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prep misestimates the probability of replication
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The probability of “replication,” prep, has been proposed as a 
means of identifying replicable and reliable effects in the psycho-
logical sciences. We conduct a basic test of prep that reveals that 
it misestimates the true probability of replication, especially for 
small effects. We show how these general problems with prep play 
out in practice, when it is applied to predict the replicability of 
observed effects over a series of experiments. Our results show 
that, over any plausible series of experiments, the true probabili-
ties of replication will be very different from those predicted by 
prep. We discuss some basic problems in the formulation of prep 
that are responsible for its poor performance, and conclude that 
prep is not a useful statistic for psychological science.

Searching for significant effects in psychological 
experiments is a risky business, because data are often 
sparse and noisy. Killeen (2005a) rightly pointed out that 
searching for small effects is especially perilous using the 
contorted logic of null hypothesis significance testing (see 
Wagenmakers, 2007, for a review). So, in his influential 
article, Killeen (2005a; see also Killeen, 2005b, 2005c, 
2006; Sanabria & Killeen, 2007) proposed a measure—
the probability of “replication,” prep, where replication 
means “agreeing in sign”—that is claimed to offer hope. 

The simplest way to understand prep is to consider the 
standard situation, in which data are normally distributed 
with a common known variance σ2, and with an experi-
mental group mean µE and control group mean µC. If both 
the experimental and control groups have n subjects, the 
observed effect size d is a draw from a normal distribution 
with mean δ 5 (µE 2 µC)/σ, where δ is the “true” under-
lying effect size, and variance 2/n.

Under these assumptions, prep is derived as the probabil-
ity that both d and an imagined replicate observed effect 
size drep have the same sign. A standard Bayesian posterior 
predictive calculation then gives prep 5 Φ(|d|√n/4 ), as long 
as a uniform prior is placed on δ (e.g., Doros & Geier, 2005). 
We give formal details of this derivation in the Appendix, 
but immediately make three clarifying observations.

First, note that it is important to take the absolute value of 
the effect size in calculating prep. Otherwise, for example, 

an observed effect d 5 22 with n 5 25 would give a prep , 
.00001, corresponding to an extremely strong belief that 
the replicate effect would have a positive sign, which is ri-
diculous. We mention this point because it is not very clear 
in the existing prep literature, where sometimes the absolute 
value notation has been omitted from key equations.

Second, note that our notation differs from Killeen’s, 
who used n to denote the combined sample size from both 
the control and experimental groups, whereas we use n for 
each group separately. We prefer our notation, because it 
will generalize more naturally to cases where the number 
of subjects in each group is not the same. 

Third, we note that for small sample sizes, Killeen 
(2005a) promoted the use of an ad hoc correction in which 
n is replaced by n 2 2 (in our notation). This makes a 
small quantitative difference that disappears quickly as n 
increases, but does not change the qualitative pattern of 
our results nor the substantive conclusions at all.

The General Pattern of Misestimation for prep

In this section, we present a general pattern of results 
that makes it clear that prep is a poor estimator. We do this 
by comparing the true probability of replication for a fixed 
effect size (i.e., a δ value) with the estimates of the prob-
ability of replication provided by prep.

Each panel of Figure 1 shows, for a different sample 
size n, a broken line corresponding to the true probability 
of replication for underlying effect sizes from 0 to 2. This 
true probability of replication, averaged across all possible 
sampled observed effects d, is given1 by Φ2(|d|√n/2 ) 1 
Φ2(2|d|√n/2 ). Each panel in Figure 1 also shows the mean 
estimates of replication probability provided by prep for 
these δ and n values, on the basis of 1,000,000 sampled ob-
served effect sizes. The error bars represent one SD above 
and one SD below the mean values of prep.

