therefore, if νξ (ψ, ξ) ≡ 0, implying that ν(ψ, ξ) = ν(ψ) does not depend on ξ , then∫
p(ψ0, φ|Me)dφ =

∫
p(ψ(ν(ψ0), ξ |Me), φ(ν(ψ0), ξ)) |φξ (ν(ψ0), ξ)|+ dξ,

which, by Eq. (10) can be expressed as∫
p(ψ0, φ|Me)dφ =

∫
p̃(ν0, ξ |Me) |ψν(ν0, ξ)− φν(ν0, ξ)φξ (ν0, ξ)−1ψξ (ν0, ξ)|−1+ dξ,

=

∫
p̃(ν0, ξ |Me) |ψν(ν0)|−1+ dξ .

Here we used the fact thatψ(ν(ψ0), ξ) = ψ(ν(ψ0, ξ), ξ) = ψ0. We also used the fact that ν0 = ν(ψ0), which is warranted
by the above assumption that νξ (ψ, ξ) = 0. Specifically, because ∂ξψ(ν(ψ0, ξ), ξ) = ψν(ν(ψ0, ξ), ξ)νξ (ψ0, ξ) +
ψξ (ν(ψ0, ξ), ξ) = ∂ξψ0 = 0, it follows that ψξ (ν(ψ0, ξ), ξ) ≡ 0 for all ψ0. This implies that ψ does not depend on ξ ,
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and therefore that ψ0 = ψ(ν(ψ0, ξ), ξ) = ψ(ν(ψ0)) = ψ(ν0). The latter conclusion that ψξ ≡ 0 also yields the second
equality.
Consequently, the evidence forM3 is obtained from the Savage–Dickey ratio

BF3e =
p(ψ0|D,Me)
p(ψ0|Me)

=

∫
p(ψ0, φ|D,Me)dφ∫
p(ψ0, φ|Me)dφ

=

∫
p̃(ψ0, ξ |D,Me)|ψν(ν0)|−1+ dξ∫
p̃(ψ0, ξ |Me)|ψν(ν0)|−1+ dξ

=
p̃(ψ0|D,Me)
p̃(ψ0|Me)

,

which is (9).
In sum, computing the Bayes factor for exact equality constraints is a delicate matter. The iterative EP approach and

the Savage–Dickey density ratio can lead to different Bayes factors if the limiting process in the iterative EP approach is
not carefully chosen (i.e., the numerator and denominator of Eq. (8) should approach 0 at the same rate). Moreover, both
methods suffer from the Borel–Kolmogorov paradox. However, the Savage–Dickey density ratio is invariant under smooth
transformations of the chosen parameterization, as long as the transformation does not depend on the data, and as long as
the parameters transform independently of the nuisance parameters.

4. Concluding remarks

Here we have shown that the Savage–Dickey density ratio method is a special case of the encompassing prior
(EP) approach proposed by Hoijtink, Klugkist, and colleagues. The EP approach was developed to account for models
with inequality constraints; as it turns out, the approach naturally extends to models with exact equality constraints.
Consequently, the EP approach offers a unified, elegant, and simple method to compute Bayes factors in nested models.
The main drawback of the EP/Savage–Dickey method for exact equalities is its susceptibility to the Borel–Kolmogorov

paradox.We have shown that the SD-ratio yields the same value under different transformations, as long as the parameters,
on which M1 imposes a simple hypothesis, transform independently of the nuisance parameters. It should be noted
that in order to avoid the Borel–Kolmogorov paradox, alternative procedures seek to construct priors not by the usual
conditioning, but by method such as marginalization (Kass and Raftery, 1995), Jeffreys conditioning (Dawid and Lauritzen,
2001), reference conditioning (Roverato and Consonni, 2004), Kullback–Leibler projection (Consonni and Veronese, 2008;
Dawid and Lauritzen, 2001), and Hausdorff integrals (Kleibergen, 2004).
Unfortunately, these alternative procedures give rise to paradoxes andproblems of their own (see Consonni andVeronese

(2008), for a review and a comparison). Presently, there does not appear to be a universally agreed-onmethod for specifying
priors in nested models that is clearly superior to the conditioning procedure inherent in the Hoijtink and Klugkist EP
approach.
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