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The purpose of the recently proposed prep statistic is to estimate the probability of concurrence, that is,
the probability that a replicate experiment yields an effect of the same sign (Killeen, 2005a). The
influential journal Psychological Science endorses prep and recommends its use over that of traditional
methods. Here we show that prep overestimates the probability of concurrence. This is because prep was
derived under the assumption that all effect sizes in the population are equally likely a priori. In many
situations, however, it is advisable also to entertain a null hypothesis of no or approximately no effect.
We show how the posterior probability of the null hypothesis is sensitive to a priori considerations and
to the evidence provided by the data; and the higher the posterior probability of the null hypothesis, the
smaller the probability of concurrence. When the null hypothesis and the alternative hypothesis are
equally likely a priori, prep may overestimate the probability of concurrence by 30% and more. We
conclude that prep provides an upper bound on the probability of concurrence, a bound that brings with
it the danger of having researchers believe that their experimental effects are much more reliable than
they actually are.

Keywords: statistical hypothesis testing, prediction, model averaging, Bayesian analysis

Suppose you conduct an experiment to test whether words such
as pizza prime words such as coin (Pecher, Zeelenberg, & Raaij-
makers, 1998). The motivating hypothesis states that prior presen-
tation of a word facilitates later processing for another word when
both words refer to objects with similar physical attributes (e.g.,
pizzas and coins are both round and flat). This relatively little
studied “perceptual priming” effect may be contrasted with the
well-established “associative priming” effect in which the presen-
tation of a word such as butter facilitates later processing for the
associatively related word bread (Meyer & Schvaneveldt, 1971).

In your priming experiment, you measure the effects of percep-
tual priming and associative priming, and a p value hypothesis test
shows that both effects are significant—by coincidence, both tests
yield p � .03. Blissfully unaware of the work by Pecher et al.
(1998), you set out to submit a report to one of psychology’s
premier journals, Psychological Science. You browse the journal’s
Author Guidelines and find that authors are encouraged to replace
the traditional p value with Peter Killeen’s prep value (Ashby &
O’Brien, 2008; Killeen, 2005a, 2005b, 2005c, 2006, 2007;
Sanabria & Killeen, 2007; for discussion, see Cumming, 2005;
Doros & Geier, 2005; Macdonald, 2005; Wagenmakers & Grün-
wald, 2006).

Because you do not want to decrease needlessly your chances of
getting accepted by Psychological Science, you transform your
two-sided p values of p � .03 into prep values of approximately .94
(e.g., Killeen, 2005a, p. 353; Killeen, 2005c, p. 17). You do not
have the time to analyze the statistics in the Killeen articles
carefully, but you understand that you can conclude that, should
you repeat the experiment, there is a prep � .94 probability of again
finding each priming effect, even though the replication may not be
statistically significant (i.e., replication refers to concurrence, that
is, finding a replicate effect of the same sign; Killeen, 2005a, p.
346). Is this conclusion justified? We believe it is not.

Our disbelief stems from the fact that prep is based on a single
model, namely the model that assumes all effect sizes to be equally
likely a priori (Doros & Geier, 2005; Killeen, 2005b). We call this
model H1. The prep statistic does not take into account the plau-
sibility of the simpler model, H0, that postulates that an effect is
either completely absent or so small that it would take a much
larger sample for it to be detected. When H0 is deemed plausible—
either through a priori considerations or through the information
provided by the data—this should considerably reduce one’s con-
fidence of finding concurrence, as prep � 1/2 under H0 (see also
Macdonald, 2005).1

To illustrate the impact of a priori considerations on the prob-
ability of concurrence, let us revisit the priming experiment and
its prep � .94 for the established phenomenon of associative
priming and the new phenomenon of perceptual priming. Imag-
ine that you are given $100 to bet that a replicate effect will

1 We write prep � 1/2 and not prep � 1/2 because our argument also
holds when H0 is only approximately true, as we later discuss in detail.
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concur with your data; that is, you get to keep the $100 when
the effect of your choice (i.e., either perceptual priming or
associative priming) replicates, but you lose the $100 that you
were given when the effect of your choice does not replicate. In
our priming example, the prep statistic suggests that you have no
grounds to prefer one effect over the other, as prep � .94 for
both. Nevertheless, the smart money in the betting scenario will
be on the established effect, not on the new effect.

The reason for this is the possibility that your new finding of
perceptual priming is a fluke, that is, a Type I error, and if this is the
case, then prep is 1/2, not .94. On the other hand, associative priming
has been reported in countless studies since Meyer and Schvaneveldt
(1971), and this knowledge increases the probability that your mea-
surement of this effect is real, which in turn increases the probability
of finding concurrence in a replication of your priming experiment.

Thus, it is evident that established but not novel effects inspire
high confidence of concurrence. This observation is, however, at
odds with the standard interpretation of the prep statistic (see also
Macdonald, 2005); in the following, we elaborate and formalize
this intuitive argument and show how the calculation of the prob-
ability of concurrence requires one to take both H0 and H1 into
account simultaneously.