In the language of statistical estimation, the difference 
between the mean value of prep and the truth provides an 
indication of bias, whereas the size of the error bars provide 
an indication of variance. For bias, Figure 1 shows that, for 
small underlying effect sizes, prep always on average overes-
timates the probability of replication. For larger effects, prep 
then underestimates the true probability of replication, and 
only becomes well calibrated for very large effect sizes. The 
quantitative details of when overestimation becomes under-
estimation depend on the sample size across the four pan-
els in Figure 1, but the qualitative pattern does not. In fact, 
every choice of sample size has a curve like those shown, 
simply shifting further left as sample size increases.

In terms of variability, the error bars in Figure 1 show 
that prep is highly variable, except when effect sizes or sam-
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The Practical Consequences  
of Misestimation for prep

Killeen (2005a, p. 351), in his closing statements, con-
ceived of prep allowing the management of risk in a re-
search setting:

But editors may lower the hurdle for potentially im-
portant research that comes with so precise a warn-
ing label as prep. When replicability becomes the cri-
terion, researchers can gauge the risks they face in 
pursuing a line of study: An assistant professor may 
choose paradigms in which prep is typically greater 
than .8, whereas a tenured risk taker may [pursue] a 
line of research having preps around .6.

Of course, only clairvoyants can identify those experi-
ments that will give them prep values of exactly .6 or .8. 
This means we cannot simply use the analysis in Figure 1 
to look up how prep will misestimate in practice. Whereas 

ple sizes are very large. For example, when n 5 10 and the 
underlying true effect size is δ 5 1, the actual probabil-
ity of replication is about .95, and prep on average gives a 
value of about .90; but the variability is large, with one SD 
around the mean extending from about .80 to 1.00.

The results in Figure 1 have serious consequences for 
the performance of prep. For small effect sizes, where 
much of the psychological interest lies, and where new 
experimental findings can make the biggest contribution 
to the psychological sciences, prep is highly variable and 
exaggerates the probability of replication. Only for very 
large effect sizes does prep work (approximately) as ad-
vertised. Figure 1 suggests that, unless we are willing to 
believe that most experiments have very large effects, prep 
will on average lead us to overestimate the probability of 
replication, and will do so with undesirably high variabil-
ity. Figure 1 also shows that we cannot safely use prep to 
identify replicable or reliable small effects.
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Figure 1. The misestimation of prep. Each panel shows the true probability of replication (broken line) for effect sizes ranging from 
0 to 2, the mean performance of prep (circular markers), and one standard deviation in both directions around the mean (error bars). 
The four panels correspond to sample sizes of 10, 20, 50, and 100. 
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ance, so that experiments with larger underlying effects 
are also included in the mix.

All of the strategy distributions are symmetric about 0, 
because of the nature of effect size measures (i.e., the 
magnitude of an effect size carries information, but the 
sign is arbitrary). This symmetry requires, for example, 
that observed effects of d 5 12 and d 5 22 be equally 
likely for any given strategy. For this reason, it is possible 
to formulate any strategy more succinctly as a distribution 
over absolute effect size, in which case the strategies in 
Figure 2 would become truncated normal distributions. 
In these terms, the means for Strategies A and C are 0, 
and the means for Strategies B and D are 0.2. The SDs for 
Strategies A and B are 0.3, and the SDs for Strategies C 
and D are 0.8.

The Performance of prep
Whatever strategy researchers use, prep is supposed to 

give them the probability that effects they observe for each 
experiment will be replicated in sign. A prep value of .85 
claims an 85% probability that the next effect will have the 
same sign, and a 15% chance that it will not. It is easy to test 
the usefulness of prep as an estimator of these probabilities 
by simulation. We examined the four strategies shown in 
Figure 2, and focused on a standard root mean square error 
(RMSE) measure of the difference between the true prob-
ability of replication and the estimate provided by prep.

Our simulation test used the following seven steps.
1. Choose an experiment by sampling from the distribu-

tion defined by the risk strategy. Call the true underlying 
effect size for the particular experiment sampled δ. 

