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a b s t r a c t

The purpose of the popular Iowa gambling task is to study decisionmaking deficits in clinical populations
by mimicking real–life decision making in an experimental context. Busemeyer and Stout [Busemeyer, J.
R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing
performance on the Bechara gambling task. Psychological Assessment, 14, 253–262] proposed an
‘‘Expectancy Valence’’ reinforcement learning model that estimates three latent components which are
assumed to jointly determine choice behavior in the Iowa gambling task: weighing of wins versus losses,
memory for past payoffs, and response consistency. In this article we explore the statistical properties
of the Expectancy Valence model. We first demonstrate the difficulty of applying the model on the level
of a single participant, we then propose and implement a Bayesian hierarchical estimation procedure to
coherently combine information from different participants, andwe finally apply the Bayesian estimation
procedure to data from an experiment designed to provide a test of specific influence.

© 2008 Elsevier Inc. All rights reserved.
Every neuroscientist knows the tale of Phineas Gage, the
railroad worker who suffered an unfortunate accident: in 1848, an
explosion drove an iron rod straight through Gage’s frontal cortex.
Although Gage miraculously survived the accident, the resultant
brain trauma did cause a distinct change in his personality. Prior to
the accident, Gage was capable and reliable, but after the accident
he was described as impatient, stubborn, and impulsive. Gage was
no longer able to plan ahead in order to achieve long–term goals.1

The symptoms of Phineas Gage are characteristic for patients
with damage to the ventromedial prefrontal cortex (vmPFC). These
patients often take irresponsible decisions and do not seem to
learn from their mistakes. The observed real–life decision making
deficits are not caused by low intelligence, as vmPFC patients
generally perform adequately on standard IQ tests.
In order to study the decision making behavior of clinical

populations such as vmPFC patients under controlled conditions,
Bechara and Damasio developed the now–famous ‘‘Iowa gambling
task’’ (IGT; (Bechara, Damasio, Damasio, & Anderson, 1994;
Bechara, Damasio, Tranel, & Damasio, 1997)), described in more
detail below. Successful performance on the IGT requires that
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participants learn to prefer cautious (i.e., low rewards, low losses)
alternatives over risky (i.e., high rewards, high losses) alternatives.
The IGT is one of the most often used clinical tools to study deficits
in decisionmaking, and it has been applied to older adults, chronic
cocaine users, cannabis users, children, criminals, patients with
Huntington disease, patients with Asperger’s syndrome, patients
with obsessive–compulsive disorder, patients with Parkinson’s
disease, etc. (see Caroselli, Hiscock, Scheibel, and Ingram (2006),
Crone and van der Molen (2004), Yechiam, Busemeyer, Stout, and
Bechara (2005) and Yechiam et al. (2008) and references therein).
Althoughmost clinical populations perform relatively poorly on

the IGT, in the sense that their learning rate is lower than that
of normal controls, it is as yet unclear whether or not the poor
performance of these different clinical groups has the same origin.
The IGT is a relatively complex task that requires the participant to
correctly integrate information, remember this information, and
converge upon a decision. Poor performance on the IGT could
be due to any of these subcomponents that together determine
choice behavior. In order to address this issue formally one needs
a reinforcement learning model for task performance in the IGT.
Such a model was developed and popularized by Jerry Busemeyer,
Julie Stout, Eldad Yechiam, and co–workers (Busemeyer & Stout,
2002; Stout, Busemeyer, Lin, Grant, & Bonson, 2004; Wood,
Busemeyer, Koling, Cox, & Davis, 2005; Yechiam & Busemeyer,
2005; Yechiamet al., 2005, 2008; Yechiam, Stout, Busemeyer, Rock,
& Finn, 2005), whose Expectancy Valence (EV)model can presently
be considered the default model of performance in the IGT.
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Table 1
Rewards and losses in the IGT. Cards from decks A and B yield higher rewards than
cards from decks C and D, but they also yield higher losses. The net profit is highest
for cards from decks C and D.

Bad decks Good decks
A B C D

Reward per trial 100 100 50 50
Number of losses per 10 cards 5 1 5 1
Loss per 10 cards 1250 1250 250 250
Net profit per 10 cards −250 −250 250 250

When researchers use the EV model to draw conclusions about
underlying processes, it is of course important that they can rely
on estimation routines to accurately recover parameter values.
Despite its importance, much is still unknown about the statistical
characteristics of parameter estimation in the EV model. The
primary goal of the present article is to analyze and improve on
the estimation routines that are currently standard in the field.
The outline of this article is as follows. Section 1 provides

a detailed explanation of the IGT and the EV model. Section 2
discusses the statistical properties of the EV model when
parameters are estimated using maximum likelihood. Section 3
outlines a Bayesian graphical model for the EV model, both for
single participant analysis and for a hierarchical analysis. Section 4
applies the standardmaximum likelihood estimation and the novel
Bayesian estimation to data from an experiment that was designed
to provide a test of specific influence.

1. Explanation of the Iowa gambling task and the Expectancy
Valence model

1.1. The Iowa gambling task

In the IGT, participants have to discover, through trial and
error, the difference between risky and safe decisions. In the
computerized version of the IGT, the participant starts with $2000
in play money. Next, the computer screen shows four decks of
cards (A, B, C, and D), and the participant has to select a card
from one of the decks. Each card is associated with a reward, but
potentially also with a loss. The default payoff scheme is presented
in Table 1.
As can be seen from Table 1, decks A and B yield a reward of