The prep Statistic

Consider an experiment that features two conditions. Let d denote
the observed effect size and drep the effect size in a replication study.
Concurrence is observed when d and drep have the same sign, so that
drepd � 0. As explained in Doros and Geier (2005) and Killeen
(2005a, 2005b), prep is computed under the assumption of a flat
improper prior distribution2 on the true population effect �. This
assumption is H1 in our terminology. To be explicit,

prep�Pr�drepd � 0�d, H1�. (1)

Note that this equation does not feature �; that unobserved
parameter has been integrated out with the flat improper prior
distribution. Of course, one could argue whether such a flat dis-
tribution on � is appropriate (Iverson, Lee, & Wagenmakers, 2009;
Iverson, Lee, Zhang, & Wagenmakers, 2009): Indeed, in Bayesian
statistics, it is standard practice to use prior distributions that put
more mass on small effect sizes than on large effect sizes.3 For
instance, the prior on effect size in the Zellner and Siow (1980)
Bayesian hypothesis test is the Cauchy distribution (i.e., a t dis-
tribution with one degree of freedom). Here we sidestep this
discussion and wish to point out only that prep has Bayesian roots
and can therefore be given a Bayesian interpretation: The statistic
prep estimates the probability that a replicate effect will concur
with an original, under the assumption of a flat prior on the true
population effect �. More details are given in Appendix A.

The statistic prep can also be given a frequentist interpretation.
Specifically, prep relates to the traditional two-sided p value
(Killeen, 2005c, p. 17) as

prep � ����1 �1 �
p

2���2�, (2)

where � denotes the standard normal cumulative distribution
function. Figures 1A and 1B plot the relation between prep and the

two-sided p value. As can be seen from Figures 1A and 1B, the
relation between the two statistics is close to linear, for p � (0, 0.5)
and p � (0, 0.1), respectively. Divergence from linearity is appar-
ent only when we consider p values that are very small.

Given the almost linear mapping between the two-sided p value
and prep, one might well wonder to what extent prep provides
information that the traditional p value does not. Doros and Geier
(2005) argued that “any measure that is no more than a simple
transformation of the classical p value . . . will inherit the short-
comings of that p value” (p. 1006). In response, Killeen (2005b)
argued that prep and the p value, “although informationally equiv-
alent, are distinguished by the inferences they warrant; prep is a
valid posterior predictive probability, p is not” (p. 1011).

Bayesian Model Averaging and Its Effect on prep

As we have seen above, the statistic prep calculates the proba-
bility of concurrence under H1, that is, under the assumption of a
flat prior distribution for the population effect size �. We propose
also to consider an alternative model, H0, that states that � � 0.
Under H0, the value of prep is Pr(drepd � 0�d, H0) � 1/2. We later
discuss the extent to which H0 is plausible, but for now we proceed
by noting that in standard statistical practice, be it Bayesian,
frequentist, or likelihood based, H0 is generally considered plau-
sible and may even be assigned special status.

Thus, we now have two estimates for the probability of concur-
rence, one under H1 and one under H0. How might we proceed?
One way would be to settle on the estimate provided by the most
likely model. However, this would mean that a small change in the
data—say a minimal change that switches our preference from H1

to H0—could lead to a dramatic change in prep. More generally, a
procedure that focuses on the estimates from a single model
ignores the uncertainty in model selection and therefore results in
“over-confident inferences and decisions that are more risky than
one thinks they are” (Hoeting, Madigan, Raftery, & Volinsky,
1999, p. 382).

A second, better way to proceed is to construct a single estimate
for the probability of concurrence, one that does not depend on the
model that is being entertained. To this end, one can calculate a
weighted average of the two preps, in which the weights are given
by the posterior probabilities of H1 and H0. This procedure is
commonly known as Bayesian model averaging (e.g., Draper,
1995; Hoeting et al., 1999; Madigan & Raftery, 1994). Note that a
small change in the data causes only a small change in the
posterior model probabilities, so that even though the preference
order for the models may switch, the change in the model-averaged
estimate of prep will be small.

This means that when we apply the Bayesian model-averaging
procedure to prep, we should find that the weighted average of prep

values yields a more realistic estimate of the probability of con-
currence, an estimate that dampens the enthusiasm brought about
by an analysis that only considers H1. Specifically, the model-

2 An improper prior is a density function that does not integrate to a
finite number.

3 Despite the overlap in conclusion and authors, the articles by Iverson,
Lee, and Wagenmakers (2009) and Iverson, Lee, Zhang, and Wagenmakers
(2009) differ from the current one in content and focus.
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averaged value for prep, denoted here by prep
Bma, is always smaller or

equal to that of the original prep, which is conditional on H1:

prep
Bma � Pr(drepd � 0�d) � Pr(H0�d) Pr(drepd � 0�d, H0)

� Pr(H1�d) Pr(drepd � 0�d, H1)

