
Human Movement Science 28 (2009) 297–318
Contents lists available at ScienceDirect

Human Movement Science

journal homepage: www.elsevier .com/locate/humov
Theories and models for 1/fb noise in human
movement science

Kjerstin Torre a,*, Eric-Jan Wagenmakers b

a Faculty of Sport Sciences, University Montpellier 1, EA 2991, Motor Efficiency and Deficiency, 700 Avenue du Pic Saint Loup,
34090 Montpellier, France
b University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

a r t i c l e i n f o
Article history:
Available online 28 April 2009

PsycINFO classification:
2200
2300

Keywords:
1/fb noise
Serial long-range correlation
Repeated performance
Mechanistic
Nomothetic
Modeling
Theories
0167-9457/$ - see front matter � 2009 Published
doi:10.1016/j.humov.2009.01.001

* Corresponding author.
E-mail address: torre.kj@gmail.com (K. Torre).
a b s t r a c t

Human motor behavior is often characterized by long-range,
slowly decaying serial correlations or 1/fb noise. Despite its preva-
lence, the role of the 1/fb phenomenon in human movement
research has been rather modest and unclear. The goal of this paper
is to outline a research agenda in which the study of 1/fb noise can
contribute to scientific progress. In the first section of this article
we discuss two popular perspectives on 1/fb noise: the nomothetic
perspective that seeks general explanations, and the mechanistic
perspective that seeks domain-specific models. We believe that if
1/fb noise is to have an impact on the field of movement science,
researchers should develop and test domain-specific mechanistic
models of human motor behavior. In the second section we illus-
trate our claim by showing how a mechanistic model of 1/fb noise
can be successfully integrated with currently established models
for rhythmic self-paced, synchronized, and bimanual tapping. This
model synthesis results in a unified account of the observed long-
range serial correlations across a range of different tasks.

� 2009 Published by Elsevier B.V.
1. Introduction

In the field of human movement science, researchers often quantify performance in terms of its
accuracy and its consistency. For instance, consider a task in which a participant first listens to the
beat of a metronome. When the metronome stops, the participant sets out to reproduce the metro-
nome’s rhythm by tapping a finger. In this so-called continuation tapping task, performance may be
by Elsevier B.V.
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measured by the average inter-beat interval of the participant relative to that of the metronome.
Performance may also be measured by the variability of the participant’s inter-beat intervals; high
variability is then associated with low consistency and poor performance.

Despite the fact that accuracy and consistency are important global indicators of successful perfor-
mance, neither of the two measures directly relates to the trial-to-trial dynamics of the system under
investigation. In fact, the standard statistical analysis of consistency tacitly assumes that trial-to-trial
dynamics are absent and that consecutive behaviors are unrelated. This tacit assumption is clearly
false, however, as previous research has convincingly demonstrated the presence of a strong correla-
tion between consecutive behaviors. Moreover, the nature of this correlation has been used to con-
strain theories of human movement production. In particular, several models for finger tapping
were developed to accommodate the negative lag 1 correlation observed in consecutive taps (e.g.,
the Wing and Kristofferson tapping model and its extensions; Vorberg & Schulze, 2002; Vorberg &
Wing, 1996; Wing & Kristofferson, 1973).

Thus, it has long been known that human movement production leads to robust serial correlations
that can inform us about the trial-to-trial dynamics of the underlying system. It is only recently, how-
ever, that researchers have started to examine more closely the specific kind of robust serial correla-
tions observed in human movement production. Much of this recent work suggests that the serial
correlations may be part of a special class known as 1/fb noise. This particular class of serial correla-
tions occurs throughout many widely different systems and reflects the presence of fractal features
such as self-similarity and scale-invariance. In addition, the presence of 1/fb noise implies that the serial
correlations decay so slowly that the generating system is called persistent or long-range dependent. In
the field of human movement science, 1/fb noise has been found in human force production (Gilden,
2001; Wing, Daffertshofer, & Pressing, 2004), unimanual rhythmic movement (e.g., Chen, Ding, &
Kelso, 1997; Chen, Ding, & Kelso, 2001; Delignières, Lemoine, & Torre, 2004b; Ding, Chen, & Kelso,
2002; Gilden, Thornton, & Mallon, 1995; Lemoine, Torre, & Delignières, 2006; Yoshinaga, Miyazima,
& Mitake, 2000; Yulmetyev, Emelyanova, Hänggi, Gafarov, & Prokhorov, 2002; but see Pressing and
Jolley-Rogers (1997), and the dynamics of bimanual coordination (Torre, Delignières, & Lemoine,
2007). In his keynote lecture at the 2007 European Workshop on Movement Science, Jeffrey Hausdorff
argued for the diagnostic value of 1/fb noise in the evaluation of human walking patterns (Hausdorff,
2007; see also Ashkenazy, Hausdorff, Ivanov, & Stanley, 2002; Hausdorff, Peng, Ladin, Wei, & Goldber-
ger, 1996; West & Scafetta, 2003).

In human movement science, the phenomenon of 1/fb noise can be approached from at least two
different perspectives. The nomothetic perspective seeks general principles that explain the existence
of 1/fb noise across a range of different systems and behaviors. Proponents of the nomothetic perspec-
tive often explain the presence of 1/fb noise by referring to the dynamic, self-organizing characteristics
of the human nervous system (e.g., van Orden, Holden, & Turvey, 2003). The mechanistic perspective
seeks domain-specific explanations for the existence of 1/fb noise. Proponents of the mechanistic
perspective explain the presence of 1/fb noise by concrete modeling of the underlying processes that
supposedly give rise to the serial correlations in the system under study (e.g., Ashkenazy et al., 2002;
Delignières, Torre, & Lemoine, 2008; Wagenmakers, Farrell, & Ratcliff, 2004).

The primary goal of this article is to discuss the strengths and limitations of the nomothetic and
mechanistic perspectives on 1/fb noise. Note that we believe that both approaches have merit, and
a direct comparison between the two is hampered by the fact that the strengths of the nomothetic
perspective corresponds to the limitations of the mechanistic perspective, and vice versa. Thus, the
two approaches are best seen as complementary. Nevertheless, we hope to demonstrate that the
choice of perspective influences the research agenda in important ways.

While it is true that nomothetic accounts have famously contributed to the understanding of what
1/fb noise tells about a system’s underlying dynamics, our focus here is on the possible contribution of
the mechanistic perspective. We hope to convince the reader that the mechanistic perspective on 1/fb

noise can be useful for theories of human movement production.
In the first part of this article we outline the nomothetic and the mechanistic perspectives on the phe-

nomenon of 1/fb noise. We argue that domain-specific models of the data-generating process are useful
not only to explain the observed behavior but also to bridge the gap between the observed data and the
existing theories of 1/fb noise (cf. Gisiger, 2001; Jensen, 1998; Wagenmakers, Farrell, & Ratcliff, 2005).
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In the second part of this article we exemplify our line of reasoning by outlining a mechanistic
model for 1/fb noise in self-paced tapping, and by showing how this model can be extended to syn-
chronization tapping and bimanual tapping. This work illustrates how 1/fb noise can drive theoretical
progress and result in a unified framework for the modeling of tapping tasks that are superficially
quite different.