$100 every time a card from those decks is selected, compared to
only $50 for decks C and D. However, the relatively large rewards
associated with decks A and B are more than undone by large
occasional losses; in five out of every ten selections from deck A,
the reward is overshadowed by a loss that ranges from $150 to
$350 for a total of $1250 for every ten selections. For deck B, only
one out of every ten selections is accompanied by a loss, but this
loss is a whopping $1250.
The rewards associated with decks C and D may be relatively

meager, but so are the losses; for deck C, five out of every ten
selections yields a loss, ranging from $25 to $75 for a total of $250.
For deck D, only one out of every ten selections yields a loss, and
that loss is $250. This means that it is in the participants’ financial
interest to avoid decks A and B (i.e., the bad decks with large
rewards, but even larger losses) and prefer cards from decks C and
D (i.e., the good decks with modest rewards, but relatively small
losses). The fact that the A and B decks are bad, and the C and D
decks are good is something that the participant has to discover
through experience.
At the start of the IGT, the participant is told to maximize net

profit. During the task, the participant is presented with a running
tally of the net profit. The task terminates after the participant
has made a certain number of card selections. Depending on the
experiment, this number varies from 100 or 150 to asmuch as 250.
1.2. The Expectancy Valence model

From a statistical perspective, the IGT is a so–called four–armed
bandit problem (Berry & Fristedt, 1985). Bandit problems are a
special case of the more general reinforcement learning problems,
in which an agent has to learn an environment by choosing actions
and experiencing the consequences of those actions (e.g., Estes
(1950), Steyvers, Lee, and Wagenmakers (in press) and Sutton and
Barto (1998)). It is easy to formulate a reinforcement learning
problem, but it is difficult to solve such a problem in an optimal
fashion. Optimal performance depends on a delicate trade–off
between ‘‘exploration’’ and ‘‘exploitation’’; in order to discover the
best option, the agent first has to try out or explore the various
opportunities. However, if the agent only has a limited number
of trials left, it is optimal to gradually stop exploring and instead
exploit the option that has turned out to produce the highest profit
in the past.
Many reinforcement problems such as the IGT are practically

impossible to solve optimally. However, the reinforcement lit-
erature contains several solutions that are sensible and produce
relatively good results. Interestingly, the parameters of a reinforce-
ment learning method can often be given a clear psychological
interpretation (e.g., Daw, O’Doherty, Dayan, Seymour, and Dolan
(2006)). The EV model developed by Busemeyer and Stout (2002)
is a case in point.
The EV model proposes that choice behavior in the IGT

comes about through the interaction of three latent psychological
processes. Each of these three processes is vital to producing
successful performance typified by an increase in preference for
the good decks over the bad decks with increasing experience.
First, the model assumes that the participant, after selecting a card
from deck k, k ∈ {1, 2, 3, 4} on trial t , calculates the resulting
net profit or valence. This valence vk is a combination of the
experienced rewardW (t) and the experienced loss L(t):

vk(t) = (1− w) ·W (t)+ w · L(t). (1)

Thus, the first parameter of the EV model is w, the attention
weight of losses relative to rewards,w ∈ [0, 1]. A rational decision
maker would assign equal weight to losses and rewards and hence
use w = .5. Stout et al. (2004) found that the mean value of w
was .25 for chronic cocaine users, in contrast to .63 for control
participants. This result supports the idea that, compared to
normal controls, cocaine users focus on rewards and deemphasize
the possible negative consequences of their behavior.
On the basis of the sequence of valences vk experienced in the

past, the participant forms an expectation Evk of the valence for
deck k. In order to learn, new valences need to modify continually
the expected valence Evk. If the experienced valence vk is higher
or lower than expected, Evk needs to be adjusted upward or
downward, respectively. This intuition is captured by the equation

Evk(t + 1) = Evk(t)+ a · (vk(t)− Evk(t)), (2)

in which the updating rate a ∈ [0, 1] determines the impact
of recently experienced valences. A high value of a means that
the participant quickly adjusts the expected valence as a result of
recent experiences. As a consequence, such a participant pays little
heed to past events and has limited memory. Wood et al. (2005)
found that older adults have higher values of the updating rate
parameter than younger adults. This means that older adults show
relatively large recency effects and exhibit more rapid forgetting.
Upon first consideration, it may seem rational to always

prefer the deck with the highest expected valence. This ‘‘greedy’’
strategy, however, leaves very little room for exploration, and the
danger is that the decision maker quickly gets stuck choosing an
inferior option. What is needed is some procedure to ensure that
participants initially explore the decks, and only after a certain
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number of trials decide to always prefer the deck with the highest
expected valence. One of the standard reinforcement learning
methods to achieve this is to usewhat is called softmax selection or
Boltzmann exploration (Kaelbling, Littman, & Moore, 1996; Luce,
1959):

Pr[Sk(t + 1)] =
exp(θ(t)Evk)
4∑
j=1
exp(θ(t)Evj)

. (3)

In this equation, 1/θ(t) is the ‘‘temperature’’ at trial t and
Pr(Sk) is the probability of selecting a card from deck k. When the
temperature is very high, deck preference is almost completely
random, allowing for a lot of exploration. As the temperature
decreases, deck preference is guided more and more by the
expected valences. When the temperature is zero, participants
always prefer the deck with the highest expected valence.
In the EV model, the temperature is assumed to vary with the

number of observations according to

θ(t) = (t/10)c, (4)

where c is the response consistency or sensitivity parameter. In
fits to data, this parameter is usually constrained to the interval
[−5, 5]. When c is positive, response consistency θ increases
with the number of observations (i.e., the temperature 1/θ
decreases). This means that choices will be more and more
guided by the expected valences. When c is negative, choices will
become more and more random as the number of card selections
increases. Busemeyer and Stout (2002) found that patients
with Huntington’s disease had negative values for the response
consistency parameter,which indicates that these patients became
tired or bored as the task progressed, and consequently started to
select cards at random.
In sum, the Expectancy Valence model decomposes choice

behavior in the Iowa gambling task in three components or
parameters:

1. An attention weight parameterw that quantifies the weighting
of losses versus rewards.

2. An updating rate parameter a that quantifies the memory for
rewards and losses.

3. A response consistency parameter c that quantifies the amount
of exploration.

Although several suggestions have been made to change minor
aspects of the EV model, the version of the model that is currently
preferred is the version thatwas originally proposed by Busemeyer
and Stout (2002). Current practice is to estimate the parameters of
the EV model separately for each participant through the method
of maximum likelihood.