� Pr(H0�d) � 1/2 � Pr(H1�d) � prep � prep. (3)

The foregoing shows that, from a Bayesian perspective at least,
it is prudent to calculate the overall probability of concurrence as
a weighted average of the separate probabilities of concurrence
under H0 and H1. Note that in order to arrive at an estimate for
the weights—the posterior model probabilities—one needs to up-
date the prior model probabilities Pr(H0) and Pr(H1) by means of
the data f(D�H0) and f(D�H1) to posterior model probabilities
Pr(H0�D) and Pr(H1�D), respectively. This implies that prep

Bma will be
lower than prep to the extent that Pr(H0�D) is large. This in turn
occurs when prior considerations lead to a high value for the prior
model probability Pr(H0), or when the data are relatively likely
under H0, that is, when f(D�H0) is relatively large compared with
f(D�H1).

The above analysis also clarifies why, in our earlier priming
example, one would have more confidence in replication of the
well-established effect than in that of the new effect; for the new
effect, Pr(H0) is relatively large, and this leads prep

Bma to be rela-
tively small. To get a feeling for the extent to which model
averaging drives down estimates for the probability of concur-
rence, we now turn to an example from a default Bayesian hy-
pothesis test.

Illustration: Model Averaging for a Default
Bayesian Hypothesis Test

Before we present the results from the Bayesian hypothesis test,
it is important to introduce some key concepts of Bayesian infer-
ence. More information can be found in Bayesian articles and
books that discuss philosophical foundations (Lindley, 2000;
O’Hagan & Forster, 2004), computational innovations (Gamerman
& Lopes, 2006), and practical contributions (Congdon, 2003).

Assume you contemplate two models, H0 and H1, and seek to
quantify model uncertainty in terms of probability. Consider first

H0. Bayes’ rule dictates how your prior probability of H0, Pr(H0),
is updated through the observed data D to give the posterior
probability of H0, Pr(H0�D):

Pr(H0�D) �
Pr(H0) f �D�H0�

Pr(H0) f �D�H0� � Pr(H1) f �D�H1�
. (4)

In the same way, one can calculate the posterior probability of H1,
Pr(H1�D). The ratio of these posterior probabilities is given by

Pr(H0�D)

Pr(H1�D)
�

Pr(H0)

Pr(H1)

f �D�H0�

f �D�H1�
. (5)

This equation shows that the change from prior odds Pr(H0)/Pr(H1)
to posterior odds Pr(H0�D)/Pr(H1�D) is determined entirely by the
ratio of the marginal likelihoods f(D�H0)/f(D�H1).4 This ratio is
generally known as the Bayes factor (Jeffreys, 1961), and the
Bayes factor, or the log of it, is often interpreted as the weight of
evidence coming from the data (Good, 1985). A hypothesis test
based on the Bayes factor prefers the model under which the
observed data are most likely (for details, see Berger & Pericchi,
1996; Bernardo & Smith, 1994, Chapter 6; Gill, 2002, Chapter 7;
Kass & Raftery, 1995; Klugkist, Laudy, & Hoijtink, 2005;
O’Hagan, 1995). Note that the Bayes factor quantifies the evidence
for H0 versus H1 without taking into account the prior plausibility
of the models.

Having established the necessary terminology, we can now
discuss the effect of model averaging on prep using a Bayesian Z
test that was proposed by Smith and Spiegelhalter (1980). This
Bayesian Z test is fully automatic, and as far as automatic hypoth-
esis tests go, its performance is regarded as “quite satisfactory”
(Berger & Delampady, 1987, p. 319). The Smith and Spiegelhalter
Z test estimates the Bayes factor by means of the following
equation:

B01 �
f �D�H0�

f �D�H1�
� �n exp �� Z2

2 �, (6)

where Z � d�n/2 is the familiar frequentist test statistic.

4 The likelihoods f(D�H � ) are called marginal because the model pa-
rameters have been integrated out.

Figure 1. The function that relates prep to the two-sided p value (Killeen, 2005c, p. 17).
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From Equation 3 and the derivations in Appendix A, the model-
averaged probability of concurrence is given by

prep
Bma � Pr(H0�d) � 1/2 � Pr(H1�d) � ���Z�

�2�, (7)

where � again denotes the standard normal cumulative distribu-
tion function. The posterior model probabilities in Equation 7 can
be obtained from Equations 5 and 6. For example, suppose that an
experiment with n � 25 yields d � 0.56. We compute Z � 1.98,
and plugging this into Equation 6 yields B01 � 0.704. When H0

and H1 are equally likely a priori, Pr(H0�d) is given by B01/(B01 �
1); in this case then, Pr(H0�d) � 0.704/1.704 � .413, and Pr(H1�d)
is its complement, 1 � .413 � .587. The standard normal cumu-
lative distribution function of 1.98/�2 equals .919. Putting these
separate components together in Equation 7 yields prep

Bma � .413 	
1/2 � .587 	 .919 � .746. It is striking that .746, the model-
averaged probability of concurrence, is considerably more conser-
vative than the .919 value that is obtained when H0 is ignored (i.e.,
on a scale from .5 to 1, this amounts to a decrease of 34.6%).