2. Signature of a 1/fb noise process

In order to make this article self-contained, we first briefly discuss the signature of a 1/fb process
and how it differs from more mundane processes. For concreteness, consider a task in which the par-
ticipant has to estimate a one-second time interval and do this repeatedly for 400 uninterrupted trials
without any feedback. Fig. 1, panel A shows an example data set (Wagenmakers, Grünwald, & Stey-
vers, 2006). From the raw data, it is immediately evident that this data set displays considerable po-
sitive trial-to-trial correlation; that is, if the participant’s estimate is relatively high at trial n, it is likely
to still be relatively high at trial n + 1 (i.e., lag-1 autocorrelation). Fig. 1, panel B plots all autocorrela-
tions up to lag 25. This autocorrelation function shows that the correlation between different estima-
tion attempts decreases with lag, but at a relatively slow rate. Moreover, a substantial autocorrelation
remains even after more than 20 intervening estimation attempts. Finally, Fig. 1, panel C shows the
log–log power spectrum. In order to obtain this plot, the raw data from panel A are first decomposed
into their constituent sine and cosine waves. Next, the frequency of the waves is plotted against their
squared amplitude. A visual impression of the power spectrum shows that the low-frequency waves
have the highest amplitude, which suggests that an increase of the measurement scale leads to the
detection of more and more low frequency waves with high amplitude.

The features of the time series in Fig. 1 are characteristic of a 1/fb process (for details see Beran,
1994; Rangarajan & Ding, 2003). First, a 1/fb process has an autocorrelation that decays so slowly that
its sum does not converge to a finite number. Specifically, the correlation C with k intervening trials is
given by a power function, CðkÞ ¼ jkj�c, with c between 0 and 1. This means that the process is long-
range dependent. Second, the log–log power spectrum of a 1/fb process is linear with slope �b, where b
Fig. 1. Example of a 1/f process. Left panel: 400 consecutive attempts at estimating a one-second time interval without any
feedback (Wagenmakers et al., 2006); center panel: the autocorrelation function for the time series from the left panel; right
panel: the log–log power spectrum for the time series from the left panel. See text for details.
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is usually taken to range from 0.5 to 1.5. Note that a sequence of independent normal deviates shows a
slope of 0, whereas the cumulative sum of normal deviates (i.e., a random walk) shows a slope of �2. A
third feature of a 1/fb process is that it is self-similar: the statistical properties of the time series are the
same regardless of the scale of measurement, and hence the process lacks a characteristic time scale
(e.g., Maylor, Chater, & Brown, 2001).

The features that characterize the 1/fb process are special. Traditional ARMA time series models, for
instance, decompose the time series Xt as Xt ¼

Pp
r¼1/rXt�r þ et þ

Pq
r¼1hret�r , where e is white noise and

p and q indicate the order of the autoregressive and moving average components, respectively. In con-
trast to the 1/fb process, an ARMA process has a characteristic time scale, a log–log power spectrum
that levels off at the low frequencies, and an autocorrelation function that decays relatively quickly
(i.e., ARMA models are short-range dependent). Thus, at least in theory, the 1/fb process is quite dif-
ferent from the standard type of time series process (Thornton & Gilden, 2005; Wagenmakers et al.,
2004).

The 1/fb process is special, not just because of its unique features, but also because the origins of the
process are presently not well understood. In particular, it is not obvious how to construct a general
model that produces perfect 1/fb noise – most models require either detailed knowledge of the specific
application, account for only a very specific range of values for b (i.e., b = 1), or break down as the num-
ber of observations increases.

The air of mystique that surrounds 1/fb noise – a special process whose precise origin is unknown –
becomes even more intense when one considers that 1/fb noise is found almost everywhere: examples
of 1/fb noise include electric current in transistors, water levels in the river Nile, the size of tree rings,
brain activity as recorded by magnetoencephalogram, the stock market, music, and speech (e.g., Han-
del & Chung, 1993; Hosking, 1984; Hurst, 1951; Novikov, Novikov, Shannahoff-Khalsa, Schwartz, &
Wright, 1997; Voss & Clarke, 1975; Wolf, 1978).1

In cognitive psychology, evidence for long-range dependence was recently found in a range of tasks
such as mental rotation, lexical decision, speeded visual search, estimation of distance, estimation of
rotation, estimation of force, estimation of time, simple reaction time, speech production, and word
naming (Gilden, 1997, 2001; Gilden & Hancock, 2007; Gilden et al., 1995; Kello, Anderson, Holden,
& van Orden, 2008; Kello, Beltz, Holden, & van Orden, 2007; van Orden et al., 2003; but see Farrell,
Wagenmakers, & Ratcliff, 2006). Long-range dependence has also been reported in day-to-day fluctu-
ations in self-esteem (Delignières, Fortes, & Ninot, 2004a), in the temporal dynamics of tics in Gilles de
la Tourette syndrome (Peterson & Leckman, 1998), and in day-to-day fluctuations in selfmood of bipo-
lar patients (Gottschalk, Bauer, & Whybrow, 1995).

Despite its special features, mysterious origin, and ubiquity throughout a range of different sys-
tems, the phenomenon of 1/fb noise has often been ignored, both in experimental psychology and
in human movement science, perhaps because of the belief that the phenomenon is inconsequential
and erratic. However, Gilden (2001) has showed that, at least in certain experimental tasks, 1/fb noise
account for a large proportion of the observed variance, a proportion that is substantially larger than
that caused by standard experimental manipulations. In addition, the intensity of 1/fb noise (i.e., the
slope b) is known to change systematically as a function of certain experimental manipulations
(e.g., Chen et al., 2001; Hausdorff et al., 1996; Jordan, Challis, & Newell, 2006, 2007; Madison, 2001,
2004). Therefore, it appears as if – at least in domains where the phenomenon is well-established,
such as in human movement science – the phenomenon of 1/fb noise deserves more attention than
it has previously received.

3. Two complementary perspectives on 1/fb noise in psychological research

As mentioned in the introduction, the phenomenon of 1/fb noise has been approached from either a
nomothetic or a mechanistic perspective. In order to appreciate the differences in the interpretation
of 1/fb noise, it is important to clearly distinguish between these two perspectives without falling
into caricatured oppositions. Both perspectives have value, and they are perhaps best seen as
1 A comprehensive bibliography of 1/f noise is maintained by Wentian Li at http://www.nslij-genetics.org/wli/1fnoise/.
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complementary rather than competing. In order to avoid any ambiguity from the outset, let us briefly
clarify the distinction between the two perspectives. The nomothetic perspective focuses on the ubiq-
uity of 1/fb noise, and searches for general principles that account for its occurrence. The mechanistic
perspective departs from the idea that, depending on the behavior under study, different causal mech-
anisms may be responsible for 1/fb noise. In the mechanistic perspective, whatever causal mechanism
one prefers, that mechanism needs to be modeled in enough detail to allow a quantitative test to data.
Note that the distinction between the nomothetic and the mechanistic perspectives of 1/fb noise is not
the same as the distinction between verbal and mathematical accounts; indeed, nomothetic accounts
are usually based on a substantive amount of mathematical formalization.

We acknowledge that the distinction between nomothetic and mechanistic perspectives on 1/f
noise may not be one that is all-or-none – hybrid perspectives do exists, and there may be consider-
able shades of grey in between our black and white distinction. Nevertheless, we feel the paradigmatic
distinction that we draw has face validity, as it maps on to different research agendas that we will out-
line in more detail below.