2. Maximum likelihood estimation

Researchers who work with the EV model generally estimate
parameters by minimizing the sum of one–step–ahead prediction
errors. That is, based on the feedback from the previous t card
selections, the EV model uses Eq. (3) to assign probabilities to
each of the four decks. These probabilities can be thought of
probabilistic forecasts for card selection t+1. The parameter values
that yield the best forecasts are the point estimates that are used
for further statistical analysis.
Specifically, let a sequence of T observations (e.g., all card

selections and the associated feedback) be denoted by yT =
(y1, . . . , yT ); for example, yt−1 denotes the (t − 1)th individ-
ual observation, whereas yt−1 denotes the entire sequence of ob-
servations ranging from y1 up to and including yt−1. Here we
quantify predictive performance for a single observation by the
logarithmic loss function − ln p̂t(yt), that is, the larger the proba-
bility that p̂t (determined based on the previous observations yt−1)
assigns to the observed outcome yt , the smaller the loss. Thus, in
the current EV parameter estimation routines, participant–specific
parameterswi, ai, and ci are adjusted in order to find the point es-
timates that minimize the sum of the one–step–ahead prediction
errors:

∑T
t=1− ln p(yt |y

t−1, wi, ai, ci). The method of parameter
estimation is applied to each individual participant i separately.
The above procedure of finding parameter point estimates

is in fact equivalent to that of maximum likelihood estimation
(MLE; for a tutorial see Myung (2003)). To see this, recall that
MLE seeks to determine those parameters under which the
occurrence of the observed data is most likely, that is, {ŵi, âi, ĉi} =
argmax{wi,ai,ci}p(y

T
|wi, ai, ci). From the definition of conditional

probability, i.e., p(yt |yt−1) = p(yt)/p(yt−1), it follows that p(yT)
may be decomposed as a series of sequential, ‘‘one–step–ahead’’
probabilistic predictions (Dawid, 1984; Wagenmakers,Grünwald,
& Steyvers, 2006):

p(yT|wi, ai, ci) = p(y1, . . . , yT |wi, ai, ci)
= p(yT |yT−1, wi, ai, ci)p(yT−1|yT−2, wi, ai, ci) · · ·

× p(y2|y1, wi, ai, ci)p(y1|wi, ai, ci). (5)

Thus, Eq. (5) shows that the MLE point estimates that maxi-
mize p(yT) are the same as those that minimize the sum of
one–step–ahead prediction errors under log loss, as − ln p(yT|wi,
ai, ci) =

∑T
t=1− ln p(yt |y

t−1, wi, ai, ci).
In the next three sections, we use simulations to examine

performance of maximum likelihood parameter estimation for
the EV model.2 In particular, we address the following three
interrelated questions:

1. How well can the EV parameters be recovered for single
simulated participants?

2. What are the correlations between the EV parameters across
many simulated participants?

3. To what extent are the EV parameters identifiable?

2.1. Parameter recovery for single synthetic participants

The clinical contribution of the EVmodel is to allow researchers
to decompose choice performance into three latent psychological
processes. These psychological processes are represented bymodel
parameters, and hence it is vital to know the extent to which these
parameters are estimated accurately and reliably.
We addressed this issue by simulating 1000 synthetic partici-

pants in a 150–trial IGT, all with exactly the same EVmodel param-
eters:w = 0.5, a = 0.35, and c = 0.35. The values of these param-
eters were informed by previous research that suggests these val-
ues to be fairly typical of choice performance in the IGT. We then
used the standard MLE procedure to determine parameter point
estimates separately for each of the 1000 synthetic participants.
Consistent with current practice, we constrained the c parameter
such that c ∈ [−5, 5]. Parameters w and a are probabilities and
hence {w, a} ∈ [0, 1].
Fig. 1 shows the density estimates (i.e., smoothed normalized

histograms consisting of 1000 estimates) for each parameter
separately. It is clear that parameter estimation is relatively
unbiased, that is, the true parameter value with which the data
were generated is about equal to the mean of the 1000 estimated
parameter values. Specifically, the mean estimated values forw, a,
and c are 0.54, 0.36, and 0.36, respectively.

2 MLE routineswere programmed in R, a free software environment for statistical
computing and graphics (R Development Core Team, 2004).
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Fig. 1. EV parameter recovery for single participants. Dotted lines indicate true
parameter values: Attentionweightw = 0.5, updating rate a = 0.35, and response
consistency c = 0.35. Data come from1000 synthetic participants, each completing
a 150-trial IGT.

It is also clear that, for single participants, the variability in the
estimates is considerable. In fact, this variability is so large that we
believe it is hazardous to drawany kind of clinical conclusion based
on the performance of an individual participant. For instance, an
individual participant could have a perfectly normal updating rate
of a = .35, but still stand a considerable chance of being assigned
a point estimate that is either much lower or much higher.
Fig. 1 also reveals that the density of the parameter estimates for

attention weight w is bimodal with a peak on the boundary of the
parameter space. This is worrisome, as it indicates that, evenwhen
the true value of w is 0.5, a substantial proportion of participants
will have a MLE of ŵ = 1; in the present simulation, this was the
case for 50 out of 1000 participants. We will revisit this issue later.
In sum, for single participants EV parameter recovery is virtu-

ally unbiased, but has relatively high variance. Of course, when the
EV model is used in an experimental setting, high–variance indi-
vidual parameter estimates are combined into a group average, and
this group average has amuch lower variability than the individual
point estimates. However, the group averaging procedure ignores
the commonalities that are shared by the participantswithin a par-
ticular group, a disadvantage that is remedied by the Bayesian hi-
erarchical model proposed later.

