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The Ratcliff diffusion model for simple two-choice decisions (e.g., Ratcliff, 1978;
Ratcliff & McKoon, 2008) has two outstanding advantages. First, the model
generally provides an excellent fit to the observed data (i.e., response accuracy and
the shape of RT distributions, both for correct and error responses). Second, the
parameters of the model can be mapped on to latent psychological processes such
as the speed of information accumulation, response caution, and a priori bias. In
recent years, the advantages of the Ratcliff diffusion model have become
increasingly clear. Current advances in methodology allow all researchers to fit
the diffusion model to data easily. Recent applications to ageing, lexical decision,
IQ, practice, the implicit association test, and the accessory stimulus effect serve to
highlight the added value of a diffusion model perspective on simple decision
making.
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For over a century, experimental psychologists have studied the complex

structure of human cognition using relatively simple tasks. In many

paradigms, the participant is confronted with a forced choice between two

response alternatives. For instance, in a recognition memory experiment

(Strong, 1912) the participant responds old or new to test stimuli; in a lexical

decision experiment (Rubenstein, Garfield, & Millikan, 1970) the participant

classifies letter strings as English words (e.g., TANGO) or nonwords (e.g.,
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DRAPA); and in an Eriksen flanker task (Eriksen & Eriksen, 1974) the

participant indicates, say, whether a central target arrow among a set of

distractor arrows (e.g., ���B���) points to the left or to the right.

In these and other two-alternative forced choice (2-AFC) tasks, partici-

pants are typically instructed to respond ‘‘as quickly and accurately as

possible’’. Under these instructions, the observed variables are response time

(RT) and response accuracy (i.e., correct/incorrect) for each trial. How

should these data be analysed? Traditionally, inference is based on the mean

response time for correct responses (MRT), and the proportion of correct

responses (i.e., Pc). An experimental manipulation that increases MRT or

decreases Pc is thought to lower the efficiency of stimulus processing.

Despite its generality and its simplicity, the standard method of analysing

data from 2-AFC tasks has several important limitations. First, the standard

method ignores the shape of the RT distribution for the correct responses,

focusing only on the mean, and ignores RTs for error responses altogether.

Second, the standard method does not acknowledge the strong inverse

relationship between response speed and response accuracy (i.e., the speed�
accuracy tradeoff; Pachella, 1974; Schouten & Bekker, 1967; Wickelgren,

1977). Therefore, the standard methodology is unable to combine speed and

accuracy into a single index for task difficulty or subject ability. Third, the

standard method is not motivated by any substantive theory. This means

that the results do not speak directly to the details of the underlying

psychological processes. For instance, the fact that older adults are slower

than younger adults could reflect a slowdown in decision making, a

slowdown in the motor processes that are involved in pressing a response

button, or both*the standard method cannot distinguish between these

fundamentally different accounts.

This paper focuses exclusively on a cognitive process model that addresses

all of these limitations, which plague the standard method for analysing data

from 2-AFC tasks. The model was first studied in physics (e.g., Einstein,

1905) and was later implemented as a model for decision making in simple 2-

AFC tasks (Ratcliff, 1978). The vanilla version of the model is widely known

as the Wiener diffusion process, but here I will use the term ‘‘Ratcliff

diffusion process’’ in acknowledgement of Roger Ratcliff’s numerous

attempts to modify the Wiener diffusion process and apply it to an

impressive amount of phenomena.1

The Ratcliff diffusion model provides a detailed account of people’s

performance. Here, performance does not just refer to, say, mean RT for

correct responses, but instead refers to proportion correct, RT distributions

for correct responses, and RT distributions for error responses. These

1 For a complete overview of Roger Ratcliff’s work on the diffusion model see http://

star.psy.ohio-state.edu/coglab/
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measures of performance are used simultaneously to determine underlying

psychological processes that are represented by model parameters. The four

most important of these are the speed of information accumulation, response

caution, a priori bias, and nondecision time. A statistical analysis in terms of

these unobserved variables is immune to the speed�accuracy tradeoff and

affords an unambiguous quantification of performance differences.
Recent years have witnessed a surge of research activity related to the

Ratcliff diffusion model. This research activity has resulted in new and easy-

to-use methods to fit the model to data, and has produced new insights from

practical applications. The aim of this paper is to provide a selective

overview of the recent practical developments in RT analysis using the

Ratcliff diffusion model (for a recent, largely complementary review see

Ratcliff & McKoon, 2008; for authoritative reviews on earlier developments

see e.g., Luce, 1986; Townsend & Ashby, 1983).

The outline of this paper is as follows. The first section briefly outlines the

Ratcliff diffusion model, and the second section summarises the pros and

cons of a diffusion model analysis. The third and fourth sections summarise

the current research efforts in diffusion model methodology and applica-

tions, respectively, and the fifth section concludes.

THE RATCLIFF DIFFUSION MODEL

The diffusion model has been successfully applied to many two-choice RT

paradigms, including lexical decision, short-term and long-term recognition

memory tasks, same/different letter-string matching, numerosity judgements,

visual-scanning tasks, brightness discrimination, and letter discrimination

(e.g., Ratcliff, 1978, 1981, 2002; Ratcliff, Gomez, & McKoon, 2004a; Ratcliff

& Rouder, 1998, 2000; Ratcliff, van Zandt, & McKoon, 1999; Wagenmakers,

Ratcliff, Gomez, & McKoon, 2008). In all these applications, the diffusion

model provided a close fit to response accuracy and the observed response

time distributions for both correct and error responses. Early developments of

the diffusion model are described in Edwards (1965), Laming (1968), Link

(1992), Link and Heath (1975), Ratcliff (1978), and Stone (1960); a thorough

account of the diffusion model is given by Luce (1986), Ratcliff (2002), Ratcliff

and Smith (2004), and Townsend and Ashby (1983); details of the mathe-

matics can be found in Gardiner (2004), Honerkamp (1994), and Smith (2000).

For concreteness, the Ratcliff diffusion model is introduced as it applies to

a lexical decision task (e.g., Ratcliff et al., 2004a; Wagenmakers et al., 2008).

When people have to decide quickly whether a letter string is a word (e.g.,

TANGO) or a nonword (e.g., DRAPA), the diffusion model assumes that

people engage in a process of noisy information accumulation. That is,

participants supposedly sample information sequentially, determine the
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extent to which each new sample of information supports the ‘‘word’’ versus

‘‘nonword’’ decision, and then add the new evidence to the old evidence. The

accumulation process stops when the total evidence reaches some predeter-

mined threshold. The process is illustrated in Figure 1. Note that, in contrast

to signal-detection theory (Macmillan & Creelman, 2005), the participant is

assumed to base a decision not on a single noisy sample, but on an entire

sequence of noisy samples. From this perspective, the diffusion model may be

thought of as a signal-detection theory for response times.