3.1. The nomothetic perspective on 1/fb noise

Researchers with a nomothetic perspective on 1/fb noise promote a general explanation of 1/fb

noise. These researchers often stress the fact that the 1/fb phenomenon is ubiquitous (e.g., Gilden,
2001; Kello et al., 2008; van Orden et al., 2003), arguing that it is futile to try to explain 1/fb noise using
models that apply only in a limited domain, or, in other words, that ‘‘1/f scaling is too pervasive to be
idiosyncratic” (Kello et al., 2008). The nomothetic tradition focuses, first, on empirically demonstrating
the presence of 1/fb noise, and, second, on explaining the presence of 1/fb noise by referring to the
behavior of complex systems, multiple interacting sub-systems, emergent dynamics, metastability,
structure at different time scales, and self-organized criticality. Occasionally, the proponents of the
nomothetic account argue that the framework of cognitive psychology should be abandoned in favor
of the framework of nonlinear dynamical systems theory (e.g., van Orden et al., 2003).

The main attraction and an obvious strength of the nomothetic perspective is that it proposes gen-
eral explanations of 1/fb noise. Such a general explanation could potentially solve the mystery of 1/fb

noise by revealing what it is that the very different systems that display 1/fb noise have in common.
Here we discuss two general explanations of 1/fb noise; self-organized criticality and aggregation of
short-range processes with different time scales.

3.1.1. Self-organized criticality
In order to explain the ubiquitous presence of 1/fb noise, the physicist Per Bak and his colleagues

developed the concept of self-organized criticality (SOC; e.g., Bak, 1996; Bak, Tang, & Wiesenfeld,
1987, Paczuski, Maslov, & Bak, 1996; but see Jensen (1998), and Jensen, Christensen, & Fogedby,
1989; for a recent review with respect to biological systems, see Gisiger (2001); see also Sornette,
2000). Systems with SOC can display 1/fb noise, albeit only under specific conditions and only for spe-
cific dependent variables. The concept of SOC is aptly illustrated by the behavior of a particular pile of
sand (e.g., Jensen, 1998; Wagenmakers et al., 2005). This pile of sand is constrained by two orthogonal
walls, so that it is bunched up in a corner. At random positions along the walls, new grains of sand are
continually dropped onto the pile. At some point, the local slope of the sand pile exceeds a certain
threshold and grains of sand are transported downhill until the local slope is again below threshold.
This mechanism can cause avalanches of different sizes; when several adjacent slopes are near their
local threshold, a single added grain of sand can lead to a chain reaction that brings about a cascade of
avalanches.

The above pile of sand is said to self-organize to reach a critical state. Once in this state, small per-
turbations (i.e., single grains of sand) may have large consequences (i.e., a cascade of avalanches). Sim-
ilar models have been proposed for evolution (e.g., Bak & Sneppen, 1993; but see Davidsen and Lüthje
(2001), forest fires (e.g., Malamud, Morein, & Turcotte, 1998), earthquakes (e.g., Davidsen & Paczuski,
2002; Davidsen & Schuster, 2000, Davidsen & Schuster, 2002), and populations of neurons (da Silva,
Papa, & de Souza, 1998; Usher, Stemmler, & Olami, 1995). The above models all assume that the
system of interest is gradually pushed toward a threshold, and that there are dominant interactions
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between many of the system’s individual units. Hence, Jensen (1998) termed these kinds of models
‘‘slowly driven, interaction-dominated threshold systems” (p. 126).

Proponents of the nomothetic account often point to the advantages of SOC for neural networks: A
neural network that is in a state of criticality is able to quickly reorganize and swiftly adapt to new
situations (Alstrøm & Stassinopoulos, 1995; Bak & Chialvo, 2001; Chialvo & Bak, 1999; Linkenkaer-
Hansen, Nikouline, Palva, & Ilmoniemi, 2001). Thus, it is argued, the presence of 1/fb noise in human
cognition or human motor behavior may signal SOC as the underlying design principle. This design
principle is beneficial because it allows the system to adjust to changes in environmental demands.

The theory of SOC is elegant and attractive. Its main weakness, as was hinted at above, is that SOC
systems generate 1/fb noise only under specific conditions and only for specific dependent variables.
For instance, the total mass of the self-organizing pile of sand shows 1/fb noise across a wide range of
frequencies (Jensen, 1998, pp. 30–42), but this only happens when the new grains are added along the
two orthogonal walls. Surprisingly, the pile of sand does not show 1/fb noise when the grains of sand
are added to random positions on the interior of the pile (see Jensen, 1998, p. 42). Also, certain piles do
not generate 1/fb noise when they are made up of sand, but do generate 1/fb noise when they are made
up of rice (for details, see Jensen, 1998). The dramatic impact of such design details highlights the need
for specific models of the underlying process. For the proponents of the nomothetic account, the lack
of robustness with which SOC systems generate 1/fb noise may take away some of considerable
appeal.

3.1.2. Aggregation of short-range processes with different time scales
It has been known for a long time that 1/fb noise can be produced by summing component short-

range processes with different characteristic time scales (see, e.g., Gardner, 1978; Jensen, 1998, p. 9;
van der Ziel, 1950; Wagenmakers et al., 2004, pp. 603–605). For example, consider a time series
X(t) = Y1(t) + Y2(t) + Y3(t), where X denotes the observed output of the system as a whole, and the Ys
indicate the output of individual subcomponents. The Ys may or may not be observed. Suppose that
all Y are switching series, that is, they retain their value on the previous trial with probability
p = exp (�1/s). When Y1 is a quickly changing process with s = 1, Y2 is an intermediate process with
s = 10, and Y3 is a slowly changing process with s = 100, the composite series X(t) = Y1(t) + Y2(t) + Y3(t)
has structure at three different time scales – for a time series of about 1000 observations, this yields
almost perfect 1/fb noise (Wagenmakers et al., 2004, Fig. 12).

Several models for 1/fb noise in complex natural systems have exploited the above principle of
aggregation. In biology, the model by Hausdorff and Peng (1996) assumes that heart rate fluctuations
are subject both to relatively quick adjustments (e.g., beat-by-beat) via the autonomic nervous system,
and to relatively slow adjustments (e.g., circadian rhythms) via hormonal systems. Ivanov, Nunes
Amaral, Goldberger, and Stanley (1998) proposed a model for the regulation of heart rate through
homeostasis that is based on similar principles. In cognitive psychology, Ward (2002) has promoted
the principle of aggregation by distinguishing between fast fluctuating preconscious processes, slowly
fluctuating conscious processes, and unconscious processes that operate on an intermediate time
scale. In the movement sciences, Pressing (1999) has applied the principle of aggregation to explain
the presence of 1/fb noise in synchronous tapping.