2.2. Parameter correlations across single synthetic participants

Ideally, parameter point estimates show little correlation across
synthetic participants. The presence of such correlations could
indicate that the effects of overestimating a certain parameter, say
w, can be compensated by overestimating another parameter, say
a. Such interactions between parameters lower the efficiency of
parameter estimation and urge cautionwith respect to the ensuing
statistical analysis (Ratcliff & Tuerlinckx, 2002, pp. 452–455).
To investigate this issue, we studied the correlational patterns

between the parameters for the synthetic data described in the
previous section. Fig. 2 plots the parameters against each other. The
dotted lines indicate the true parameter values. Fig. 2 shows that
the correlation between attention weight w and updating rate a
is positive but not very strong (i.e., r = .20). However, there is a
substantial negative correlation between attention weight w and
response consistency c (i.e., r = −.53); in other words, synthetic
participants who appear to pay relatively much attention to losses
will also appear to have a relatively low choice consistency. The
relationship between updating rate a and response consistency c
is also negative (i.e., r = −.33), such that synthetic participants
who appear to have a relatively high updating rate will also appear
to have a relatively low choice consistency.
Finally, Fig. 2 also highlights the substantial variability in the

parameter recovery for individual participants, and shows again
the fact that several of the MLEs for w are on the boundary of the
parameter space (i.e.,w = 1).
2.3. Identifiability within single human and synthetic participants

The previous two sections have revealed high variability
of parameter recovery, and substantial correlations between
parameter values across synthetic participants. These results
suggest that, at least on the level of an individual participant,
maximum likelihood parameter estimation in the EV model may
suffer from a problem of identifiability. That is, it may be difficult
in the particular probabilistic environment of the IGT to determine
uniquely the most likely values for the parameters.
To examine the issue of identifiability more closely, we plotted

log likelihood contours or log likelihood landscapes, that is, graphs
that show how the logarithm of the likelihood changes across
different parameter values for w, a, and c. Ideally, a log likelihood
landscape has a single, pronounced peak that falls off equally
quickly in all directions.
For the first log likelihood contour plot, we consider empirical

data from a single human participant. This participant completed
a 150–trial IGT for which the experimental details are described
in Section 4 of this article.3 The EV maximum likelihood of this
participant was the highest among a total of 165 participants,
and therefore this participant can be considered a relatively ideal
specimen.
Fig. 3 shows the log likelihood contours for our ideal participant.

Each panel shows the log likelihood values as a function of two
EV parameters – the third parameter is fixed at its maximum
likelihood estimate. The three right–hand panels are a zoomed–in
version of the three left–hand panels. The three left–hand panels
show that the log likelihood landscape is somewhat irregular,
particularly for the bottom panel w vs. a landscape. Nevertheless,
the right–hand panels suggest that this irregularity is less of
a problem in the neighborhood of the maximum. For our
ideal participant, the top right and bottom right landscapes
indicate that small changes in the attention weight parameter
w are accompanied by relatively large changes in the response
consistency parameter c and the update parameter a, respectively.
This makes c and a relatively difficult to identify. Note that the log
likelihood contours depend on the parameters used to generate the
data. Our parameter values (e.g., w = 0.5, a = 0.35, and c =
0.35) were informed by previous research and are fairly typical;
nevertheless, it should be kept in mind that different parameter
values may lead to different log likelihood contours.
For the second log likelihood contour plot, we conducted a

simulation with a synthetic participant who completed a 10,000
trial IGT. The parameter values in this simulation were the same
as those used previously, that is, w = 0.5, a = 0.35, and c =
0.35. One would expect that with 10,000 trials, the log likelihood
contours would be much better behaved.
Contrary to intuition, Fig. 4 shows that the shape of the log

likelihood landscape again gives cause for concern, even when
estimation is based on 10,000 trials from a simulated participant.
Specifically, the elongated landscapes for w and a when plotted
against c suggest that small changes in c can compensate for large
changes in w and a. When c is fixed at its true value, the log
likelihood landscape looks much better. Despite these concerns
about the log likelihood contours, it should be acknowledged that
in the case of 10,000 trials, the parameters are recovered relatively
accurately.
The foregoing analyses have revealed that the EV parameter

estimation routine is not immune to problems. In particular,
the large variability that characterizes the parameter estimation
for individual participants means that (1) it is valuable to have

3 The participant under consideration here completed the ‘‘reward condition’’ of
the experiment described later.
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Fig. 2. EV parameter correlations based on MLEs from 1000 synthetic participants, each completing a 150–trial IGT. Dotted lines indicate true parameter values: Attention
weightw = 0.5, updating rate a = 0.35, and response consistency c = 0.35.
Fig. 3. Log likelihood contours for two EV parameters, with the third one fixed at its most likely value. The three right panels are a zoomed–in version of the left three
panels. The arrows in the right panels point to the MLEs. Data come from an ‘‘ideal’’ human participant completing a 150–trial IGT (see text for details).
access to and use the uncertainty that accompanies parameter
estimation for individual participants; and (2) it is necessary to
combine information across different participants. One of themost
principled ways to accomplish these goals is to turn to Bayesian
inference.

3. Bayesian estimation

In Bayesian estimation (e.g., Bernardo and Smith (1994) and
Lindley (2000)), all uncertainty about parameters is quantified
by probability distributions. Prior parameter distributions are
updated by incoming data to yield posterior distributions.
These posterior distributions quantify our uncertainty about the
parameters after having seen the data (for introductions to
Bayesian inference for psychologists see for instance Edwards,
Lindman, and Savage (1963); Lee and Wagenmakers (2005), and
Rouder and Lu (2005)).
The Bayesian approach holds many advantages over the or-

thodox maximum likelihood approach (for a review see Wagen-
makers, Lee, Lodewyckx, and Iverson (2008)). One of the more
general advantages is that the axiomatic foundations of the
Bayesian approach guarantee that it is coherent; in the statisti-
cal sense of the word, this means that information from different
sources is combined in a principled manner such that inferential
statements cannot be internally inconsistent.
Other prime advantages of the Bayesian approach include

flexibility, generality, and practicality. For instance, Bayesian
nonlinearmodels are easily equippedwith hierarchical extensions.
Indeed, some researchers profess to adopt the Bayesian approach
for its practical advantages alone (e.g., Rouder and Lu (2005,
p. 599)).
In the context of the EV model, a concrete advantage of the