Demonstrating more fully the effect of model averaging on the
estimated probability of concurrence, Figure 2 shows three prep

methods as a function of Z score. In each panel of Figure 2, the
solid line gives Killeen’s original prep estimate. The dashed and
dotted lines provide the model-averaged estimates, that is, prep

Bma.
The model weights (i.e., the posterior probabilities of H1 and H0)

are based on the Smith and Spiegelhalter Bayesian Z test. Other
Bayesian tests, such as the one proposed by Zellner and Siow
(1980), yield similar results. The dashed line corresponds to an H1

that is a priori just as likely as H0, that is, Pr(H1) � Pr(H0) � 0.5;
the dotted line corresponds to an H1 that is a priori less likely than
H0, that is, Pr(H1) � 0.1, Pr(H0) � 0.9.

Each panel from Figure 2 shows that Killeen’s prep considerably
overestimates the model-averaged prep

Bma. The extent of overestima-
tion increases with n. Figure 2 highlights two causes that lead
Killeen’s prep to overestimate the probability of concurrence. First,
the difference between the solid and the dashed lines indicates the
extent to which the data support H0. When f(D�H0) is nonnegligible
compared with f(D�H1), the nonnegligible posterior probability for
H0 drives down prep

Bma compared with prep. Second, the difference
between the dashed and the dotted lines indicates the additional
effect of prior plausibility—when H1 is unlikely a priori, the
probability of concurrence is low, especially for data that are
inconclusive.

At this point, it is important to address two objections that might
be raised against our analysis. The first objection holds that
Pr(H0) � 0, because the null hypothesis is supposedly never true
exactly. At first sight, this objection—should it be correct—ap-
pears to seriously undercut our analysis. The second objection
holds that prior probabilities for models and parameters can never
be known and can therefore be safely ignored.

Objection 1: Is the Null Hypothesis Ever
Exactly True?

The first objection to our analysis goes as follows (e.g., Cohen,
1994). We know that, when we compare two populations, the
difference between them will never be exactly zero. This means
that we should be able to demonstrate the existence of any effect
whatsoever, given only that the sample size is large enough. For a
frequentist hypothesis test, the argument states that for large n, we
are guaranteed to reject the null hypothesis. But if we know
beforehand that the null hypothesis should be rejected for large n,
then why would we be interested in showing that it can or cannot
be rejected for small n? For a Bayesian hypothesis test, the same
argument could be used to claim that we know a priori that
Pr(H0) � 0, as � 
 0 always; and if this claim is true, Equation 3
simplifies to prep

Bma � prep, and the overestimation of prep is illusory.
The first counterargument to this claim is that our results hold

regardless of whether the null hypothesis is true exactly or only
approximately. Specifically, the same qualitative pattern of results
is obtained when we define the null hypothesis as a distribution of
small effect sizes that is centered around zero. For mathematical
details we refer the reader to Appendix B and to the work by
Berger and Delampady (1987, pp. 321–322).

Intuitively, the idea is that if the null hypothesis is only true
approximately, so that a very small effect is present—albeit one that
would take a much larger sample size to detect reliably—then the
probability of concurrence may not be exactly equal to 1/2, but it will
be only slightly higher. For a null hypothesis that is only approxi-
mately true, the probability of concurrence might be, say, .51, and this
value is much smaller than the values provided by Killeen’s prep.

The second counterargument is that the Bayes factor imple-
ments an automatic Occam’s razor that obeys the principle of

Figure 2. Results for three prep methods as a function of Z score.
Prep(K) denotes the prep method proposed by Killeen (2005c); Prep(B1)
denotes a Bayesian model-averaged prep

Bma method with an H1 that is a
priori likely, that is, Pr(H1) � 0.5; Prep(B2) denotes the same Bayesian
model-averaged prep

Bma method but now with an H1 that is a priori
unlikely, that is, Pr(H1) � 0.1.
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parsimony (Myung & Pitt, 1997). This means that the Bayes factor
will prefer the model, of the two, that has the smaller one-step-
ahead prediction error to unseen data from the same source (e.g.,
Dawid, 1984; Wagenmakers, Grünwald, & Steyvers, 2006). In
other words, the Bayes factor prefers the model, of the two, that
generalizes better. This predictive interpretation of the Bayes fac-
tor “does not depend on viewing one of the models as ‘true.’ . . .
Thus the Bayes factor can be viewed as measuring the relative
success of H1 and H0 at predicting the data” (Kass & Raftery,
1995, p. 777).