The diffusion model assumes that the signal-to-noise ratio of the

information accumulation process is higher for stimuli that are easy to

classify than it is for stimuli that are difficult to classify. In the diffusion

model, ‘‘ease of processing’’ is quantified by a parameter called drift rate.

When the absolute value of drift rate is high, decisions are fast and accurate;

when the absolute value of drift rate is low, however, processing is driven to a

large extent by noisy fluctuations, and as a result decisions are slow and

inaccurate. In the lexical decision task, for example, classification perfor-

mance for high-frequency words such as CHAIR is better than for low-

frequency words such as FUME. The diffusion model accommodates this

result through a change in drift rate: High-frequency words have a higher

Figure 1. Diffusion model account of evidence accumulation in the lexical decision task (cf.

Ratcliff, Gomez, & McKoon, 2004a).
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drift rate than low-frequency words. Drift rate reflects an inherent property

of stimuli or participants, and, just like discriminability in signal-detection
theory, it is generally not supposed to be under subjective control.2

More specifically, the information accumulation process is described by

the following stochastic differential equation (e.g., Gardiner, 2004):

dX(t)�vdt�sdW(t); (1)

where dX(t) is the change in the accumulated evidence X for a small time

interval dt, v is drift rate (i.e., the deterministic component of the noisy

process), and sdW(t) are zero-mean random increments with infinitesimal

variance s2dt. The factor W(t) represents the Wiener noise process (i.e.,

idealised Brownian motion). Thus, the amplitude of the noise in the
information accumulation process is governed by parameter s. This

parameter is a scaling parameter, which means that if s doubles, other

parameters in the model can be doubled to obtain exactly the same result.

Therefore, the choice of a specific value for s�0 is arbitrary; for historical

reasons, s is usually fixed at 0.1.

In the diffusion model, the parameters that are under subjective control

are ‘‘boundary separation’’ and ‘‘starting point’’. Both parameters are

assumed to be determined by the participant before the start of each trial.
Boundary separation quantifies response caution and modulates the speed�
accuracy tradeoff: When the participant is careful not to make a mistake, the

boundaries are set wide apart*as a result, the noisy fluctuations inherent in

the accumulation of evidence are less likely to result in an incorrect response.

The price that has to be paid for this decrease in error rate is an increase in

response time. Thus, when boundary separation is large, decisions are slow

and accurate; and when boundary separation is small, decisions are fast and

inaccurate.
The other parameter that is under subjective control is starting point.

Starting point reflects the a priori bias of a participant for one or the other

response. This parameter is usually manipulated via payoff or proportion

manipulations (Edwards, 1965; but see Diederich & Busemeyer, 2006). For

instance, Wagenmakers et al. (2008, Exp. 2) used a proportion manipulation

in which particular blocks of trials featured thrice as many words as

nonwords. In the diffusion model, this manipulation causes the starting

point to shift towards the ‘‘word’’ boundary. Such a shift would lead to
relatively fast and accurate responding for word stimuli, but relatively slow

and inaccurate responding for nonword stimuli.

The fourth key parameter of the diffusion model, Ter, quantifies the

nondecision component of response time. The common interpretation of Ter

2 To the best of my knowledge, the assertion that motivation or effort can increase drift rate has

not been verified empirically.

DIFFUSION MODEL DEVELOPMENTS 645

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
g
e
n
m
a
k
e
r
s
,
 
E
r
i
c
-
J
a
n
]
 
A
t
:
 
1
4
:
1
5
 
2
9
 
J
u
n
e
 
2
0
0
9



is in terms of encoding and response processes, but this is too restrictive. For

instance, suppose people have to judge whether a word represents an object
that is bigger or smaller than a television. Also, suppose that each decision

requires that people first construct a mental image of a television, then

construct the mental image associated with the presented word, and finally

engage in some sort of comparison process. The time that is taken up by the

process of constructing the mental image of a television does not depend on

the nature of the imperative stimulus, and is therefore clearly part of Ter. As

is illustrated in Figure 1, the diffusion model assumes that the observed RT

is the sum of the nondecision component and the decision component of
processing (Luce, 1986):

RT�DT�Ter; (2)

where DT denotes decision time. Therefore, the nondecision time Ter does

not affect response choice and acts solely to shift the entire RT distribution

by a constant amount.

Thus, the four key parameters of the diffusion model are drift rate v (i.e.,

speed of information accumulation), boundary separation a (i.e., response
caution), starting point z (i.e., a priori bias), and nondecision time Ter.

Unfortunately, these parameters alone do not allow the model to capture all

of the robust empirical phenomena that have been discovered in the RT

literature, and additional parameters were introduced to address the

deficiencies. In particular, uniformly distributed trial-to-trial variability in

nondecision time, called st, was introduced to account for the relatively

gradual rise in the leading edge of the RT distribution (Ratcliff & Tuerlinckx,

2002); uniformly distributed trial-to-trial variability in starting point, called
sz, was introduced to account for error responses that are systematically

faster than correct responses (Laming, 1968); and normally distributed trial-

to-trial variability in drift rate, called h, was introduced to account for error

responses that are systematically slower than correct responses (e.g., Ratcliff,

1978; see also Ratcliff & Rouder, 1998).3

In sum, the parameters of the Ratcliff diffusion model are the following:

1. Mean drift rate (v).

2. Across-trial variability in drift rate (h).

3. Boundary separation (a).

4. Mean starting point (z).
5. Across-trial range in starting point (sz).

6. Mean of the nondecision component of processing (Ter).

3 The combination of sz and h does not allow the model to fit slow and fast errors at will, at

least not when an experiment features multiple conditions across which and Sz h are fixed. See

Wagenmakers et al. (2008) for an illustration.
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7. Across-trial range in the nondecision component of processing (st).

Ratcliff and Tuerlinckx (2002) proposed to estimate a mixture model,

where one mixture component is associated with the diffusion model, and

the other mixture component (i.e., a uniform distribution that spans the RT

range) is associated with ‘‘response contaminants’’. This proposal adds a

mixture parameter p to the previous list; however, this parameter is usually

not of immediate interest and it is as yet unclear whether or not it can be

systematically manipulated in an experiment.