Bayesian procedure is that it yields posterior distributions forw, a,
and c. These posterior distributions directly convey the uncertainty
associated with individual parameter estimates. Below, we first
introduce the Bayesian EV model for inference on the level of a
single participant, and then add a hierarchical structure that allows
information fromdifferent participants to be combined in coherent
fashion.
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Fig. 4. Log likelihood contours for two EV parameters, with the third one fixed at its true value (i.e.,w = 0.5, a = 0.35, and c = 0.35). The three right panels are a zoomed–in
version of the left three panels. The arrows in the right panels point to the MLEs. Data come from a synthetic participant completing a 10,000–trial IGT.
3.1. The Bayesian graphical EV model for a single participant analysis

It is often insightful to represent Bayesian models graphically,
as this notation highlights the model structure, the dependence
between the model parameters, and the way in which the
likelihood can be factorized to reduce computational effort
(for introductions to graphical models, see for instance Gilks,
Thomas, and Spiegelhalter (1994), Griffiths, Kemp, and Tenenbaum
(in press), Lauritzen (1996), Lee (2008) and Spiegelhalter (1998)).
The Bayesian graphical EV model for a single participant

analysis is shown in Fig. 5. In this notation, nodes represent
variables of interest, and the graph structure is used to indicate
dependencies between the variables, with children depending
on their parents. The double borders indicate that the variables
under consideration are deterministic (i.e., they are calculated
without noise from other variables) rather than stochastic.
Continuous variables are represented with circular nodes and
discrete variables are represented with square nodes; observed
variables are shaded and unobserved variables are not shaded.
In Fig. 5, for instance, the observed variable Wt−1 indicates the
rewards obtained by the participant on trial t−1.We also use plate
notation, enclosing with square boundaries subsets of the graph
that have independent replications in themodel. The plate of Fig. 5
reads t = 1, . . . , 150 and this corresponds to the 150 choices in
the IGT.
Fig. 5 shows that the psychological processes associated with

parameters w, a, and c are unobserved (i.e., the nodes are
unshaded) and continuous (i.e., the nodes are circular). The
quantities vt−1, Evt , θt−1, and Pr[St ] are deterministic (i.e., the
nodes have double borders), as these quantities are calculated
without noise from Eqs. (1)–(4). To avoid crowding the figure, we
have suppressed the notation that indexes the deck number k.
In order to get off the ground, the Bayesian inference ma-

chine needs prior distributions for its parameters. For the EV
model, we choose noninformative priors, that is, priors that are
uniform across their range. For ease for application, we initially
programmed this model in the WinBUGS environment (Spiegel-
halter, Thomas, Best, & Lunn, 2003) that has been developed to
approximate distributions by sampling values from them using
Markov chain Monte Carlo techniques. The acronym BUGS stands
for Bayesian inference Using Gibbs Sampling (Casella & George,
1992), and it greatly facilitates Bayesian modeling and communi-
cation (for a review see Cowles (2004)).4
The direct implementation of the EV model in WinBUGS

is relatively straightforward, but the program takes about five
minutes to obtain a reliable estimation of the parameters for a
single participant, and occasionally crashes. When the EV model is
hand–coded as aWinBUGS function with the help of theWinBUGS
Development Interface (WBDev, (Lunn, 2003)), the program no
longer crashes and runtime decreases to about 8 seconds for a
single participant.

3.2. Illustrative results for a single synthetic participant

We illustrate the Bayesian Markov chain Monte Carlo (MCMC)
parameter estimation routine for the EV model by applying the
method to data from a synthetic participant in a 150–trial IGT. As in
our previous simulations, the true parameter valueswerew = 0.5,
a = 0.35, and c = 0.35. Fig. 6 shows the result.
The top panels of Fig. 6 show that the medians of the posterior

distributions are relatively close to the true generating values
for the parameters. More importantly, the posterior distributions
directly indicate the uncertainty about the parameters. For
instance, one only needs to glance at the top panels to learn

4 At the time ofwriting,WinBUGS is freely available at http://www.mrc-bsu.cam.
ac.uk/bugs/winbugs/contents.shtml.
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Fig. 5. Bayesian graphical EV model for a single participant analysis.
Fig. 6. Density estimates for posterior distributions (top row) andMCMC chains (bottom row) for the three EV parameters based on data from a single synthetic participant
completing a 150–trial IGT. The dotted lines in the top panels indicate the true parameter values (i.e.,w = 0.5, a = 0.35, and c = 0.35).
that the attention weight parameter w is likely to lie somewhere
in between 0.25 and 0.75, that the updating rate parameter a
lies somewhere in between 0.20 and 0.75, and that the response
consistency parameter c lies somewhere in between−0.5 and 0.5.
The bottom panels of Fig. 6 show the MCMC chains that form

the basis for the posterior distributions in the top panels. Visual
inspection suggests that these chains are relatively well–behaved,
in the sense that appear to be draws from the stationary
distribution.
In addition to plotting the posterior distributions for the three

parameters separately, the MCMC samples can also be used to
plot joint posterior distributions. The joint distributions provide
useful information with respect to how the parameters for a single
participant relate to each other. Fig. 7 plots the MCMC values from
joint distributions for three parameter pairs. The results show that
there is a substantial negative correlation between the c parameter
and the w and a parameters. This correlational pattern echoes the
earlier result based on the MLEs for 1000 synthetic participants
(see Fig. 2).