The main benefits of explaining 1/fb noise by aggregation of component processes is that such an
explanation is conceptually transparent (i.e., it demystifies the 1/fb phenomenon), and focuses atten-
tion on the latent processes that influence the system’s behavior. One main drawback of explaining 1/
fb noise by aggregation is that, as the length of the time series increases, more and more short-range
processes need to be invoked to keep the spectrum from flattening at the low frequencies. In the limit
of many samples, the aggregation approach is thus not very parsimonious. In addition, it could be ar-
gued that, in order to generate 1/fb noise, the time scales of the component processes need to coordi-
nate in just the right way – for instance, the above time series X(t) = Y1(t) + Y2(t) + Y3(t) only shows 1/fb

noise if the time scales for the Ys are sufficiently different.
This latter concern was addressed by Granger ((1980); see also Robinson (1978), who showed that

‘‘blind” aggregation of short-range processes can also produce 1/fb noise. For instance, assume that the
observed behavior Xt of a given system is just the sum of infinitely many component series,
Xt ¼

P1
i¼1Y ðiÞt . Further assume that each individual Y component is a first-order autoregressive process,
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Y ðkÞt ¼ /ðkÞY ðkÞt�1 þ et , and let /(k) be sampled from a beta distribution with sufficient mass near 1. Then
the observed behavior Xt shows 1/fb noise. This explanation of 1/fb noise is popular in the fields of eco-
nomics and finance (see, e.g., Baillie (1996), but it can easily be extended to human cognition and mo-
tor control; one only needs to make the plausible assumption that the observed behavior is jointly
determined by many independent groups of neurons, each with their own different autoregressive de-
cay parameter (cf. Chen et al., 2001; Ding et al., 2002).

3.1.3. Limitations of the nomothetic perspective
The nomothetic perspective is valuable in that it tries to formulate general explanations for a ubiq-

uitous phenomenon. That is, the ubiquitous finding of 1/fb noise in human coordination may be ac-
counted for by the general hypothesis that the human nervous system displays self-organized
criticality, just as sand piles and forest fires do. The counterpart of this level of generality is that it
is to some extent accompanied by a detachment from the singularity of the phenomenon of interest.
For instance, the skeptical researcher may wonder what exactly we can learn from the presence of 1/fb

noise in, say, human motor coordination, other than that human coordination shares certain statistical
similarities with sand piles and forest fires. The mere fact that 1/fb noise occurs throughout nature
does not make the phenomenon psychologically meaningful (e.g., Uttal, 2003).

3.2. The mechanistic perspective on 1/fb noise

Proponents of the mechanistic perspective explain the presence of 1/fb noise by concrete modeling
of underlying processes. These researchers point out that their purpose is to account for the workings
of a particular psycho-physiological system, not solely to account for the 1/fb noise the system may
display. From this perspective, 1/fb noise is just another finding that provides a useful constraint for
modeling.

The need for concrete models, the proponents point out, is further motivated by some of the follow-
ing concerns. First, concrete models produce concrete questions and concrete answers, as they are clo-
sely related to the phenomenon of interest. Using concrete models, the importance of discovering 1/fb

noise for, say, human motor coordination becomes much clearer. Second, concrete models are exper-
imentally testable and falsifiable. Third, the majority of empirical studies do not find that experimen-
tal manipulations cause a discrete transition from pure 1/fb noise (i.e., b = 1) to uncorrelated white
noise (i.e., b = 0); instead, experimental manipulations often lead to a gradual shift of the exponent,
such that the intensity of the long-range dependence might change from, say, b = 0.8–0.4. The expla-
nation of this pattern of results requires a domain-specific model that takes into account the singular-
ity of the observed behavior. Finally, there is no a priori reason why long-range and short-range
dependence should be mutually exclusive, and the observed serial correlation are likely the result
of both. In these cases, statistical models are needed to separate the long-range from the short-range
components.

Here we discuss two accounts of 1/fb noise that have been implemented as concrete models for spe-
cific tasks – the hopping model and the shifting strategy model.

3.2.1. The hopping model
The hopping model was developed to account for the long-range correlations observed in stride

intervals in human gait (Ashkenazy et al., 2002; West & Scafetta, 2003). The model builds on previous
theories of human gait dynamics. A central pattern generator, regrouping firing neuron centers, has
been assumed to be responsible for the gait pattern, and the stride frequency in particular (Collins
& Richmond, 1994; Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995). The dynamics of gait cycles
has been modeled by a forced van der Pol oscillator (Guckenheimer & Holmes, 2002), so that the firing
intensity of the neural centers was assumed to determine the eigenfrequency of the oscillator through
its linear stiffness parameter (West & Scafetta, 2003). The hopping model was specifically designed for
modeling the firing intensities delivered by the central pattern generator (Ashkenazy et al., 2002;
West & Scafetta, 2003, 2005). The neural centers that compose the central patterns generator were as-
sumed to deliver impulses of particular frequencies, which are mutually correlated. These impulses
are modeled by the nodes di of a Markov chain that obeys a first-order autoregressive process:



Fig. 2. Illustration of the hopping model. The dashed boxes represent correlated zones whose size r is related to auto-regressive
parameter determining the Markov chain by r = �1/logu. The random walk activates successively the variable linear stiffness
parameters di + 1, di + 3, di + 7, di + 6, di + 8, and di + 4, that are associated with the different neural centers.

304 K. Torre, E.-J. Wagenmakers / Human Movement Science 28 (2009) 297–318
di ¼ / di�1 þ ei; ð1Þ
where 0 < u < 1 is a constant, and ei is a white noise process. These neural centers were moreover as-
sumed to be randomly activated. This assumption is implemented as a random walk along the Markov
chain, with jump sizes obeying a Gaussian distribution of width q (see Fig. 2). These random jumps,
that gave the hopping model its name, thus generate a new series of values dn. These values corre-
spond to the successively activated neural centers, and are injected into the van der Pol oscillator.
The hopping model accounts for the long-range correlation evidenced in the stride interval series
(West & Scafetta, 2003).

Although the processes that are engaged in the hopping model are quite simple – serial correlation
basically arises from the combination of a random process and an autoregressive process – the model
has been shown to generate genuine long-range correlation with systematic variations in intensity
according to variations in parameters u and q (Delignières et al., 2008). Regarding the theoretical
interpretations of the hopping model, Ashkenazy et al. (2002) hypothesized that the range q of the
random walk steps increases with neural maturation, accounting for developmental changes in the se-
rial correlation of gait dynamics. Further studies showed that the parameterization of the external
forcing function also explained the changes in serial correlation in normal, stressed, and externally
paced gait conditions (West & Scafetta, 2003, 2005). Finally, 1/fb noise has recently been found in
the periods of unimanual self-paced oscillations. The dynamics of unimanual oscillations have com-
monly been modeled by a hybrid limit-cycle oscillator (Kay, Saltzman, Kelso, & Schöner, 1987). Delig-
nières et al. (2008) proposed to inject the hopping model at the level of the oscillator’s stiffness
parameter, to account for the evidenced 1/fb noise. According to the authors, the Markov chain could
in that case be interpreted in terms of a chain of possible ‘states’ of the system, with neighboring states
determined by similar factors and mutually correlated.

3.2.2. Shifting strategy model
Some models assume that processes show discrete transitions from one mode of operation (i.e., a

specific mean or variance) to the next. These so-called regime switching models have been extensively
studied in the field of econometrics and finance, and were shown to closely mimic long-range corre-
lation (Diebold & Inoue, 2000; Gourieroux & Jasiak, 2001; Guégan, 2005; Smith, 2005). The behavior of
many natural systems, including human performance, often presents such form of nonstationary (e.g.,
Gilden & Wilson, 1995a, 1995b). Local nonstationarities, i.e. changes in mean or variance that occur on
relatively short time scales, are moreover typical for 1/fb fluctuations. Examining serial correlations
thus might reveal local nonstationarities as an integral part of persistent long-range correlation struc-
tures (for details on the relationships between nonstationarity and long-range correlation see Beran,
Feng, Franke, Hess, & Ocker, 2003).