PROS AND CONS OF THE RATCLIFF DIFFUSION MODEL

The Ratcliff diffusion model offers several advantages over a traditional

analysis of RT and accuracy. First, the model provides a principled account

of how RT relates to accuracy, and is able to account for changes in both

dependent measures simultaneously. Second, the model requires a consid-

eration of not only mean RT for correct responses, but of the entire RT

distribution, both for correct and incorrect responses. Third, the model

allows researchers to estimate unobserved psychological processes that

together determine observed performance. Fourth, the model can be used

to generate new insights for established problems. Specifically, a diffusion

model analysis often demonstrates that a certain general phenomenon (i.e.,

linear Brinley plots in ageing, the worst performance rule in intelligence

research) can be produced by the diffusion model through a simple change in

one of the key parameters such as drift rate. Fifth, the diffusion model can

act as a theoretical tool to discover new empirical regularities. For instance,

Wagenmakers, Grasman, and Molenaar (2005) showed that the diffusion

model predicts that an increase in task difficulty should increase RT mean

and RT standard deviation at the same rate; a prediction for which

Wagenmakers and Brown (2007) offer empirical support. Later sections of

this paper will exemplify these claims in more concrete terms.
The Ratcliff diffusion model also comes with a few disadvantages. The

most important disadvantage is that, for the uninitiated, the model used to

be exceedingly difficult to apply to data; this was mainly due to the lack of

publicly available, user-friendly computer programs for parameter estima-

tion. As I will detail, recent methodological progress have now made it

easy for experimental psychologists to apply the model to data without any

outside help. The second disadvantage is that the model requires a fair

amount of data for accurate estimation of its parameters*the reason for

this is that the model requires an estimation of the RT distribution for

error responses. When response accuracy is at 95%, as it typically is, then it

may take as many as 200 trials to get a satisfactory estimate of the RT
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distribution for error responses. This disadvantage may be mitigated by

including experimental manipulations that selectively affect a particular
parameter. When this particular parameter is the only one that is free to

vary, and when at least one of the experimental conditions features a

relatively high error rate, the rule-of-thumb requirement of about 10 error

responses no longer holds (Ratcliff, in press). The most promising solution

to the sample size problem, however, appears to come from a Bayesian

hierarchical modelling effort (Lee, Vandekerckhove, Navarro, & Tuer-

linckx, 2007; Vandekerckhove, Tuerlinckx, & Lee, in press), which is

discussed in more detail later.
The third disadvantage of the diffusion model is that it is only intended

for two-choice response time tasks in which processing is approximately

‘‘one-shot’’, and RTs are mostly faster than about 1.5 s. This means that it

may not be warranted to apply the diffusion model to, say, the Stroop task,

in which there is a competition between prepotent processes (i.e., reading of

the coloured word) and the more deliberate processes (i.e., verbalisation of

the colour in which the word is printed). However, from a pragmatic

standpoint the limitation to relatively fast one-shot processes is merely a
guideline; the adequacy of the model can be rigorously assessed using

statistical methodology, regardless of the nature of the hypothesised

psychological processes.

The fourth disadvantage of the diffusion model is that it does not speak

directly to the details of the neural substrate that underlies the decision-

making process. In contrast, neurocomputational accounts such as those

proposed by Brown, Bullock, and Grossberg (2004), Frank (2006), Lo and

Wang (2006) do use results from neuroanatomy to inform their modelling.
Thus, the psychological concepts from the diffusion model*drift rate,

boundary separation*remain at a relatively high level of abstraction.

However, the disadvantage of a high level of abstraction comes with the

advantage of generalisability; the diffusion model applies to a wide range

of different tasks, precisely because it does not commit to particular brain

structures that are differentially involved in, say, the execution of saccades

versus the execution of finger movements. Moreover, recent work has

started to connect the diffusion model to a range of findings from
neuroscience, mainly through the analysis of single cell recordings in

monkeys, but also through mathematical modelling (e.g., Bogacz &

Gurney, 2007; for reviews see Gold & Shadlen, 2007; Ratcliff & McKoon,

2008).

The fifth disadvantage of the diffusion model is that it has at least seven

parameters, a number that increases when the experiment features more than

one condition. This may make some people feel that the diffusion model has

too many parameters; in the spirit of John von Neumann, who famously said
‘‘With four parameters I can fit an elephant, and with five I can make him
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wiggle his trunk’’,4 one could argue that with seven or more parameters it is

possible to fit just about anything, and that consequently a good fit to the

data would mean just about nothing.5 The validity of this criticism depends

to some extend on the specific data set to which the diffusion model is

applied, but several arguments suggest that the problem of overparameter-

isation is easily overstated.

The first argument against the claim that the diffusion model is

overparameterised depends on the experimental design: When an experiment

features, say, three levels of task difficulty and two levels of speed stress, then

the only parameter free to vary across conditions are those that are believed

to be affected by the experimental manipulations; hence, drift rate is the only

parameter that is free to vary across task difficulty, and boundary separation

is the only parameter that is free to vary across speed stress. This means that

with only two parameters free to vary, the model would account for the

pronounced effects of the experimental manipulations both on response

accuracy and on the shape of the RT distributions; this is quite an

achievement, and one that is hard to match for competing models (e.g.,

Ratcliff & Smith, 2004; Wagenmakers et al., 2008). Second, the number of

model parameters is not an absolute indication of model complexity.

Contrary to what is suggested by von Neumann, the extent to which a

model has too many parameters depends on the amount of data that the

model attempt to explain. The diffusion model may have at least seven free

parameters, but it also accounts for the shape of RT distributions, both for

correct and for incorrect responses. Thus, the issue of deciding whether a

model has too many parameters is not solved by simply counting the number

of free parameters. Instead, statistical techniques (e.g., model selection;

Myung, Forster, & Browne, 2000; Wagenmakers & Waldorp, 2006) can be

used to determine the model that strikes the optimal balance between

parsimony and goodness-of-fit. In other words, the claim that the diffusion

model has too many parameters can be put to a statistical test.

The third argument against the claim that the diffusion model is

overparameterised is that there are plausible patterns of results that the

diffusion model fails to fit (Ratcliff, 2002). This happens because the

diffusion model makes qualitative predictions that hold regardless of specific

parameter values. For instance, the model predicts that RT distributions are

skewed to the right, and that this skew increases with task difficulty. The

4 http://en.wikiquote.org/wiki/John_von_Neumann
5 An anonymous reviewer argued that a sixth disadvantage of the diffusion model is that its

parameter estimates are positively correlated. Ratcliff and Tuerlinckx (2002, pp. 452�455) discuss

this issue in detail. On the one hand, it is true that the parameter estimates of the diffusion model

tend to be correlated, but on the other hand one should acknowledge that the same holds for many

common statistical models (e.g., estimates of slope and intercept in a linear regression).