3.3. Illustrative results for a single human participant

Here we illustrate the Bayesian parameter estimation routine
by application to the data from the same human participant whose
datawere also analyzed bymaximum likelihood (cf. Fig. 3). The top
panels of Fig. 8 show that themedians of the posterior distributions
are very close to the MLE estimates. These panels also show that
uncertainty aboutw is relatively small, whereas uncertainty about



R. Wetzels et al. / Journal of Mathematical Psychology 54 (2010) 14–27 21
Fig. 7. Joint posterior distributions for EV parameter pairs, based on MCMC samples from a Bayesian analysis of a single synthetic participant completing a 150–trial IGT.
The dotted lines indicate the true parameter values (i.e.,w = 0.5, a = 0.35, and c = 0.35).
Fig. 8. Density estimates for posterior distributions (top row) andMCMC chains (bottom row) for the three EV parameters based on data from an ‘‘ideal’’ human participant
completing a 150–trial IGT. The dotted lines in the top panels indicate the MLE parameter values (i.e., ŵ = 0.10, â = 0.40, and ĉ = 2.17).
a and c remains substantial. Visual inspection of the chains, plotted
in the bottom three panels, strongly suggests convergence to the
stationary distribution.
Fig. 9 shows MCMC samples from the joint posterior distribu-

tions for our ideal human participant. The left–hand and middle
panels show that small changes in the attention weight parameter
w are associated with relatively large changes in the update pa-
rameter a and the response consistency parameter c , respectively.
This echoes the results from the earlier analysis of the log likeli-
hood landscapes in Fig. 3.

3.4. The Bayesian Graphical EV Model for a Hierarchical Analysis

Historically, the field of experimental psychology has mostly
ignored individual differences, pretending instead that each new
participant is a replicate of the previous one (Batchelder, 2007). As
Bill Estes and others have shown, however, individual differences
that are ignored can lead to averaging artifacts in which the data
that are averaged over participants are no longer representative
for any of the participants (Estes, 1956, 2002; Heathcote, Brown,
& Mewhort, 2000). One way to address this issue, popular
in psychophysics, is to measure each individual participant
extensively, anddealwith the data on a participant–by–participant
basis.
In between the two extremes of assuming that participants

are completely the same and that they are completely different
lies the compromise of hierarchical modeling (see also Lee and
Webb (2005)). The theoretical advantages and practical relevance
of a Bayesian hierarchical analysis for common experimental
designs have been repeatedly demonstrated by Jeff Rouder
and others (Morey, Pratte, & Rouder, 2008; Morey, Rouder,
& Speckman, 2008; Navarro, Griffiths, Steyvers, & Lee, 2006;
Rouder & Lu, 2005; Rouder, Lu, Morey, Sun, & Speckman,
2008; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder et al.,
2007). Although hierarchical analyses can be carried out using
orthodox methodology (i.e., Hoffman and Rovine (2007)), there
are convincing philosophical and practical reasons to prefer the
Bayesian methodology (e.g., Lindley (2000) and Gelman and Hill
(2007), respectively).
In Bayesian hierarchical models, parameters for individual peo-

ple are assumed to be drawn from a group–level distribution. Such
multi–level structures naturally incorporate both the differences
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Fig. 9. Joint posterior distributions for EV parameter pairs, based on MCMC samples from a Bayesian analysis of an ‘‘ideal’’ human participant completing a 150–trial IGT.
The dotted lines indicate the MLE parameter values (i.e., ŵ = 0.10, â = 0.40, and ĉ = 2.17).
and the commonalities between people, and therefore provide ex-
perimental psychology with the means to settle the age–old prob-
lem of how to deal with individual differences.
The flexibility of the Bayesian paradigm makes it straightfor-

ward to extend the single participant model from Fig. 5 in a hier-
archical fashion. As Fig. 10 shows, the hierarchical model differs
from the individual model in that it adds a plate to indicate inde-
pendent replications for i = 1, . . . ,N participants. In addition, the
hierarchical model transforms c to lie between 0 and 1 (instead of
between −5 and +5), so that all EV parameters are now on a rate
scale (this transformation is not shown in the figure).
In the graphical model notation of Fig. 10, all three parameters

wi, ai, and ci are deterministic; this is because instead of modeling
wi, ai, and ci directly, we instead model their respective probit
transformations νi, αi, and γi. The probit transform is the inverse
cumulative distribution function of the normal distribution, so
that, for instance, a rate of αi = 0.5 maps onto a probit value of
νi = 0. The probit scale covers the entire real line, and a standard
normal distribution on the probit scale corresponds to a uniform
distribution on the rate scale (Rouder & Lu, 2005, p. 588). We
assume that for a group of participants, the individual probit rates
νi, αi, and γi are drawn from group–level normal distributionswith
respective normal means µν , µα , and µγ and respective normal
standard deviations σν , σα , and σγ .
The specification of the model requires prior distributions for

the normal means and standard deviations of the group–level
distributions. We used standard normal priors on µ(·), that is,
µ(·) ∼ N(0, 1) and a uniform prior from 0 to 1.5 on the standard
deviations σ(·), that is, σ(·) ∼ U(0, 1.5). The upper limit of 1.5 was
determined by the following line of reasoning (see also Lodewyckx,
Lee, and Wagenmakers (2008)). When, say, µα = 0 and σα = 1,
then αi comes from a standard normal distribution on the probit
scale and ai comes from a uniform distribution on the rate scale.
Increasing the value of σα results in a bimodal distribution for ai,
whichwe deem unrealistic. Asµα increases, so does themaximum
value of σα that results in a just–unimodal distribution for ai.When
we assign µα an extreme value of 2.3 (i.e., this translates to an
average a value of .99) a value of σα ≈ 1.5 is the maximum
value that still guarantees a unimodal distribution on the rate
scale.

4. Application to experimental data

In this section we apply the Bayesian hierarchical model as
shown in Fig. 10 to a validation experiment with 165 participants.
The primary goal of the experimentwas to carry out a test of specific
influence for the EV model. This means that, next to the standard
condition, we included three experimental conditions, each of
which designed to affect selectively one of the EV parameters w,
a, or c. If the parameters of the EV model indeed correspond to
the psychological processes that they are assumed to be associated
with, then an experimental manipulation of ‘‘attention weight’’
should affect only the estimate ofw, an experimentalmanipulation
of ‘‘updating rate’’ should affect only the estimate of a, and
an experimental manipulation of ‘‘response consistency’’ should
affect only the estimate of c.

4.1. Method

4.1.1. Participants
A total of 165 students from the University of Amsterdam

participated for course credit.