In order to account for 1/fb noise in temporal estimation tasks, Wagenmakers et al. (2004) proposed
a shifting strategy model. This model is an extension of the regime switching models and the classical
activation-threshold models. First, it is assumed that, over the course of the temporal estimation task,
participants repeatedly change strategies. During the time that they are in use, the different strategies
are associated with particular threshold levels that determine the criterion amount of temporal infor-
mation that has to be accumulated for a response. The threshold thus presents plateau-like variations
in time. Second, the speed with which the accumulation process approaches the current threshold is
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assumed to vary between the successive estimations. The successive time intervals are given by the
ratio between the threshold and the activation speed.

In the following section of this article, we propose the shifting strategy model as a unifying mech-
anistic account of the specific correlation structures evidenced in absolute and relative timing series,
for different rhythmic movement tasks. For that reason we are going to detail the formal aspects of the
model at that time. Nevertheless, we can already notice this model appears consistent with the non-
stationarity observed in temporal estimation data (Madison, 2001), and that it was shown to generate
long-range correlation (Wagenmakers et al., 2004).

3.2.3. Limitations of the mechanistic perspective
One possible pitfall of the mechanistic modeling perspective is that one may mistakenly believe

that a good quantitative model fit equals qualitative or theoretical insight. It has often been pointed
out that a good fit to the data is a necessary, but not a sufficient criterion for a model’s usefulness
(Roberts & Pashler, 2000). A consideration of a model’s usefulness involves, for instance, also a consid-
eration of the theoretical foundations of the model, a consideration of the extent to which the model
points to new research directions, and a consideration of the generalizability of the model. When these
aspects of a model start to play an important role, mechanistic models may potentially benefit by bor-
rowing ideas that have been developed from within the nomothetic framework, although this is lar-
gely unexplored territory.

4. Mechanistic account of 1/fb noise in absolute and relative timing

In order to illustrate the mechanistic perspective on 1/fb noise, we now discuss the modeling of se-
rial correlations in absolute and relative timing in self-paced tapping, synchronization tapping, and
bimanual tapping.

Historically, models for absolute and relative timing have not been designed to account for serial
correlations or 1/fb noise – the explanation of the negative lag one autocorrelation within the Wing
and Kristofferson absolute timing framework being the exception that confirms the rule. Nevertheless,
empirical research has found 1/fb noise to be present both in timing tasks such as unimanual tapping
(e.g., Chen, Repp, & Patel, 2002; Gilden, 2001; Gilden et al., 1995; Lemoine, Torre, & Delignières, 2006;
Yamada, 1995), and in relative timing that requires bimanual coordination (Torre et al., 2007).

Thus, although the current models for absolute and relative timing capture several characteristic
features of human performance, they have thus far ignored the observed patterns of serial correlation,
and, in particular, the presence of 1/fb noise. Here we show that the current models can be extended to
account for 1/fb noise, and that this extension is consistent and straightforward. In particular, we let
the shifting strategy model guide the behavior of an internal timekeeper. In self-paced tapping, this
model extends the Wing and Kristofferson model (Wing & Kristofferson, 1973); in synchronization
tapping, it extends Vorberg and Wing’s linear phase correction model (Vorberg & Wing, 1996); and
in bimanual tapping, it extends Ivry’s multiple timer model (Ivry & Richardson, 2002). For each model,
we compare the pattern of serial correlations that it generates to the pattern of serial correlations gen-
erated by human participants (see Appendix A for details).

4.1. Self-paced tapping

In self-paced tapping, participants are required to reproduce the rhythm of a metronome after it
has stopped. Time interval series produced in self-paced tapping are often described by the Wing
and Kristofferson model (Wing & Kristofferson, 1973). This model assumes a timekeeper that triggers
successive motor responses (i.e., taps) by generating regularly spaced cognitive events. The execution
of each tap is affected by a motor delay, so that the inter-response intervals IRIn are given by
IRIn ¼ Cn þMnþ1 �Mn; ð2Þ
where Cn is the time that it takes the timekeeper to generate a cognitive event and Mn is the motor
delay. The model does not elaborate on the specific role of the timekeeper; the assumption is that
Cn and Mn are uncorrelated white noise processes.
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Gilden et al. (1995) were the first to report that IRI series show 1/fb noise. Fig. 3 presents the typical
shape of their power spectra. The characteristic shape of the spectrum is wedge-shaped with a nega-
tive slope, close to �1, in the low-frequency region, and a positive slope in the high-frequency region.
The negative low frequency slope is though to reflect the contribution of a 1/fb component, whereas
the positive high frequency slope is thought to reflect a differenced white noise component (Deligniè-
res et al., 2004b; Delignières et al., 2008). According to the Wing and Kristofferson model, the differ-
enced white noise in the IRI series originates from the difference between motor delays on successive
trials (cf. Eq. (2)). This led Gilden et al. (1995) to suggest that the timekeeper is not a source of white
noise, but rather a source of 1/fb noise (Gilden, 2001; Gilden et al., 1995; Delignières et al., 2004b,
2008). The origin of the 1/fb noise was not modeled.

4.1.1. Incorporating the shifting strategy model into the Wing and Kristofferson framework
In order to account for the long-range correlations in temporal estimation tasks, Wagenmakers

et al. (2004) suggested a shifting strategy model. This model is an extension of the classical activa-
tion-threshold model (e.g., Ivry, 1996; Schöner, 2002) in which an activation process grows linearly
in time until it reaches a particular threshold level. This threshold crossing determines a cognitive
event that triggers the motor response and resets the activation process (see Durstewitz (2004), for
neural plausibility). The shifting strategy model extends the activation-threshold mechanism in two
ways.

First, as can be seen in Fig. 4a, the threshold level is not constant, but it is assumed to be affected by
a sequence of ‘‘cognitive states” that causes plateau-like deviations of variable amplitudes and dura-
tions from its baseline level. For each of the successively adopted cognitive states, the amplitude T0 of
the threshold deviation is sampled from a uniform distribution of range R; this deviation is maintained
for a duration dn that is uniformly sampled from an interval [dmin; dmax] of possible state durations. For
each iteration, the current threshold is then given by:
Tn ¼ T0 þ T 0n: ð3Þ
Second, the speed of the linear activation process is assumed to vary in an auto-regressive way around
the baseline speed a0:
an ¼ a0 þ /ðan�1 � a0Þ þ k en; ð4Þ
where u is the auto-regressive parameter, and en a centered white noise with unit variance. As in the
classical activation-threshold mechanism, the activation process is reset after it crosses threshold.
Thus, the time it takes the timekeeper to generate a discrete cognitive event is determined by the
ratio:
Cn ¼ Tn=an: ð5Þ
The Wing and Kristofferson model can be easily combined with the shifting strategy model; all that is
needed is to feed the timekeeper periods Cn (determined by Eq. (5)) into the Wing and Kristofferson
model (i.e., Eq. (2)). Fig. 4b presents the complete model.
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Fig. 4. Illustration of (a) the shifting strategy model, and its the incorporation into (b) the Wing and Kristofferson model for self-
paced tapping, and (c) the Vorberg and Wing model for synchronization tapping.
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4.1.2. Model performance for real data
The Wing and Kristofferson shifting strategy model provides a satisfactory account of self-paced

tapping data. The mean of IRI series collected in a self-paced tapping experiment was 481 ms, with
a mean standard deviation of 33 ms (data from Delignières et al., 2008; see Appendix A for details).
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The mean of simulated IRI series was 501 ms, with an average standard deviation of 36 ms. As
shown in Fig. 5, the model also reproduced the characteristic wedge-shaped log–log power spec-
tra2; thus, the model captures both the 1/fb component and the differenced white noise component
(Delignières et al., 2008). Specifically, the mean slopes for experimental and simulated series were
�0.49 and �0.49 in the low-frequency region of the spectrum, and 0.41 and 0.39 in the high-fre-
quency region.