DIFFUSION MODEL DEVELOPMENTS 649

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
g
e
n
m
a
k
e
r
s
,
 
E
r
i
c
-
J
a
n
]
 
A
t
:
 
1
4
:
1
5
 
2
9
 
J
u
n
e
 
2
0
0
9



model also predicts that, when people are instructed to be less cautious, error

responses speed up more than correct responses (e.g., Wagenmakers et al.,
2008). Fourth, the parameters of the diffusion model respond selectively to

specific manipulations. For instance, Voss, Rothermund, and Voss (2004)

have shown that changes in task difficulty, speed�accuracy instructions,

payoff structure, and ease of executing a motor response bring about the

expected changes in drift rate, boundary separation, starting point, and

nondecision time, respectively. Such a successful test of selective influence

provides strong support for the hypothesised mapping between psychologi-

cal processes and model parameters (for work that takes advantage of this
mapping see Oberauer, 2005; Schmiedek, Oberauer, Wilhelm, Süß, &

Wittmann, 2007). Moreover, a model that would have too many parameters

might be expected to use these excess parameters in order to provide a better

fit to the data (i.e., in order to make the data ‘‘wiggle its trunk’’). In the

experiments by Voss et al. (2004), and many others discussed later, this was

not the case. The final argument against the claim that the diffusion model is

overparameterised is that the goal of using the diffusion model is often not

to obtain an excellent fit to the data; instead, interest usually centres on the
estimation of the latent psychological processes associated with drift rate,

boundary separation, a priori bias, and nondecision time.

In sum, the diffusion model offers clear advantages for experimental

psychologists who wish to analyse data from two-alternative forced choice

tasks. Adoption of the diffusion model appears to come with some

disadvantages, but these are to a large extent illusory.

CURRENT METHODOLOGICAL DEVELOPMENTS

Up until a year ago, experimental psychologists who wanted to apply the

diffusion model to data without expert help were confronted with a

formidable challenge, namely to program a set of computer routines to
carry out parameter estimation for the diffusion model. To illustrate the

technical difficulties involved, consider the basic equations that need to be

computed for the program to work.

Assume, first, that none of the diffusion model parameters are allowed to

vary from trial to trial. In this simplified case, the probability of an error Pe

is given by

Pe�1�Pc�

exp

�
�

2av

s2

�
� exp

�
�

2zv

s2

�

exp

�
�

2av

s2

�
� 1

; (3)
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where drift rate v, boundary separation a, starting point z, and nondecision

time Ter are free parameters, and s is the scaling parameter from Equation 1.
The equation that gives the probability of an error response before time t is

given by (Cox & Miller, 1970)

GX;T �Pe�
ps2

a2
exp

�
�zv

s2

�

X�
k�1

2k sin

�
pkz

a

�
exp

�
�

1

2

�
v2

s2
�

p2k2s2

a2

�
(t � Ter)

�
�

v2

s2
�

p2k2s2

a2

� ; (4)

where k indexes the infinite series. The probability of a correct response

before time t is obtained by replacing z and v by a�z and � v, respectively.

The first complication is that Equation 4 contains an infinite sum (i.e.,

the a�
k�1 part) that contains an oscillating series. Therefore, Equation 4 has

to be approximated by a finite partial sum, which is truncated when the

absolute values of the last two consecutive terms are smaller than some

constant (Tuerlinckx, 2004, p. 703). An alternative procedure is to
determine the number of terms that are needed to achieve a specific

accuracy of approximation (Voss et al., 2004, p. 1218). Despite this

complication, this model is relatively easy to program and estimate.

However, in the full Ratcliff diffusion model, parameters v, z, and Ter

are allowed to vary from trial to trial. Consequently, Equation 4 needs to

be integrated over these three sources of variability, and the equation that

gives the probability of an error response before time t is given by

(Tuerlinckx, 2004)

g
�

��
g

z�
sz

2

z�
sz

2
g

min

�
Ter�

st

2
;t

�

Ter�
st

2

GX;TU

�
Ter�

st

2
;Ter�

st

2

�

U

�
z�

sz

2
; z�

sz

2

�
N(u; h2)dTerdzdv; (5)

where U denotes the uniform distribution, and N the normal distribution.

Evaluation of Equation 5 requires numerical integration techniques, and at

this point most experimental psychologists would decide that the expected
payoff from the model is not worth the expected effort associated with its

implementation.

In the last year, however, this pain-to-gain ratio has been dramatically

lowered by the appearance of several freely available computer programs for

diffusion model analyses. The goal of these computer programs is to allow
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the nonexpert user to estimate parameters of the Ratcliff diffusion model.

The next sections provide an overview of these and other recent methodo-

logical advances.

EZ and EZ2

The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, 2007)

was developed in order to make it as easy as possible for experimental

psychologists to apply the diffusion model to their data. The EZ-diffusion

model consists of a set of three equations that transform Pc (i.e., the

proportion of correct responses), MRT (i.e., the mean RT for correct

responses), and VRT (i.e., the variance of RT for correct responses) into

estimates for drift rate v, boundary separation a, and nondecision time Ter.

In order to accomplish this transformation, the EZ-diffusion model makes

the simplifying assumptions that the starting point is unbiased (i.e., z�a/2)

and the across-trial variabilities h, sz, and st are all zero. The EZ-diffusion

model is shown in Figure 2.

Under these simplifying ‘‘EZ’’ assumptions, the first equation gives the

probability correct as

Figure 2. The EZ-diffusion model.
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Pc�
1

1 � exp(�av=s2)
; (6)

where s is again the irrelevant scaling parameter. The second equation refers

the RT variance of a diffusion process with unbiased starting point

(Wagenmakers et al., 2005), and is given by

VRT�
�

as2

2v3

�
2y exp(y) � exp(2y) � 1

(exp(y) � 1)2 ; (7)

where y�� va/s2 and v"0. If v�0, VRT�
a4

24s4
:

From these two equations it is straightforward to extract estimates for v

and a. After a and v have been determined from Equations 6 and 7, Ter can

then be computed from the third equation, which incorporates the mean
time until arrival at a response threshold (i.e., MDT, mean decision time):

MRT�MDT�Ter

�
�

a

2v

�
1 � exp(y)

1 � exp(y)
�Ter; (8)

where, again, y��va/s2. Thus, the EZ-diffusion model has three equations

that feature the observed quantities Pc, VRT, and MRT, and from these one
can uniquely determine values for the model parameters v, a, and Ter. None

of this requires any parameter fitting; all that is needed to determine the

parameters is a straightforward computation. Hence, the EZ-diffusion

model is straightforward to implement in JavaScript, R, or Excel.6

As shown by Figure 3, the EZ-diffusion model is conceptually similar to

signal-detection theory. Both procedures involve a simple transformation from

observed behaviour to unobserved processes, and both procedures differenti-

ate between processes that quantify task difficulty or subject ability (i.e.,
discriminability for signal-detection theory, and drift rate for the EZ-diffusion

model) and processes that are under control of the participant (i.e., bias for

signal-detection theory, and boundary separation for the EZ-diffusion model).