2. Generate the observed effect size from an experi-
ment—which involves experimental and control groups 

our analysis shows that prep has general problems, it 
does not make explicit how those problems will play out 
in practice when prep is used to make predictions about 
replicability for observed effect sizes, as Killeen (2005a) 
proposed. In this section, we address the problem of mis-
estimation in practice directly.

Research Strategies
Under Killeen’s (2005a) risk management conception, re-

searchers do a series of experiments, hunting for replicable 
and reliable effects according to some risk management strat-
egy. The more aggressive tenured researchers might choose 
experiments they believe might have small effects, and avoid 
doing less interesting experiments whose effect is obvious 
from the outset. The more conservative untenured research-
ers might spread their net wider, being happy to do experi-
ments with large underlying effect sizes, but inevitably also 
doing experiments with small underlying effect sizes.

A sensible way to think about these different risk-
seeking profiles is to imagine each attempted experiment 
having a true but unknown effect size drawn from a dis-
tribution of possible experiments. The distribution used 
corresponds to the risk management strategy. Four pos-
sible strategies are shown in Figure 2. The top panel shows 
riskier strategies for tenured researchers, focused on small 
effect sizes. Strategy A assumes that the distribution has 
its mode at 0, whereas Strategy B makes the more opti-
mistic assumption that researchers are astute enough to 
be able to place modes on small but genuine effects, and 
to then try to control the variance of their distribution to 
focus on these effect sizes. Strategies C and D in the bot-
tom panel, for the untenured researcher, follow the same 
pattern, except now the distributions have greater vari-
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Figure 2. Choosing experiments according to a risk strategy. The top panel 
shows two possible strategies for focusing on effects with small effect sizes. The 
bottom panel shows two possible risk strategies that are willing to tackle both 
small and large effects.
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formance. So, given the general problems with bias and 
variance in our first (fixed-effect) analysis in Figure 1, it is 
not surprising to find the poor RMSE values in our second 
(random-effect) analysis in Table 1.

Why does prep have these basic problems? We tackle 
bias first. Although authors have tried to derive and in-
terpret prep from a number of statistical perspectives, the 
most useful one (as usual) is the Bayesian perspective, 
alluded to in our introduction, and detailed in the Appen-
dix. There it is shown that prep can be derived from the 
posterior predictive distribution drep| d when an improper 
flat prior is placed on the true effect size δ (e.g., Doros & 
Geier, 2005).

The problem is that the assumption of a flat prior on 
the true underlying effect size is not a good one. Nobody 
believes that nature makes effect sizes of 500, 50, 5, and 
0.5 all equally likely experimental outcomes, yet this is 
exactly what prep assumes. It is true that Bayesian statisti-
cians often use flat priors to express ignorance about the 
value of location parameters that lie on arbitrary scales. 
But effect sizes, by design, come normalized on an in-
variant and readily interpreted scale, for which there is 
strong and important prior information. For this reason, 
no Bayesian would argue for a flat prior on effect sizes. 
Indeed, in Bayesian statistics, it is standard practice to 
use prior distributions that put more mass on small ef-
fect sizes than on large effect sizes (e.g., Gönen, Johnson, 
Lu, & Westfall, 2005; Lee, 2008; Rouder, Speckman, Sun, 
Morey, & Iverson, 2009; Zellner & Siow, 1980).

Discussing the Bayesian interpretation of prep, San-
abria and Killeen (2007) defend the choice of the im-
proper flat prior, arguing that it has the advantage of not 
“including information not specifically contained within 
the experiment itself ” (p. 481). This does not seem to us 
to be a very convincing argument, because the scale of an 
effect size is part of understanding an experiment. If we 
tell you we have just collected a response time, you do not 
know whether we are going to say 0.3, 3, 30, or any other 
number, because you do not know whether our measure-
ments are in seconds, tenths of a second, hundredths of 
a second, or any other scale. Here a flat uniform prior 
appropriately captures what you know, which is almost 
nothing, and lets the data speak for themselves. But if we 
tell you we have just collected an effect size, you know we 
are much more likely to say 0.3 than 3, and that we are not 
going to say 30. The experiment, by virtue of the normal-
ized effect size scale, contains specific prior information 
that must be part of our inferences. The flat uniform prior 
assumed by prep is a strange distortion of what is known, 

both with n subjects—from the normal distribution with 
mean δ and variance 2/n. Call this d.