The third counterargument to the claim that the null hypothesis
is never true is that theories and models often predict the complete
absence of an effect (Rouder, Speckman, Sun, Morey, & Iverson,
2009). A test of these models therefore requires that we take the
null hypothesis seriously. In the field of visual word recognition,
for instance, the entry-opening theory (Forster, Mohan, & Hector,
2003) predicts that masked priming is absent for items that do not
have a lexical representation; another example from that literature
concerns the work by Bowers, Vigliocco, and Haan (1998), who
have argued that priming effects are equally large for words that
look the same in lower- and uppercase (e.g., kiss/KISS) or that look
different (e.g., edge/EDGE), a finding supportive of the hypothesis
that priming depends on abstract letter identities. A final example
comes from the field of recognition memory, where “context
noise” theories (e.g., Dennis & Humphreys, 2001), unlike rival
“item noise” theories (e.g., Gillund & Shiffrin, 1984), predict the
absence of a list-length effect. Empirically, this means context
noise models predict no change in recognition performance for
study lists of different lengths, and so their predictions are exactly
those of the null hypothesis (Dennis, Lee, & Kinnell, 2008).

The above models do not predict that the experimental effects
will be small; they predict them to be altogether absent. In fact, for
theoretical purposes it often does not matter how large an effect is,
as long as it is reliably detected. For instance, if priming effects
were larger for words that look the same in lower- and uppercase
(e.g., kiss/KISS) than for those that look different (e.g., edge/
EDGE), this would undermine the hypothesis that letters are rep-
resented abstractly, no matter whether the effect size was 100 ms
or 10 ms. Of course, it is much more difficult for a 10-ms effect to
gain credence in the field, but this issue is orthogonal to the
argument. Should the 10-ms effect be found repeatedly in different
laboratories across the world, the effect would at some point be
deemed reliable and considered strong evidence against any the-
oretical account that predicted its absence.

Finally, we believe that the philosophy that motivated the in-
troduction of prep is consistent not with parameter estimation—in
which the focus is generally on a single model—but rather with
model selection:

It is rare for psychologists to need estimates of parameters; we are more
typically interested in whether a causal relation exists between indepen-
dent and dependent variables . . . . Are women attracted more to men
with symmetric faces than to men with asymmetric faces? Does varia-
tion in irrelevant dimensions of stimuli affect judgments on relevant
dimensions? Does review of traumatic events facilitate recovery?
(Killeen, 2005a, p. 345)

When we are interested in the question of “whether a causal
relation exists between independent and dependent variables,” we
need to give special consideration to the possibility that such a

relation is absent. Or, in the words of Jeffreys (1961), “Any
significance test whatever involves the recognition that there is
something special about the value 0, implying that the simple law
[the null hypothesis H0] may possibly be true” (p. 394). Thus, one
may certainly argue that the null hypothesis is always false, so that
prep

Bma reduces to prep; but by doing so, one can no longer assess
whether a causal relation exists between independent and depen-
dent variables, as the analysis would implicitly assume that such a
relation is present.

In sum, we believe that the null hypothesis is not always false,
and perhaps more convincingly, our analysis does not critically
depend on the absolute truth of H0. Quantitatively and qualitatively
similar results are obtained when we assume that H0 is represented
by a small distribution of effect sizes centered on zero (e.g.,
Appendix B; see also Berger & Delampady, 1987, pp. 321–322).

Objection 2: What About Those Priors?

Our analysis is Bayesian and therefore involves priors, both on
the level of models and on the level of parameters. For instance,
we have discussed the effects of prior plausibility for H0 and H1 on
the estimation of the probability of concurrence. Some researchers
feel that priors are unknowable or at least subjective and therefore
have no place in scientific reasoning. When one dismisses the
concept of priors, one dismisses the entire Bayesian approach and,
so it seems, our entire line of argumentation.

This objection is vulnerable to several counterarguments. First,
the fact that one is unable or unwilling to calculate a quantity does
not mean that quantity is irrelevant and can be safely ignored. For
instance, we may not know Pr(H1), but the knowledge that it
influences the probability of concurrence remains valuable. Sec-
ond, as was outlined previously, the derivation of prep is Bayesian,
and Killeen (2005b) argued in fact that the crucial difference
between prep and the p value is that only the former is “a valid
posterior predictive probability” (p. 1011). Third, we agree with
Berger (1985), who argued that “when different reasonable priors
yield substantially different answers, can it be right to state that
there is a single answer? Would it not be better to admit that there
is scientific uncertainty, with the conclusion depending on prior
beliefs?” (p. 125). Finally, the effect of priors can be formally
assessed through robustness analysis (e.g., Berger, 1990).