4.1.3. Discussion
The extended Wing and Kristofferson model provided a satisfactory account of the serial correla-

tion pattern that is typical for self-paced tapping. The model is specific in the sense that the long-range
correlations are thought to result from a shifting strategy process at the level of the timekeeper (see
Delignières et al. (2008), for details).

It is likely that extensions of the Wing and Kristofferson model other than the shifting strategy
model could also have produced 1/fb noise. We prefer the shifting strategy extension because it is con-
crete, simple, and conceptually close to common physical representations of time (Schöner, 2002).
Simulations of the shifting strategy model showed that variations in the values of the model param-
eters (R for the threshold deviations, and u for the activation process) cause systematic variations in
the intensity of long-range correlations. For extreme values, the long-range correlations are extin-
guished altogether (Delignières et al., 2008). The mechanisms of the model map on to factors that
are likely to influence the functioning of the timekeeper (i.e., available attentional resources, number
of cognitive strategies used, or the length of the target intervals), and this mapping allows the model
to be further tested in a qualitative fashion.

The central assumption of the present model for self-paced tapping is that the source of 1/fb noise is
at the level of the timekeeper. If this assumption holds, 1/fb noise would also have to be present in any
other paradigm that involves the timekeeper. To illustrate this point we now turn to the paradigm of
synchronization tapping.

4.2. Synchronization tapping

In the synchronization tapping paradigm, participants have to synchronize their taps with an exter-
nal pacing signal that prescribes a regular tempo. In addition to an IRI series, the synchronization tap-
ping paradigm also yields a series of asynchronies (ASY), which are defined as the time intervals
between the participant’s taps and the metronome’s pacing signals.

In contrast to the IRI series in self-paced tapping, IRI series in synchronized tapping do not show 1/
fb noise – instead, these series show anti-persistent noise (i.e., negative correlations). The ASY series,
however, do show 1/fb noise (Chen et al., 1997, 2001, 2002; Ding et al., 2002; Torre & Delignières,
2008a). The IRI series and the ASY series actually contain similar information, since the IRI series cor-
respond to the differentiation of asynchronies:
2 Thr
details)

3 Diff
anti-pe
IRIn ¼ ASYnþ1 � ASYn þ s; ð6Þ
where s is the constant period of the metronome. Thus, the anti-persistent noise in IRI series is the
direct consequence of the presence of 1/fb noise in the ASY series.3

One of the most used formal accounts of synchronization tapping is the linear phase correction
model (Vorberg & Wing, 1996; see Repp (2005), for a review). This model contains a timekeeper that
is active in both self-paced tapping and synchronization tapping. Just as the Wing and Kristofferson
model, the linear phase correction model can be extended to account for 1/fb noise by assuming that
the timekeeper follows a shifting strategy process.
oughout this article, we quantify the serial correlations using the lowPSDwe method (Eke et al., 2000; see Appendix B for
.
erencing a 1/fb time series creates a 1/fb�2 time series, so that a persistent time series with a slope of �1.1, say, becomes an
rsistent time series with a slope of +0.9.
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4.2.1. Incorporating the shifting strategy model into the linear phase correction framework
Vorberg and Wing’s (1996) linear phase correction model assumes that the Wing and Kristofferson

framework for self-paced tapping also applies to synchronization tapping. The Vorberg and Wing
model accounts for synchronization tapping by a local correction of asynchronies, meaning that the
timekeeper periods are supposed to be unaffected by the synchronization process (Semjen, Schulze,
& Vorberg, 2000; Semjen, Vorberg, & Schulze, 1998; Vorberg & Schulze, 2002; Vorberg & Wing,
1996). In the model’s initial and simplest formulation, each asynchrony between tap and metronome
signal is corrected at the following tap by a first-order autoregressive or AR(1) process:
Fig. 6.
asynch
u = 0.4,
parame
ASYnþ1 ¼ ð1� aÞASYn þ Kn � s; ð7Þ
where s represents the period prescribed by the metronome. In this equation, Kn represents the inter-
response intervals predicted by the original Wing and Kristofferson continuation model (IRIn in Eq.
(2)), that is, the intervals that would have been produced in the limit case where there is no effective
synchronization process (a = 0). The serial correlation in synchronization series thus result from the
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two-level architecture of the Wing and Kristofferson model, including the properties given to the
timekeeper periods, plus the error correction processes.

Just as the original Wing and Kristofferson model, the Vorberg and Wing model conceptualizes the
timekeeper as a source of uncorrelated white noise. This means that the model does not account for
the correlation structures that have been observed in experimental ASY and IRI series (Torre & Delig-
nières, 2008). Here we propose to extend the Vorberg and Wing model by incorporating the shifting
strategy process at the timekeeper level. Fig. 4c provides a graphical illustration of the shifting strat-
egy model for synchronization tapping.

Note that Vorberg and Schulze (2002) further proposed a more complex version of the linear phase
correction model, including a second-order autoregressive term and a feedback delay on the perceived
asynchronies. However, our present purpose was not to determine the best fitting and most complete
model for synchronization tapping, but rather to show that, by letting the timekeeper process gener-
ate 1/fb noise, we can produce a consistent account of the serial correlations observed in both self-
paced and synchronization tapping.

4.2.2. Model performance for real data
The Vorberg and Wing shifting strategy model provides a satisfactory account of synchronized tap-

ping data. The mean of IRI series collected in a synchronization tapping experiment was 499 ms, with
a mean standard deviation of 32 ms, and the mean of experimental asynchronies was �62 ms, with a
mean standard deviation of 35 ms. (see Appendix A for details on the experimental procedure). The
mean of simulated IRI series was 500 ms, with an average standard deviation of 26 ms, and the mean
of simulated asynchronies was 2 ms, with a mean standard deviation of 26 ms. Fig. 6 presents the
average power spectra of experimental and simulated IRI and asynchrony series. For experimental ser-
ies, the mean spectral slopes were 1.11 for IRI series, and�0.69 for ASY series. For the simulated series,
the mean slopes were 1.38 for IRI series, and �.95 for ASY series.

4.2.3. Discussion
The extended linear phase correction model provided a satisfactory account of the serial correlation

pattern that is typical for synchronization tapping. As was the case for self-paced tapping, the model
assumes that the long-range correlations result from a shifting strategy process at the level of the
timekeeper.

Our modeling efforts show that the hypothesis of a simple autoregressive correction in synchroni-
zation is consistent with the finding of 1/fb noise in asynchronies, contrary to what was previously as-
sumed (Chen et al., 1997; Pressing & Jolley-Rogers, 1997). The extended linear phase correction model
should be easily testable within the synchronization tapping paradigm, in particular with respect to
experimental factors – such as use of an auditory versus a visual metronome, or tapping on a contact
surface versus air tapping – that are likely to influence the accuracy of the feedback on the produced
asynchronies.