Despite the obvious practical advantages of the EZ-diffusion model,

some researchers may believe that the model is perhaps too easy. An in-depth

discussion of the pros and cons of the EZ-diffusion model will take place

elsewhere (e.g., Ratcliff, in press). It should be kept in mind, however, that

the goal of the EZ-diffusion model is not to replace the more complete
diffusion model analysis; rather, the goal of the EZ-diffusion methodology is

to provide an admittedly rough first estimate of the underlying processes,

6 Code is freely available from http://users.fmg.uva.nl/ewagenmakers/EZ.html, http://

users.fmg.uva.nl/ewagenmakers/2007/EZ.R, and http://users.fmg.uva.nl/ewagenmakers/2007/

EZ.xls, respectively.
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which should, if possible, be later augmented with a more complete analysis.

Also, the simplifying assumptions of the EZ-diffusion model can be verified

by statistical tests (Wagenmakers et al., 2007).

In an attempt to generalise and improve on the original EZ-diffusion

model, Grasman, Wagenmakers, and van der Maas (2008) recently proposed

the EZ2 model. In the EZ2 model, the starting point is allowed to vary

freely, and parameters can be constrained across conditions. The key

equation of the EZ2 model (which is of course hidden from the user) gives

the variance of the decision time distribution for diffusion process with a

priori bias, conditional on the boundary that was reached first. A software

routine that implements the EZ2 program is freely available online7; Figure 4

shows a screenshot of the EZ2 web application (courtesy of Raoul

Grasman).

The EZ2 model takes advantage from the fact that in a two-alternative

RT task, there are two stimulus categories that may have different drift rates

but share values for decision criteria. Thus, for words and nonwords in a

lexical decision task, the EZ2 model takes as input Pwords
c ; Pnonwords

c ;

Figure 3. Schematic representation of the similarity between a signal-detection analysis and an

EZ-diffusion model analysis. The circles at the bottom denote unobserved variables, and the

squares at the top denote observed variables.

7 http://users.fmg.uva.nl/rgrasman/jscript/EZ2_new.html; this web application works fastest

under Safari or Microsoft Internet Explorer Version 7. Excel code and R code available from

Raoul Grasman upon request.

654 WAGENMAKERS

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
a
g
e
n
m
a
k
e
r
s
,
 
E
r
i
c
-
J
a
n
]
 
A
t
:
 
1
4
:
1
5
 
2
9
 
J
u
n
e
 
2
0
0
9



VRTwords; VRTnonwords; MRTwords; and MRTnonwords; and returns as output

estimates for vwords; vnonwords; a, z, Twords
er ; and Tnonwords

er : Note that a and z are

response criteria that are assumed to be determined prior to stimulus

processing, so that they are independent of whether the stimulus is a word or

a nonword. If desired, the EZ2 program can determine a common estimate

for Ter using a least-squares fitting procedure.

DMAT

The Diffusion Model Analysis Toolbox (DMAT) is a Matlab application

developed by Joachim Vandekerckhove and Francis Tuerlinckx (Vandekerc-
khove & Tuerlinckx, 2007, 2008).8 The DMAT program is able to estimate

the full Ratcliff diffusion model, including the trial-to-trial variability

parameters h, sz, and st. By default, the parameter estimation routine first

computes the EZ-diffusion model estimates to provide useful starting values,

and then uses multinomial maximum likelihood to determine the best-fitting

parameter values.

The DMAT program comes with many options, such as the possibility to

simulate data from the model, the possibility to constrain parameters
through easy-to-use design matrices, the possibility to do model selection

based on indices such as BIC (e.g., Raftery, 1995; Wagenmakers, 2007), the

possibility to filter out uniformly distributed contaminants using mixture

modelling, and the possibility to automatically determine the optimal cutoff

Figure 4. Screenshot of the EZ2 web application.

8 DMAT is freely available online at http://ppw.kuleuven.be/okp/dmatoolbox
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point for the elimination of fast guesses. Last but not least, the DMAT

program comes with a user-friendly graphical user interface (GUI), a

screenshot of which is shown in Figure 5 (courtesy of Joachim Vandekerc-

khove). The GUI generates syntax that a more experienced user may choose

to modify for batch processing (i.e., fitting data from multiple participants

one after another).

The DMAT GUI, the clear documentation, and the excellent online

support make the program so easy to use that*at least at the methodology

unit of the University of Amsterdam*graduate and even undergraduate

students can fit data without outside help.

The main disadvantage of this truly excellent toolbox is that it does

require Matlab, a relatively expensive computer program. Also, a user

without any programming experience may find it somewhat difficult to

adjust the Matlab syntax by hand, an activity that is not strictly necessary

but can often be very useful.

Fast-dm

The fast-dm program is a platform-independent command line tool

developed by Andreas and Jochen Voss (Voss & Voss, 2007, 2008).9 Just

as the DMAT program, fast-dm is able to estimate all of the Ratcliff

diffusion model parameters, including h, sz, and st. Fast-dm’s parameter

estimation routine first computes the EZ-diffusion model estimates to

Figure 5. Screenshot of DMAT’s graphical user interface.

9 fast-DM is freely available online at http://www.psychologie.uni-freiburg.de/Members/voss/

fast-dm
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provide useful starting values, and then determines the best-fitting para-

meter values by minimising the Kolmogorov-Smirnov statistic, that is, the
maximal vertical distance between the predicted and the empirical cumula-

tive RT distributions (Voss et al., 2004). It should further be pointed out that

the fast-dm program does not use the analytical solution of the partial

differential equation (PDE) that defines the diffusion process (i.e., Equa-

tion 4 with its infinite sum); instead, fast-dm uses a numerical solution of the

PDE, and Voss and Voss (2008) show that this numerical PDE method can

greatly lower the computational costs of parameter optimisation.

In fast-dm, the program settings are specified in a control file. In this
control file, the user can indicate the input files that contain the data, the

format of the data, the required accuracy of the predicted RT distributions,

and the parameters that are either fixed or free to vary across specific

conditions. The output is provided on the screen and is written to text files.