4.1.2. Stimulus materials and design
The experiment featured four conditions. In the first ‘‘standard’’

condition, 41 participants completed a 150–trial IGT under
the usual instructions. In the second ‘‘rewards’’ condition, 42
participants completed a 150–trial IGT under the instruction to pay
particular attention to the rewards and think of the losses as being
less important. This instruction was strengthened by displaying
the rewards more prominently on the screen than the losses.
We expected this manipulation to decrease w and leave a and c
unaffected.
In the third ‘‘updating’’ condition, 41 participants completed

a 150–trial IGT under the usual instruction. However, in the
updating condition each card selection was followed by the
on–screen presentation of a sequence of five numbers; participants
were required to remember this sequence, as after the next
card selection they were asked about the relative position of
one of the numbers (Hinson, Jameson, & Whitney, 2002). For
example, presentation of the number sequence {1, 5, 3, 4, 2}
(i.e., all numbers are integers ranging from 1 to 5, drawn randomly
without replacement) could be followed one card selection later
by the request to ‘‘enter the number that was in the third place’’.
We expected this manipulation to increase a and leave w and c
unaffected.
In the fourth ‘‘consistency’’ condition, 41 participants com-

pleted a 150–trial IGT under the usual instruction. However, in
the consistency condition participants were told after every 10
trials that the payoff schemes for the decks could have changed
(i.e., ‘‘Beware, the rewards for each deck may have changed’’).
We expected this manipulation to decrease c and leave w and a
unaffected.
In all four conditions, we used a computerized version of the

IGT where the four cards were displayed on the screen and the
participants indicated their card selection by a mouse click. In all
conditions of the experiment, we used the standard IGT payoff
scheme shown in Table 1. After each card selection, the associated
rewards and losses were displayed on the screen for 2 seconds.
Before the start of the next selection opportunity, the mouse was
re–positioned at the center of the screen.
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Fig. 10. Bayesian graphical EV model for a hierarchical analysis.
4.1.3. Procedure
Participants were randomly assigned to one of the four

conditions. Task instructions were presented on the screen prior
to the start of the experiment. Participants were allowed to
start the IGT after verbally confirming that they had understood
the instructions. The experiment took less than 30 minutes to
complete.

4.2. Results

4.2.1. Card selection
Fig. 11 shows the proportion of selected decks as a function

of trial number in each of the four conditions. It is clear that
our experimental manipulations affected participant’s choice
performance. In particular, only in the standard condition did
participants learn to prefer the good deck C over the bad deck B.
Although the extent of learning in the standard condition may

seem relatively modest, the IGT is a surprisingly difficult task to
grasp, as is evident froma study byCaroselli et al. (2006)who found
that university students often tend to prefer the bad decks.
In the reward condition, participants have a strong preference

for the bad deck B, a deck with relatively high rewards and an
occasional large loss. The behavior is in line with the instruction
to pay more attention to rewards than to losses.
In the updating condition and the consistency conditions, the

participants consistently express a preference for the bad deck B,
although this preference is less pronounced than in the rewards
condition. In conclusion, our experimental manipulations were
effective on the level of choice performance.
4.2.2. EV parameters: Maximum likelihood estimation
In the usual group analysis for the EV model, individual

maximum likelihood estimates are averaged to produce a group
estimate. Inference is then based on the group mean and its
variance. For comparison purposes, we follow the same procedure
here. The result of our analysis is shown in Fig. 12, which plots the
meanMLEs for the three EV parameters in each of the four different
experimental conditions.
The left panel of Fig. 12 shows that, as expected, the w

parameter is lower in the rewards condition than in the other three
conditions, and that the w parameter does not differ between the
standard condition, the updating condition, and the consistency
condition. This result suggests that the w parameter is indeed
uniquely associated to the attention for losses versus rewards, just
as the EV model proposes.
Unfortunately, the results of the other conditions are much less

clear. The middle panel and the right panel of Fig. 12 indicate that
there is no reliable experimental effect on the EV parameters a and
c , respectively. It may of course be argued that our experimental
manipulations for a and c were too weak to produce an effect;
however, the distinct patterns of choice performance for the
standard condition versus the updating and consistency conditions
suggests otherwise (cf. Fig. 11). This issue is presently unresolved,
and more research is needed to address it.

4.2.3. EV parameters: Bayesian hierarchical estimation
We applied the Bayesian hierarchical EV model separately to

each of the four experimental conditions. The focus of interest is on
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Fig. 11. The proportion of chosen decks as a function of trial number in each of the four conditions of the validation experiment. Consistent with IGT nomenclature, deck
A is disadvantageous and has high–frequent loss; deck B is disadvantageous and has low–frequent loss; deck C is advantageous and has high–frequent loss; and deck D is
advantageous and has low–frequent loss.
Fig. 12. Meanmaximum likelihood estimates for the three EV parameters in the four experimental conditions. Error bars indicate one bootstrap standard error of themean.
themeans of the group distributions: in Fig. 10, these are indicated
as µν , µα , and µγ . In order to facilitate comparison with the mean
MLEmethod, the posterior distributions for these parameterswere
transformed back from the probit scale to the rate scale.
Note that in the present work, we concentrate on parameter

estimation rather than on model selection or hypothesis testing;
this means that here we do not consider equality constraints on
the model parameters across experimental conditions, such that
one could formally test whether, say, µν is the same or different
in the four experimental conditions. The extension to model
selection in Bayesian hierarchical models can be accomplished
by transdimensional MCMC (e.g., Carlin and Chib (1995), Green
(1995), Sinharay and Stern (2005) and Sisson (2005)); applications
in the field of psychology are discussed in Lodewyckx et al. (2008).
Considering again the problem of parameter estimation, Fig. 13

shows that the Bayesian hierarchical estimation method and the
mean MLE method yield different results. In particular, the middle
panel shows that the Bayesian estimates for a are systematically
lower then the mean MLEs, and the right panel shows that the
Bayesian estimates for c are systematically higher than the mean
MLEs.
The discrepancy between the Bayesian hierarchical estimates

and those provided by the mean MLE method motivates a closer
inspection of the data. This inspection revealed two potential
sources of contamination. The first source is that for several
participants, the MLE of at least one of the parameters was
estimated on the boundary of the parameter space. The situation
is summarized in the first two columns of Table 2.
When parameter point estimates are located on the boundary