More concretely, consider the priors involved in our analysis.
The first prior is on the level of models, that is, Pr(H0) and its
complement, Pr(H1). Equation 3 and Figure 2 highlight how these
model priors impact on the probability of concurrence. Of course,
the choice of a model prior may be highly subjective; a researcher
who wants to demonstrate support for H0 could assign it a rela-
tively high prior probability, say, Pr(H0) � .9. Similarly, a re-
searcher who wants to demonstrate support for H1 could bias the
analysis in its favor by assigning H1 a relatively high prior prob-
ability. A highly biased researcher would even go as far as to
assign H1 all prior probability: Pr(H1) � 1 and Pr(H0) � 0, which
in fact yields the prep measure that is currently standard. In Bayes-
ian model selection, one often avoids such a priori biases by
equating the prior model probabilities, such that Pr(H1) �
Pr(H0) � 1/2. These uninformative model priors seem appropriate
in the absence of strong prior knowledge, because they “provide
the level playing field necessary for unbiased evaluation” (Killeen,
2005b, p. 1011).
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The second prior is on the level of parameters. Specifically, the
standard calculation of prep assumes a uniform prior on effect size,
that is, a normal prior N(0, �2) with �3 �. This prior is “im-
proper” and is guaranteed to reduce the posterior model weight for
H1 to zero, regardless of what the data show—that is, Pr(H1�D)3
0 as � 3 � (e.g., Kass & Raftery, 1995)—hence our reliance on
the Smith and Spiegelhalter Z test (i.e., Equation 6). One alterna-
tive is to use prior knowledge to fix � to a reasonable number. For
instance, on the basis of a review of 474 research literatures in
social psychology (Richard, Bond, & Stokes-Zoota, 2003), Killeen
(2007) reported that the distribution of effect sizes was approxi-
mately normal with variance 0.3. Denoting the hypothesis for
which � 

 � by H�1, one might specify H�1 : � � N(0, �2), � �
�0.3, and calculate both the probability of concurrence and the
model weights from a N(0, 0.3) prior on effect size.

Another attractive alternative is to carry out a robustness anal-
ysis; this means that one computes prep

Bma for many different values
of �, every time using the N(0, �2) prior to calculate both the
probability of concurrence and the model weights. That is, we
consider two models, H0 : � � 0 and H�1(�) : � � N(0, �2), and use
Equation 3 to calculate prep

Bma(�) for many values of �. Interest may
then center, for example, on the maximum value for prep

Bma(�) that
can be attained by varying �. We carried out such an analysis and
confirmed that even the maximum value of prep

Bma(�) is substantially
lower than prep. For instance, our earlier numerical example re-
ferred to a hypothetical experiment that yields d � 0.56 with n �
25, resulting in Z � 1.98. For these data, the traditional prep equals
.919. In sharp contrast, a robustness analysis revealed that the
upper bound on prep

Bma(�) is .764. This upper bound was obtained by
varying the prior on effect size, that is, � in � � N(0, �2), and
therefore does not depend on the possibly subjective choice for any
specific parameter prior. The only prior that influences this result
is the uninformative model prior that deems both H0 and H�1
equally likely a priori. Consistent with our analysis with the
Spiegelhalter and Smith Z test, the robustness analysis supports our
claim that prep overestimates the probability of concurrence.

Discussion

In this article, we have shown that Killeen’s prep statistic over-
estimates the probability of finding a concurrent result in a repli-
cate experiment. The reason for the exaggeration is that prep

assumes that the null hypothesis—under which the probability of
concurrence is 1/2—can be ignored. We introduced a Bayesian
model-averaging procedure to show how the presence of a plau-
sible null hypothesis tempers the enthusiasm stemming from
Killeen’s prep. When the data do not decisively rule out the null
hypothesis, or when the null hypothesis is a priori much more
likely than the alternative hypothesis (Macdonald, 2005), the prob-
ability of concurrence can be considerably lower than is advertised
by prep.

Some of our Bayesian reasoning can also be brought to bear
against the traditional p value. A p value indicates the probability
of encountering a test statistic at least as extreme as the one that
was observed in the experiment, given that the null hypothesis is
true. This means that a p value refers to the probability of data
given the null hypothesis and does not refer to the probability of
the null hypothesis given data. When researchers study unlikely,
counterintuitive phenomena (such as those commonly reported in

high-impact psychology journals), the statistical result “p � .04”
does not warrant the conclusion that “the null hypothesis can be
rejected.” When one studies ESP, for instance, it takes more than
p � .04 to reject the null hypothesis. From a Bayesian perspective,
extraordinary claims require extraordinary evidence. It is impor-
tant to note, however, that our argument against prep holds when-
ever H0 is assigned any prior mass and becomes more compelling
as Pr(H0)3 Pr(H1), leading to the uninformative model prior that
provides “the level playing field necessary for unbiased evalua-
tion” (Killeen, 2005b, p. 1011). The extent to which prep overes-
timates the probability of concurrence when Pr(H0) � Pr(H1) can
be seen by comparing Prep(K) with Prep(B1) in Figure 2.

Although it may be argued that our analysis is restricted to the
framework of Bayesian inference, this does not diminish its rele-
vance for the evaluation of prep. Doros and Geier (2005) have
argued that prep is exclusively a Bayesian concept, and prep should
therefore be susceptible to Bayesian arguments. Also, Equation 3,
Appendix B, and our robustness analysis indicate that our general
conclusion (i.e., prep overestimates the probability of concurrence)
holds across all model priors and across a large class of parameter
priors. It is possible to construct a parameter prior under which our
general conclusion does not hold; such a parameter prior would be
asymmetrical around zero and assign a lot of mass to values
greater or smaller than zero. In the absence of strong prior knowl-
edge, we do not feel such priors are appropriate for Bayesian
hypothesis testing, a sentiment that is echoed by the absence of
such priors in the Bayesian literature.