The fast-dm program is easy to use and comes with a good manual (i.e., Voss

& Voss, 2007).

The fast-dm program currently offers fewer modelling options than

DMAT, but then again fast-dm does not require that the user owns a copy of
the relatively expensive Matlab program. Both DMAT and fast-dm are

excellent, user-friendly programs that have made it easy for experimental

psychologists to fit the full Ratcliff diffusion model to their data.

Bayesian estimation

A age-old problem in psychology is how to deal with individual differences.
In contrast to the field of psychometrics, where individual differences are the

main topic of investigation, the field of experimental psychology has

traditionally ignored individual differences, pretending instead that each

new participant is a replicate of the previous one (Batchelder, 2007) As Bill

Estes and others have shown, however, individual differences that are

ignored can lead to so-called averaging artifacts in which the data that are

averaged over participants are no longer representative for any of the

participants (Estes, 1956, 2002; Heathcote, Brown, & Mewhort, 2000). One
way to address this issue, popular in psychophysics, is to measure each

individual participant extensively, and deal with the data on a participant-

by-participant basis.

In between the two extremes of assuming that participants are completely

the same and that they are completely different lies the compromise of

hierarchical modelling. In hierarchical modelling, individual-level para-

meters are drawn from a group distribution*hence, the hierarchical model

takes both differences and similarities between participants into account. In
a diffusion model context, hierarchical modelling allows variability across
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participants and items to be accounted for by higher order distributions that

inform and constrain the estimation of lower level parameters for individual

participants or items.

In the field of psychology, Jeff Rouder and colleagues have repeatedly

illustrated the theoretical advantages and practical relevance of a Bayesian

hierarchical analysis of common experimental data (Rouder & Lu, 2005;

Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder et al., 2007). Although

hierarchical analyses can be carried out using orthodox methodology (i.e.,

Hoffman & Rovine, 2007), there are strong philosophical and practical

reasons to prefer the Bayesian methodology (e.g., Lindley, 2000; Gelman &

Hill, 2007, respectively). In the Bayesian methodology, uncertainty is

represented by probability distributions, and probability theory is used to

update prior knowledge of the parameters in light of the observed data (e.g.,

Lee & Wagenmakers, 2005; Wagenmakers, 2007).
Recently, Michael Lee and colleagues implemented two Bayesian

(hierarchical) estimation routines for diffusion model analyses (Lee, Fuss,

& Navarro, 2006; Lee et al., 2007). The work by Lee et al. (2006) depends on

an analytic approximation to Equation 4 that does not contain the infinite

sum, and the work by Lee et al. (2007) rests on the implementation of

Equation 4 for use in the popular WinBUGS program (e.g., Spiegelhalter,

Thomas, Best, & Lunn, 2003). The Bayesian estimation routine from Lee

et al. (2007) is not yet publicly available, but this is expected to happen in the

near future.

The Bayesian estimation of diffusion model parameters constitutes an

exciting new development, and it offers several advantages:

1. In the Bayesian framework, it is easy to carry out hierarchical analyses.

As mentioned earlier, hierarchical analyses take into account differ-

ences and similarities between participants and between items. More-

over, in the case of few data, extreme individual estimates will shrink

towards the mean of the group distribution.

2. Prior distributions for the parameters can be based on estimates from

previous experiments. The use of such informative priors will lead to

more sensible results.

3. Uncertainty with respect to parameters is directly reflected in the

posterior distribution of the parameters. The knowledge gained from

the experiment is quantified by the difference between the prior

distribution and the posterior distribution. Combined with the first

two advantages, this means that posterior distributions can be

calculated even when some participants or items do not produce

many error responses. This addresses an important limitation of

current non-Bayesian methods.
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4. The adequacy of the model can be quantified by generating synthetic

data from the model, and comparing these data to those that were
actually observed (i.e., so-called posterior predictive checks, e.g., Meng,

1994). When data are generated from a Bayesian model, uncertainty

with respect to all parameters in the model is automatically and

properly taken into account.

5. In many situations, researchers might want to select between several

competing diffusion models, for instance one in which an experimental

effect is in drift rate versus another one in which the effect is in

boundary separation. In the Bayesian paradigm, model selection is
accomplished using Bayes factors, a number that quantifies the change

from prior to posterior odds (Jeffreys, 1961; Kass & Raftery, 1995).

Such a Bayesian hypothesis test has many advantages over the

orthodox likelihood ratio test and their associated p-values (Wagen-

makers, 2007).

6. Using the power of graphical modelling, the Bayesian framework can

easily be adjusted to account for a host of interesting findings (e.g.,

Shiffrin, Lee, Wagenmakers, & Kim, in press).

In sum, the methodological developments that are presented here range

from the very simple (i.e., the EZ-diffusion model) to the complex (i.e.,

hierarchical Bayesian estimation). Programs such as DMAT and fast-dm
have made the Ratcliff diffusion model accessible to a broad audience of

experimental psychologists, and with these programs comes the hope that

the Ratcliff diffusion model will see many more applications in the near

future.

CURRENT EMPIRICAL DEVELOPMENTS

The goal of this section is to provide a brief overview of recent diffusion

model applications. These applications span a wide range of phenomena,

and they are intended to show the added value of decomposing performance

into the constituent psychological processes that are hypothesised by the
diffusion model. In many of the applications, a diffusion model analysis

provides a serious challenge to entrenched verbal theories and explanations.

Phenomenon 1: Ageing

One of the most popular explanations for the cognitive effects of ageing is

provided by the ‘‘general slowing’’ hypothesis. According to this hypothesis,

the main effect of ageing is to slow down all cognitive processes by the same

rate (e.g., Brinley, 1965; Cerella, 1985; Salthouse, 1996). One source of
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support for the general slowing hypothesis comes from the analysis of

Brinley plots, in which averaged mean RT of a group of young participants is
plotted against the averaged mean RT of a group of older participants, across

a range of different conditions. The Brinley plot is often linear with a slope

greater than 1, which supposedly indicates that older people have a slower

rate of processing than younger people.

In several articles, Roger Ratcliff, Dan Spieler, and Gail McKoon have

demonstrated that Brinley plots are potentially misleading (Ratcliff, Spieler,

& McKoon, 2000, 2004). The details of their arguments and the ensuing

discussion are not important here. What is important is that the ‘‘global
slowing’’ hypothesis states that the main age-related change in processing is

in the rate of information accumulation, that is, in drift rate. This is a

hypothesis that can be tested by applying the diffusion model to empirical

data. Note that this test involves not just an analysis of group-averaged mean

RTs, but an analysis of proportion correct, RT distributions for correct

responses, and RT distributions for incorrect responses.