of the parameter space, this often signals a problem with the
estimation procedure, the data, or the interaction between the data
and the model. Note that the same phenomenon was observed
for the parameter recovery simulations reported in Figs. 1 and 2.
We removed the first source of contamination by eliminating from
the analyses all data sets for which one or more of the maximum
likelihood point estimates were located on the boundary of the
parameter space. The analyses for the filtered data are shown in
Fig. 14, from which it is evident that results from the MLE method
and the Bayesian hierarchical method are now more similar than
they were for the contaminated data. In particular, the mean MLEs
for a have shifted downward, and themeanMLEs for c have shifted
upward. The results from the Bayesian hierarchical analysis appear
to bemore robust to the removal of the extreme estimates than are
those from the mean MLE method.
The second source of potential contamination in the data is

that a subset of participants may, for lack of effort or lack of
insight, not have understood the dynamics of the IGT. In order
to identify that subset, we followed Busemeyer and Stout (2002)
and compared performance of the EV model to that of a baseline
model. The baseline model is a statistical model that assumes that
choices are independently and identically distributed over trials –
it incorporates the frequencies with which the decks are selected,
but does not incorporate any effects of learning. For example,when
a participant has selected a card from deck B in 30% of the cases,
the baseline model assumes that the probabilistic forecast of the
baseline model for deck B is a constant 0.3 throughout the task.
The final columns of Table 2 shows the numbers of participants

that remain once we remove participants for whom the baseline
model provided a better fit than the EV model. Table 2 shows
that the two sources of contamination (i.e., parameters on the
boundary and relatively poor fits of the EV model) each account
for approximately 25% of participants. Fig. 15 shows that when we
apply the two estimation procedures to the remaining 50% of the
participants, the result of the Bayesian hierarchical estimation are
again somewhat more robust than those of themeanMLEmethod.
It should be acknowledged that both estimation procedures

lead to the same inference with respect to the effect of the
experimental manipulations: a successful specific influence on
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Fig. 13. Posterior distributions for the group mean of the three EV parameters in the four experimental conditions (top) compared to mean maximum likelihood estimates
(bottom). For the mean maximum likelihood estimates, the horizontal error bars indicate one bootstrap standard error of the mean.
Table 2
Data Filtering for the Validation Experiment. Note. BL > EV refers to the situation in which the baseline model outperforms the EV model. See text for details.

Condition Participant total After removal of boundary estimates After additional removal of cases for which BL > EV

Standard 41 30 19
Rewards 42 31 20
Updating 41 25 19
Consistency 41 27 16
the attention weight w, but no noticeable effect on updating
rate a and response consistency c . Nevertheless, in other cases
the inference from the Bayesian hierarchical model may differ
from that of the mean MLE method. In such situations, we
feel the former method is superior: it coherently combines
information from different participants, summarizes uncertainty
through probability distributions, and appears to be relatively
robust to contamination of the data.

5. General discussion

In an attempt to bridge the separate disciplines of clinical psy-
chology and mathematical psychology, the EV model uses max-
imum likelihood estimation to decompose choice performance
in the Iowa Gambling Task into three underlying psychological
processes: the attention to losses versus rewards, the rate with
which new information updates old expectancies, and the extend
to which people make decisions that are consistent with their in-
ternal evaluations. The EV model has a proven track record and
can be presently considered the default quantitative model for the
Iowa Gambling Task.
In this article, we focused on the method of parameter

estimation for the EV model. In particular, we showed that for
single participants it is generally not possible to estimate the EV
parameters precisely. Therefore, one should be wary of applying
the EV model to the clinical diagnosis of decision making deficits
on the level of single patients.
When the EVmodel is applied on the group level, such as when

researchers compare model parameters for a group of cocaine
addicts versus those for a group of normal controls, we recommend
the use of the Bayesian hierarchical model. The Bayesian approach
is not only more principled than the standard mean maximum
likelihood approach, but the Bayesian procedure is also more
robust in the face of contamination. Regardless of the estimation
procedure that is used, we recommend that parameters that are on
the boundary of parameter space be removed prior to the analysis.
The Bayesian hierarchical model proposed here can be applied

not just to the EV model for the IGT, but much more broadly
to a whole range of reinforcement learning tasks (e.g., Sutton
and Barto (1998)). It is likely that tasks other than the IGT can
provide a more efficient means of estimating the psychological
processes of interest. For instance, it is possible that parameters
are estimated more precisely when the IGT is altered to reveal
foregone payoffs, that is, when the participant sees not only the
result of the actual choice, but also sees the foregone payoffs from
unchosen decks. The Bayesianmodel developed here could be used
to explore a range of different task formats in order to select a
format that allows researchers to extract a relatively large amount
of information from a participant’s choice performance.
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Fig. 14. Posterior distributions for the group mean of the three EV parameters in the four experimental conditions (top) compared to mean maximum likelihood estimates
(bottom), after removal of participants forwhich at least one of themaximum likelihood point estimateswas on the boundary of the parameter space. For themeanmaximum
likelihood estimates, the horizontal error bars indicate one bootstrap standard error of the mean.
Fig. 15. Posterior distributions for the group mean of the three EV parameters in the four experimental conditions (top) compared to mean maximum likelihood estimates
(bottom), after removal of (1) participants forwhich at least one of themaximum likelihood point estimateswas on the boundary of the parameter space; and (2) participants
for which the baseline model outperformed the EV model. For the mean maximum likelihood estimates, the horizontal error bars indicate one bootstrap standard error of
the mean.
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The Expectancy Valence model for the Iowa Gambling Task
has greatly facilitated the communication between the separate
disciplines of clinical psychology and mathematical psychology.
We hope that by taking individual differences and similarities
into account in a coherent fashion, by quantifying uncertainty of
parameter estimation in terms of probability distributions, and
by providing the opportunity to discover new tasks with high
information gain, the Bayesian hierarchical paradigm can increase
this level of communication even further.
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