Practical Implications

Consider again the hypothetical situation in which you conduct an
experiment to test whether words such as pizza prime words such as
coin (i.e., perceptual priming; Pecher et al., 1998). Recall that the
experimental effect yields prep � .94. What should we make of this
value? We hazard to guess that researchers, reviewers, and editors are
likely to (mis)interpret prep � .94 as follows: “If this experiment were
to be repeated, there is a 94% chance to again observe a reliable
perceptual priming effect. This is strong evidence for the presence of
perceptual priming in the original experiment.”

Unfortunately, this interpretation is as tempting as it is wrong. First,
“replication” does not refer to finding again a result that is reliable or
statistically significant; in the context of prep, replication refers to
concurrence, that is, finding again a result of the same sign, however
small and insignificant. This means that the lowest possible value for
prep is already as high as 0.5. It is debatable whether researchers are
interested in the probability of concurrence rather than the probability
of replication in the traditional sense (i.e., the probability of a repli-
cation experiment again yielding a significant result). Another prob-
lem with “concurrence” is that it is a definition of replication that is
difficult to gauge; how impressive is it that the probability of concur-
rence is .85, .95, or .99?

Second, our work here shows that prep is a valid estimate of
concurrence only when the null hypothesis can be completely ruled
out and when the alternative hypothesis holds that all effect sizes are
equally likely a priori. Together, this means that prep does not estimate
the probability of concurrence but that it estimates an upper bound for
this probability, a bound that holds only under strict and arguably
unrealistic assumptions. Thus, the correct interpretation of prep � .94
is “the chance of a concurrent result in a replication experiment is
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likely to be lower than .94.” Although this statement is correct, it does
not appear to provide much insight.

In general, we believe that widespread adoption of prep can all too
easily mislead researchers into thinking that their effects are more
reliable than they really are. In a field such as psychology, where there
is pressure to publish and replication research is relatively rare (Lind-
say & Ehrenberg, 1993), this means that the prep statistic may unwit-
tingly facilitate the dissemination of Type I errors, that is, findings that
do not replicate.

So what options are we left with? Researchers who believe that
concurrence is a meaningful concept may replace prep with a
model-averaged version such as prep

Bma. Researchers who are skep-
tical about the very idea of concurrence may resort to alternative
methods for statistical inference, a discussion of which is the topic
of the next section.

The Future of Statistical Inference in Psychology

For many decades, researchers have pointed out the many short-
comings of p value hypothesis testing (e.g., Cohen, 1994; Ed-
wards, Lindman, & Savage, 1963; Wagenmakers, 2007). The prep

statistic was developed to address some of these shortcomings, but,
unfortunately, it is sensitive to some shortcomings of its own. This
raises the question of whether there is a single method for statis-
tical inference method that has no shortcomings at all. The answer,
alas, appears to be in the negative. Hypothesis testing is very
difficult. Nickerson (2000) summarized the situation as follows:
“NHST [null hypothesis statistical testing] surely has warts, but so
do all the alternatives” (p. 290). A pragmatic solution would be to
use more than just a single method for inference and demonstrate
that the conclusions hold regardless of the particular method that is
used.

What are the alternatives to p values and prep? They include
Bayesian procedures (e.g., Hoijtink, Klugkist, & Boelen, 2008;
Kass & Raftery, 1995; Klugkist et al., 2005; Lee & Wagenmakers,
2005; Raftery, 1996; Rouder et al., 2009; Wagenmakers, 2007),
Bayesian–frequentist compromises (e.g., Berger, 2003; Berger,
Boukai, & Wang, 1997; Berger, Brown, & Wolpert, 1994;
Good, 1983), Akaike’s information criterion (e.g., Akaike, 1974;
Burnham & Anderson, 2002), cross-validation (e.g., Browne,
2000; Geisser, 1975; Stone, 1974), bootstrap methods (e.g., Efron
& Tibshirani, 1997), prequential methods (e.g., Dawid, 1984;
Wagenmakers et al., 2006), and methods based on the principle of
minimum description length (e.g., Grünwald, 2000; Grünwald,
Myung, & Pitt, 2005; Pitt, Myung, & Zhang, 2002; Rissanen,
2001). All these methods are methods for model selection in that
the explicit or implicit goal is to compare different models and
select the best one (for applications of model selection in the field
of psychology, see the two special issues in the Journal of Math-
ematical Psychology: Myung, Forster, & Browne, 2000; Wagen-
makers & Waldorp, 2006). Methods for model selection do not
assess the adequacy of H0 or H1 in isolation. Rather, the adequacy
of H0 is compared with the adequacy of an alternative model, H1,
automatically avoiding the negative consequences that arise when
the focus is on a single model.