In recent years, the diffusion model has been applied to ageing across a

wide range of tasks (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004c;
Ratcliff, Thapar, & McKoon, 2001, 2003, 2004d, 2006a, 2007; Spaniol,

Madden, & Voss, 2006; Thapar, Ratcliff, & McKoon, 2003). The overall

results show that the effects of ageing cannot be attributed to a change in a

single process. The most reliable age-related changes are an increase in

nondecision time, and an increase in boundary separation (i.e., older

people may take longer to execute a motor response, and they are more

careful not to make errors). Depending on the task, age-related changes in

drift rate may or may not be observed. These results are based on a
detailed analysis of the data and appear to have convincingly falsified the

global slowing hypothesis of ageing.

Phenomenon 2: Lexical decision

In the lexical decision task, participants are required to quickly decide

whether a visually presented letter string is a word (e.g., MANGO) or a
nonword (e.g., DROPA). The lexical decision task is one of the most often

used tasks in the field of visual word recognition, and several models have

been proposed to account for its key findings (e.g., Norris, 2006; Plaut, 1997;

Wagenmakers et al., 2004).

One of the most influential models for lexical decision is the deadline

model (i.e., MROM, the Multiple Read-Out Model, Grainger & Jacobs,

1996; or DRC, the Dual Route Cascaded model of visual word recognition

and reading aloud, Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). The
characteristic feature of the deadline model is that it makes ‘‘nonword’’
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decisions by default; that is, the system is assumed to accumulate evidence for

the hypothesis that the presented letter string is a word. If this accumulation

process has not reached threshold levels before some temporal deadline T,

the system responds ‘‘nonword’’ (for details see Wagenmakers et al., 2008).

The deadline model for lexical decision is radically different from the

diffusion model for lexical decision (Ratcliff et al., 2004a; Yap, Balota,

Cortese, & Watson, 2006). In the diffusion model, there is no qualitative

distinction between ‘‘word’’ and ‘‘nonword’’ responses; a ‘‘nonword’’

response is not based on a temporal deadline but on accumulated evidence.

In an attempt to distinguish between the models, Wagenmakers

et al. (2008) conducted two experiments and fit both the diffusion model

and the MROM to the data. The results showed that the diffusion model

accounted nicely for the experimental data, which included effects of word

frequency, speed�accuracy stress, and word�nonword proportion. In

contrast, the deadline model could not handle the experimental data. In

particular, the deadline model failed to account for the experimental

conditions in which ‘‘nonword’’ responses were systematically faster than

‘‘word’’ responses. The reason for the failure of the deadline model is in the

deadline mechanism; when ‘‘nonword’’ responses can only be given after

the ‘‘word’’ response has timed out, ‘‘nonword’’ response are necessarily

slow.10

Phenomenon 3: IQ

People with a high IQ tend to respond faster than people with a low IQ, a

regularity that is reported across a wide range of cognitive tasks (Jensen,

1998, 2006). Somewhat surprisingly, the effect of IQ on response speed is

observed even in the simplest tasks, such as when people have to decide

which of two lines, presented side by side, is the longest. Moreover, this

statistical association with IQ is more pronounced for the slowest

responses than it is for the fastest responses, an effect that Larson and

Alderton (1990) coined the ‘‘worst performance rule’’ (WPR). Figure 6

shows data from Larson and Alderton’s seminal study. These and other

data show that people’s slowest responses are the best predictors of their

intelligence.

The origin of the WPR is subject to debate (see Coyle, 2003, for a review).

Although several verbal theories have been proposed to explain the WPR,

almost no quantitative models have tried to account for the phenomenon.

Recently, Ratcliff, Schmiedek, and McKoon (2008) showed that, in theory at

10 Simulations with the deadline model indicated that the model is able to generate fast

‘‘nonword’’ responses, but that this leads to unacceptably large error rates.
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least, the WPR is automatically generated by a diffusion model in which

individual differences in IQ map on to individual differences in drift rate or

boundary separation.11 The driving force behind the diffusion model account

of the WPR is the fact that RT distributions skew out when drift rate

decreases or boundary separation increases*that is, the difference between

two RT distributions is larger for the slow part of the distributions than it is

for the fast part.

In order to test whether the diffusion model account of the WPR holds up

in practice, Weeda, Wagenmakers, and Huizenga (2007) applied the model to

data from a perceptual discrimination experiment with 44 high-school

students. A median split on their Raven scores divided the students in a high

IQ group and a low IQ group. Contrary to our expectation, the behavioural

results did not indicate the presence of the WPR*performance of the two

IQ groups did not differ significantly with respect to proportion correct or

mean RT. A diffusion model analysis, however, showed that the high IQ

participants had a higher drift rate and a lower boundary separation than

did the low IQ participants, consistent with the theoretical account by

Ratcliff et al. (2008). In addition, however, the high IQ participants had a

Figure 6. The worst performance rule: The association between response speed and intelligence is

most pronounced for slow RTs. The figure is based on data reported in Larson and Alderton (1990,

Table 4, p. 317).

11 In order to produce the WPR, the diffusion model also requires that the nondecision time Ter

varies randomly from participant to participant (Ratcliff et al., 2008).
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longer nondecision time Ter than the low IQ participants, an unexplained

result that effectively masked the WPR in the behavioural measures.
In sum, the diffusion model provides an account of IQ-related differences

in response times that is much more detailed than the one provided by

standard analysis. The diffusion model explains the WPR in terms of

individual differences in drift rate or boundary separation. Weeda et al.

(2007) showed that the IQ-related changes in these key parameters can be

obtained even when changes in other parameters mask the WPR in the

behavioural measures.

Phenomenon 4: Practice

The effect of practice is ubiquitous; in almost every cognitive task, whether

it involves cigar rolling, card sorting, pencil mazes, or alphabet arithmetic,

performance increases as a function of training time (e.g., Crossman, 1959;

Logan, 1992). One of the unresolved issues in experimental psychology

concerns the shape of the learning curve: Does performance increase as a
power function (Logan, 1988; Newell & Rosenbloom, 1981) or as an

exponential function (Heathcote et al., 2000)? In much of the research on

practice, the dependent variable of interest is either proportion correct or

the mean RT for correct responses (but see Logan, 1992). One of the

advantages of the Ratcliff diffusion model is that it takes into account the

full range of data: proportion correct, the RT distributions for correct

responses, and the RT distributions for error responses (Ratcliff, Thapar, &

McKoon, 2006b). For this reason alone, it would be useful to apply the
diffusion model to data from a practice experiment.