In the two absolute timing paradigms modeled so far, the timekeeper was assumed to function
independently of the motor noise and the error correction process. That is, no constraint has been im-
posed on the shifting strategy component that generates the 1/fb noise, and as a result the relationship
between the correlations in the timekeeper series and the produced time interval series is relatively
straightforward. We now consider a more complicated relative timing paradigm, in which two timers
have been assumed to interact – the paradigm of bimanual tapping.

4.3. Bimanual tapping

In the bimanual tapping paradigm, participants have to produce a constant phase relationship be-
tween the movements of the two hands. Here we consider in-phase coordination, meaning that the
right and the left taps have to coincide. In addition to the IRI series of the two hands (i.e., the com-
ponent level), the bimanual coordination paradigm yields series of relative phase that describes the
collective dynamics of the hand movements. The series of relative phase is defined as the time inter-
val between the corresponding right and left taps, normalized by the completed IRI of the dominant
hand.
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The relative phase series has been the focus of most of the modeling work in bimanual coordina-
tion. Recently, this relative phase series was shown to display 1/fb noise (Torre et al., 2007), a finding
that speaks against the common prediction of a relative phase series that is white noise (e.g., Schöner,
Haken, & Kelso, 1986). Within an experimental paradigm influenced by dynamical systems theory
(Haken, Kelso, & Bunz, 1985), one could interpret the finding of 1/fb noise as evidence for self-orga-
nized criticality. Considering a two-level analysis of the collective dynamics and the component
dynamics, the structure of correlations in the relative timing pattern is determined by the congruence
of the correlation structures of the two within-hand timing patterns. Thus, the correlation structure in
the relative phase series can be assumed to be (at least partly) caused by processes determining the
within-hand temporal patterns (Riley, Santana, & Turvey, 2001).

Current perspectives on the organization of bimanual coordination highlight the role of feed-for-
ward timing (Ridderikhoff, Peper, & Beek, 2005), and support the hypothesis that similar timekeeping
processes could be at work in bimanual coordination and unimanual timing tasks (Helmuth & Ivry,
1996; Ivry & Richardson, 2002; Ivry, Richardson, & Helmuth, 2002; Semjen, 2002; Semjen & Ivry,
2001; Semjen & Summers, 2002). Ivry and collaborators (Helmuth & Ivry, 1996; Ivry & Richardson,
2002; Ivry et al., 2002) extended the Wing and Kristofferson model for unimanual tapping to the par-
adigm of bimanual tapping. In Ivry et al.’s multiple timer model for bimanual tapping, a timer is
responsible for the within-hand timing pattern of each hand, and a gating process implements a
discrete temporal coupling that performs a sort of averaging of the two timers. A recent analysis of
the serial correlation in the within-hand IRI series, however, showed that the absolute timing patterns
in unimanual and bimanual tapping tasks are qualitatively similar (Torre & Delignières, 2008b). This
finding suggests that by combining the shifting strategy model and the multiple timer model, one
might be able to account for the serial correlations in both IRI and relative phase series that are
observed in bimanual tapping.

4.3.1. Incorporating the shifting strategy model into the multiple timer framework
In the original multiple timer model, the timers associated with each hand were conceived as noisy

activation-threshold mechanisms (Ivry & Richardson, 2002). The two timers produced white noise,
and, in contrast to the unimanual case, they had no direct access to the effectors. A gating process en-
sures the temporal coordination by adding the thresholds (Ti and Tj) and the activation processes (ai

and aj) of the two timers. When the integrated activation process reaches the normalized threshold,
this marks the event in time that, in the case of in-phase coordination, triggers the taps of the two
hands simultaneously. The time intervals prescribed by the gating process to the two hands are given
by:
C ¼ ðTi þ TjÞ
ðai þ

ffiffiffi
q
p

eiÞ þ ðaj þ
ffiffiffi
q
p

ejÞ
ð8Þ
where e is a white noise with variance q. According to the Wing and Kristofferson model, the execution
of the taps was assumed to be affected by white noise. This original multiple timer model obviously
does not account for long-range correlations, whether in the IRI series or in the relative phase series
(Torre et al., 2007).

In order to account for the correlation properties of IRI and relative phase series in bimanual tap-
ping, we propose to extend the multiple timer model in two ways. First, in order to account for the
specific correlation structure in the effectors’ IRI series, we replaced the noisy activation-threshold
mechanisms that govern the behavior of the two timers by shifting strategy processes. However, since
the multiple timer model assumes that the two timing processes merge into a single common signal
for the two hands, the correlations in the relative phase series are only determined by the motor noise
that affects the taps. That is, the model in its original configuration only generates white noise in the
relative phase series, whatever the correlation properties of the time intervals generated by the two
timers.

Thus, the goal of the second extension is to couple the two timing processes that account for cor-
relations in the relative phase series, without altering the correlation properties of the IRI series.
Therefore we proposed a continuous coupling of the thresholds, on the basis of their difference at each
time:
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Ti;n ¼ Ti;n � hðTi;n � Tj;nÞ

Tj;n ¼ Tj;n � hðTj;n � Ti;nÞ; ð9Þ
where h is the coupling parameter (0 < h < 0.5). This coupling increased the congruence between the
correlation structures of the two timekeeper series. Moreover, in order to prevent the divergence that
would automatically occur between two noisy series, that is, to make stationary the delays between
right and left taps, the onset of the activation process associated with the first tapping effector is as-
sumed to await the completion of the tap of the second effector:
Ci;n ¼ ½Ti;n � hðTi;n � Tj;nÞ�=ai;n þ dj;i for dj;i � 0; ð10Þ

Cj;n ¼ ½Tj;n � hðTj;n � Ti;nÞ�=aj;n þ di;j for di;j � 0: ð11Þ
In this equation, an is the current activation speed of each timer as defined in the shifting strategy
model (see Eq. (4)). d is the delay between the two effective taps:
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dj;i ¼ ðCj;n þMj;nÞ � ðCi;n þMi;nÞ; ð12Þ
where Mn represents the random motor delay affecting each tap.

4.3.2. Model performance for real data
The model provides a satisfactory account of bimanual tapping data. The mean of IRI series col-

lected in a bimanual tapping experiment was 470 ms, with a mean standard deviation of 30 ms, the
two hands taken together. The mean of experimental relative phase series was �12�, with a mean
standard deviation of 53� (see Appendix A for details on the experimental procedure). The mean of
simulated IRI series was 511 ms, with an average standard deviation of 30 ms, and the mean of sim-
ulated relative phase series was 0�, with a mean standard deviation of 22�. Fig. 7 presents the average
power spectra of experimental and simulated IRI and relative phase series. For experimental series,
the mean spectral slopes were �0.71 for IRI series, and �0.49 for the relative phase series. For the sim-
ulated series, the mean slopes were �0.66 for IRI series, and �0.50 for the relative phase series.