In experimental psychology, model selection procedures are
mostly used to adjudicate between nonnested, complicated nonlin-
ear models of human cognition. There is no reason, however, why
these procedures could not be applied to run-of-the-mill statistical

inference problems involving nested linear models such as analy-
ses of variance (Lee & Pope, 2006). We hope and expect that in the
near future, concrete alternatives to p values (e.g., Bayesian hy-
pothesis tests) will be developed and made available in a way that
benefits the majority of experimental psychologists. This is an
exciting possibility that could change the landscape of statistical
inference in psychology in a fundamental way.

In conclusion, we applaud Killeen’s effort to have psychological
researchers compute a Bayesian quantity to decide whether or not
there is a causal relation between independent and dependent
variables. Unfortunately, the choice for prep is beset by serious
problems (e.g., Iverson, Lee, & Wagenmakers, 2009; Iverson, Lee,
Zhang, & Wagenmakers, 2009), one of which is that it can lead to
overconfidence and undue optimism. We recommend that re-
searchers do not report prep but either report a model-averaged
version of prep or report the conclusions from one or more alter-
native methods of statistical inference.
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Appendix A

Bayesian Results for prep

Assume that one has a normal prior N(0, �2) on the effect

parameter � �
�E � �C

�
, where subscripts E and C refer to an

experimental and control group, respectively. The equation for
Killeen’s prep is recovered in the limit as � 3 �.

It is convenient to introduce �2 �
n

2
�2 and � �

�2

1 � �2. Here n

is the common sample size of the experimental and control groups.
Note that 0 
 � 
 1 and lim�3�� � 1, and that � is large for large
� and for large n.

Suppose one has an observed effect d at hand. The posterior for
� is ��d � N(d�, �2/n), and—assuming a replication experiment
employs the same sample size n per group as the original—the
posterior predictive density for drep is drep�d � N(d�, (1 � �)2/n).
We get

prep�d, �, n � Pr(drepd � 0�d, �, n) � ���
�d��n/2

�1 � ��. (A1)

It is easy to check that

prep�d, �, n � lim
�3�

prep�d, �, n � prep � ���d��n/2

�2 �, (A2)

where the last expression agrees for large sample sizes with the
one given by Killeen (2005a, Equations 3 and 6), the latter being
the one recommended by Psychological Science. Our derivation of
prep as given by Equation 9 is exact for the simple model that we
have considered (known variance, common to both experimental
and control groups); no approximation is involved.

It is also convenient to write Z � d�n/2 (note that Z is the
familiar frequentist test statistic) and derive the more compact
equation

prep�d, �, n � �� �Z��
�1 � ��. (A3)

The usual expression for prep is obtained when � � 1.
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Appendix B

Generality of Our Result

Equation 3 is subject to the distraction that some people
believe that Pr(H0�d) � 0. Note, however, that the inequality
from Equation 3 is far more general than indicated. Suppose we
replace H0 : � � 0 by a model M0 that involves a prior N(0, ε2)
on �, and we contemplate another competing model M�1 that
involves a prior N(0, �2) on � (replacing the flat improper prior).
Assume that ε2 
 �2 (typically, ε2 

 �2).

Write � �
�2n/2

1 � �2n/2
and � �

�2n/2

1 � �2n/2
. Then we get

prep
� –Pr(drepd � 0�d, M0) � ���

�d��n/2

�1 � �
�, (B1)

and

prep
� –Pr(drepd � 0�d, M�1) � ���

�d��n/2

�1 � �
�, (B2)

where – means “by definition.”
In these terms we have

prep
Bma � Pr(drepd � 0�d) � Pr(M0�d) Pr(drepd � 0�d, M0)

� Pr(M�1�d) Pr(drepd � 0�d, M�1)

� Pr(M0�d) � prep
� � Pr(M�1�d) � prep

�

� prep
� �since ε2 � �2, we have � � � and prep

� � prep
� �

� prep �since prep
� is increasing in � and prep � lim

�31

prep
� � (B3)

So we see that our point does not rely on the assumption that
Pr(H0) 
 0.

To summarize: Under any assumption on �, � subject to � 
 �
and any assumption on the prior probability Pr(M0), it is the case
that prep

Bma 
 prep. Note that the difference prep � prep
Bma is

calculable given the values of ε2, �2, n, and d.
It is now easy to argue that prep can and often does overstate the

evidence provided by d that a faithful replication will agree in
direction with d. Only people who truly believe that M0 is impos-
sible, yet are so uncertain as to the range of observed effects that
they adopt a flat improper prior, would expect that prep

Bma � prep.
Such people know so much and yet so little.

Of course, what one would really like is a useful lower bound so
that one could report that, on the basis of given data, the proba-
bility of achieving agreement in a replication as to direction is at
least that lower bound. Alas, the only general lower bound seems
to be 1/2, and that is not very interesting.
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