From a diffusion model perspective, one might hypothesise that the

practice effect is associated with an increase in drift rate (see Brown &

Heathcote, 2005, for a detailed analysis). One may further hypothesise that

such an increase in drift rate may lead participants to lower their boundary

separation, a strategic adjustment that keeps error rate constant but leads to

more gains in RT. In order to test these hypotheses, Dutilh, Wagenmakers,

Vandekerckhove, and Tuerlinckx (2008) carried out a 5-day, 10,000-trial
lexical decision experiment in which participants completed 25 blocks of 400

stimuli each. Two participants were instructed to pay attention mainly to

response accuracy, and two participants were instructed to pay attention

mainly to response speed.

The behavioural results showed that the accuracy-instructed participants

improved mostly on response speed, whereas speed-instructed participants

improved mostly on response accuracy. The diffusion model analysis showed

that, as expected, drift rate increased with practice for all participants. For
the accuracy-instructed participants, practice also decreased boundary
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separation,12 and*to our surprise*practice caused a 100 ms decrease in

nondecision time. For the speed-instructed participants, boundary separa-

tion, starting point, and nondecision time did fluctuate over practice, but not

in a systematic manner (for details see Dutilh et al., 2008).

Thus, a diffusion model analysis of the practice effect showed that the

effect of practice may involve more than one underlying process. This

conclusion seriously calls into question the usefulness of fitting power laws

or exponential laws to a sequence of mean RTs.

Phenomenon 5: Implicit Association Test

As is evident from the silly article by Bones and Johnson (2007),13 the

Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) is

one of the most popular tools in experimental social psychology (see Fazio &

Olson, 2003, and Nosek, Greenwald, & Banaji, 2006, for reviews). The IAT

consist of two tasks. For example, the first task may be to classify faces

according to race (i.e., Black or White), and the second task may be to

classify words according to valence (i.e., positive or negative). In the two

critical phases of the IAT, these tasks are performed in alternation. In one

phase, the response key for the Black faces is the same as the one for

negatively valenced words, and the response key for the White faces is the

same as the one for positively valenced words. In this phase, the response

mapping is compatible with a prejudice that favours White people over Black

people. In another phase, the response mapping is incompatible with this

prejudice, such that the response key for Black faces is the same as that for

positively valenced words, and the response key for White faces is the same

as that for negatively valenced words. In the IAT, responses are generally

faster and more accurate for the compatible response mapping than for the

incompatible response mapping, and the size of this difference may be taken

as a measure of the implicit attitude under consideration.

One problem with the IAT is that people may be aware of the fact that the

incompatible mapping is more difficult, and, in order to prevent too many

error responses, they may adopt a more conservative threshold setting in the

incompatible phase than in the compatible phase (Brendl, Markman, &

Messner, 2001). Thus, performance differences between compatible and

incompatible response mappings are not pure measures of implicit prejudice,

as IAT dogma would have it. Instead, these performance differences could be

partly due to strategic considerations that reflect a participant’s uncertainty.

12 This decrease in boundary separation was clearly observed for one of the participants, and

clearly absent for the other.
13 Yes, this really is a silly article.
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In order to separately estimate the different components of processing

that together determine performance on the IAT, Klauer, Voss, Schmitz, and

Teige-Mocigemba (2007, Exp. 1) applied the diffusion model to data from a

flower�insect IAT. The results showed that, compared to the compatible

response mapping, the incompatible response mapping lead to an increase in

boundary separation (i.e., more response caution), an increase in nondeci-

sion time, and a decrease in drift rates. Follow-up experiments showed that

only the difference in drift rate correlated significantly with attitude ratings.

In sum, the application of the diffusion model to the IAT shows that the

compatibility effect can be attributed to three different psychological

processes, that is, boundary separation, nondecision time, and drift rate

(Klauer et al., 2007). As only drift rate reflects the attitude process of

interest, the diffusion model can be used to filter out unwanted strategic

variance in the IAT, thereby providing a cleaner estimate for implicit

attitudes.

Phenomenon 6: Accessory stimulus effect

The accessory stimulus effect refers to the finding that response times speed

up when the imperative stimulus is accompanied by a salient but task-

irrelevant stimulus that is presented in a different perceptual modality

(Bernstein, Clark, & Edelstein, 1969). Usually, the imperative stimulus is

presented in the visual modality, and the accessory stimulus (AS) is

presented in the auditory modality. For instance, Jepma, Wagenmakers,

Band, and Nieuwenhuis (in press) presented an auditory tone immediately

prior to the onset of a letter string that required a lexical decision; in this

case, the beneficial effect of the AS on mean lexical decision RT was on

average 24 ms.
The literature shows little consensus with respect to the origin of the AS

effect. At least four accounts have been proposed:

1. The energy-integration hypothesis, which postulates that the AS

facilitates stimulus encoding (Bernstein, Rose, & Ashe, 1970).

2. The drift rate hypothesis, which postulates that the AS increases the rate

with which information from the imperative stimulus is accumulated

(Hackley & Valle-Inclán, 1999).

3. The boundary separation hypothesis, which postulates that the AS leads

to a more risky threshold setting (Posner, 1978).
4. The motor time hypothesis, which postulates that the AS decreases the

time needed to execute the motor response (Sanders, 1980).
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It is evident that the different hypotheses make specific predictions with

respect to the effect of the AS on response accuracy and the distribution of
RTs. In an attempt to differentiate between the various hypotheses, Jepma

et al. (in press) applied the diffusion model to the data from a lexical decision

experiment with an auditory tone as AS. The data showed that the effect of

the AS was to shift the entire RT distribution by the same amount, and that

there was no effect on response accuracy. This pattern of results suggests

that the AS effect does not affect the decision process. Indeed, the diffusion

model analyses provided overwhelming support for the hypothesis that the

AS effect is to decrease the nondecision time Ter. Hence, the experiment by
Jepma et al. undercuts both the drift rate hypothesis and the boundary

separation hypothesis. In a separate ERP experiment, Jepma et al. found

that the AS modulated the P1 and N1 components, and this supports

Bernstein’s original energy-integration hypothesis.

CONCLUDING REMARKS

For over a century, experimental psychologists have studied the complex

structure of human cognition using relatively simple tasks, and, indeed, a

simple methodology. The present paper suggests that considerable advan-

tages can be gained by using a more sophisticated methodology. The recent

developments sketched in this paper confirm that the Ratcliff diffusion
model is a promising candidate to replace or supplement the simple methods

of analysis that have up till now dominated experimental psychology.
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