4.3.3. Discussion
The extended multiple timer model provided a satisfactory account of the serial correlation pattern

that is typical for bimanual tapping, both for the within-hand IRI series and for the relative phase ser-
ies. The nature of the extension was twofold. First, just as in the case of unimanual tapping, we as-
sumed that the two timers are the sources of 1/fb noise, and we modeled their behavior through
the shifting strategy model. Second, we determined the conditions of coupling the two shifting strat-
egy models under which the correlation structures of both the IRI and the relative phase series
matched the experimental correlations.

This development led us to formulate the coordination in bimanual tapping as a parallel organiza-
tion with continuous interaction between the two coupled timers (as for example the HKB coupled
oscillator model; Haken et al., 1985), instead of the sequential organization assumed in the original
multiple timer model, where a gating process locked the two timing process. Our present model first
assumed a coupling of the thresholds of the two timers. This seems consistent with the above consid-
eration that the evolution of the threshold in the shifting strategy model was related to factors as cog-
nitive strategies or the target intervals to produce, since these factors can be assumed common to the
two timers. Second, it was assumed that the onset of the activation process associated to the earliest of
the two tapping effectors awaits the effective tap of the second effector. This effectively makes station-
ary the delays between the two taps. Moreover, this functioning could be easily extended to anti-
phase tapping, by assuming that the activation processes of the two timers grow two times faster.
In that case, the between-hand intervals would be regulated instead of the within-hand intervals,
as suggested in earlier studies (e.g., Semjen, 2002; Semjen & Ivry, 2001).

Further experimental testing of this model appears more constraining than for the self-paced or
synchronization models, since each factor would simultaneously influence the correlation structures
of the absolute and the relative time interval series. Consider the example of directing attention on one
of the two effectors. When one assumes that the autoregressive variations of the activation process in
the shifting strategy model maps on to attentional fluctuations, one can expect that directed attention
would increase the discrepancy between the correlation structures produced by the two timers. We
computed the spectral coherence between the right and left IRI series collected in the present biman-
ual tapping experiment. The analysis showed very high coherence coefficients, with a mean r2 of about
.94 (SD = .08). In the condition of directed attention, this coherence coefficient should decrease. More-
over, since the correlation structure in the relative phase series is directly related to the coherence be-
tween the correlation structures of the two IRI series, the persistent correlations in the relative phase
should increase in the same time.
5. Concluding comments

The aim of this paper was to show how a mechanistic perspective on 1/fb noise can advance the-
ories of human movement production. We argued that domain-specific models are useful to establish
a clear link between 1/fb noise on the one hand and the substantive psychological and/or biological
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phenomenon on the other. We supported our claim by applying the shifting strategy model (e.g.,
Wagenmakers et al., 2004) to three standard tasks in the field of human rhythmic movement produc-
tion: self-paced tapping, synchronization tapping, and bimanual tapping. In all cases, we extended
current models by assuming that the timekeeper undergoes a shifting strategy process.

It should be clearly acknowledged that nomothetic accounts of 1/fb noise – those that seek general
explanations and refer to concepts such as complex systems, emergent dynamics, metastability, and
self-organized criticality – that such accounts certainly point to universal principles that produce 1/
fb noise in number of systems and phenomena which superficially have little in common. However,
the general focus of the nomothetic accounts can sometimes make it difficult to respect and account
for the idiosyncrasies of 1/fb noise processes in specific applications.

A challenge for the nomothetic account is to handle the fact that 1/fb noise is not observed always
and everywhere (e.g., series of asynchronies from the present experiment on synchronization tapping
contained 1/fb noise, whereas periods did not). The intensity of 1/fb noise is often sensitive to partic-
ular experimental manipulations, and may even be absent altogether (e.g., Chen et al., 2001; Hausdorff
et al., 1996; Jordan et al., 2006; Jordan et al., 2007; Madison, 2001, Madison, 2004). Clearly, it is un-
likely that, as a result of these experimental manipulations, the human brain has ceased to be com-
plex, multileveled, or metastable. This challenge for the nomothetic account may be more apparent
than real; perhaps concrete modeling of the phenomena under consideration will confirm that the
nomothetic concepts such as SOC are sensitive to the same manipulations that influence the intensity
of 1/fb noise in an experiment.

It may be possible to achieve a resolution between the nomothetic and mechanistic perspectives on
1/fb noise by arguing that these perspectives operate on different levels of explanation. As we have
hinted at throughout this article, the development of concrete, domain-specific models is not funda-
mentally at odds with the claim that 1/fb noise originates from some universal principle. For instance,
both in the hopping model and in the shifting strategy model, 1/fb noise comes about through the
combination of a simple autoregressive process and a regime switching process – that is, in both cases
1/fb noise originates through the aggregation of processes that operate on different time scales.

In sum, the two perspectives on 1/fb noise would gain in being considered complementary, the
strength of the one defining the limitation of the other one. Nevertheless, the impact of 1/fb noise
on human movement science depends to a large extent on which perspective one adopts to account
for the phenomenon. Domain-specific mechanistic models can not pretend to uncover the universal
principles that account for the ubiquity of 1/fb noise, as nomothetic accounts can do. In contrast, mech-
anistic accounts offer the advantages of specific, experimentally testable and thus falsifiable models of
human behavior. Regardless of which perspective on 1/fb noise one prefers, it is clear that current
models of human behavior have not been designed to account for serial long-range correlations.
But the 1/fb noise phenomenon is there, and its presence constitutes a constraint that should be taken
into account. Our article shows how one can model the presence and intensity of 1/fb noise in human
movement science in a way that is generalizable, testable, and quantitatively precise.
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Appendix A. Experimental procedures

Twelve participants (mean age 29 ± 7 yrs) performed series of 600 taps (trial durations about
5 min) with their dominant hand index finger(s) on a flat pressure sensor disposed on a table. Three
experimental conditions were randomly assigned.

(1) In the self-paced tapping condition, the target time interval was 500 ms. This interval was pre-
sented in a continuation paradigm: a 30-s video displayed the task to perform at the required
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tempo, and the participants had to reproduce the tempo as accurately and regularly as possible
over the task duration, immediately after watching the video. We analyzed the produced inter-
response interval (IRI) series.

(2) In the synchronization tapping condition, a PC-driven metronome delivered acoustic signals
with a constant period of 500 ms, and the participants were instructed to synchronize their taps
with the metronome. We analyzed the IRI series and the series of asynchronies, defined as the
differences between the times of the effective taps and the signals of the metronome.

(3) In the bimanual tapping condition, participants had to perform in-phase coordination, i.e.,
simultaneous taps, without an external pacing signal. Participants were instructed to be as
accurate and regular as possible in the coordination of the taps and in the tempo of movements.
We analyzed the absolute timing patterns of the hands with the IRI series, and the relative tim-
ing pattern with the relative phase series.
Appendix B. Data analyses

We analyzed experimental and simulated time series of 512 points. The power spectra were com-
puted using the lowPSDwe, initially developed by Eke et al. (2000). The method includes three prepro-
cessing operations before performing the Fast Fourier Transform. First the mean of the series is
subtracted from each value. Second, a parabolic window is applied to taper the series. Third, a linear
detrending is performed on the entire series. Finally, in order to obtain a more accurate estimate of the
spectral slope, Eke et al. perform a linear regression only on the low-frequency region of the log–log
power spectrum. The low frequencies were defined as f < 1/8 of the maximal frequency that composes
the signal. We also used this same boundary frequency to divide the spectrum in a low-frequency and
a high-frequency region in case separate slope estimates were required.
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