3. Calculate the true probability of replication, which is 
given by p*

rep 5 Φ[sgn(d )d/√2/n ].2
4. Calculate prep 5 Φ(|d|√n/4 ).
5. Calculate the mean squared error (MSe) between the 

true probability of replication, p*
rep, and the estimate prep. 

For the t th trial, this is MSe(t) 5 ( p*
rep 2 prep)2.

6. Go back to Step 1 to conduct the next experiment, 
until a total of T have been completed.

7. When all T experiments are completed, average the 
MSes over all the experiments, and take the square root 
of this average to get the final RMSE. That is, calculate 
RMSE 5 √1/T StMSe(t).

To make the process of the simulation test concrete, the 
first two example trials from our simulations, using Strat-
egy A with n 5 10, proceeded as follows. On the first trial, 
δ was sampled to be 0.28, and d was then sampled as 0.90. 
The true probability of replication is .73, and prep is .90, 
so the MSe for this experiment is (.73 2 .90)2  .03. On 
the second trial, δ was sampled to be 20.51, and d was 
then sampled as 20.31. The true probability of replica-
tion is .87, and prep is .67, so the MSe for this experiment 
is (.87 2 .67)2  .04. The final RMSE measure is the 
square root of the average of all of the MSes calculated in 
this way.

Table 1 shows the RMSE measures, and the average val-
ues of prep, for Strategies A through D with sample sizes 
of 10, 20, 50, and 100. These results are based on T 5 
1,000,000 simulated experiments.3 The RMSE measures 
can be interpreted as the average “distance” between the 
true probability of replication, and the estimate provided 
by prep.

It is clear that Table 1 shows that prep is a poor estimator. 
When risky strategies are in play, or when sample sizes are 
small, the RMSEs are often over .2, a very large discrep-
ancy on a probability scale. The situation improves for 
less risky strategies and larger sample sizes, but even for 
Strategy C, which regularly does experiments with true 
effect sizes greater than 1, using a sample size of 100 (so 
that prep gives an average value of .94), the RMSE remains 
above .1.

The Underlying Problems
It is well known in statistics that the RMSE measure 

can be understood as the sum of a bias term and a variance 
term (e.g., Mood, Graybill, & Boes, 1974). Both need to 
be low—so that an estimator consistently produces values 
near the truth—for the RMSE measure to show good per-

Table 1 
RMSE and Average prep Values for  

Experimental Strategies A–D and Various Sample Sizes

Sample Strategy A Strategy B Strategy C Strategy D

Size  RMSE  Avg.  RMSE  Avg.  RMSE  Avg.  RMSE  Avg.

10 .22 .74 .22 .72 .19 .82 .20 .78
20 .21 .79 .22 .75 .16 .87 .18 .83
50 .18 .84 .20 .81 .13 .91 .15 .89
100  .16  .88  .17  .85  .11  .94  .13  .92
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change current statistical practices in psychology—we do 
not view prep itself as a suitable alternative.
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Notes

1. The first term is the probability that an observed effect and its repli-
cate will agree by both having the same sign as δ. The second term is the 
probability that they will both agree by having the opposite sign to δ. See 
Iverson, Lee, Zhang, and Wagenmakers (in press) for details.

2. To calculate this true probability of replication, p*
rep, given a known 

true effect size δ, sample size n, and an observed effect size d, we are sim-
ply finding the area under the normal distribution with mean δ and vari-
ance 2/n that has the same sign (i.e., lies on the same side of zero) as d.

3. Using the ad hoc correction in which n is replaced by n 2 2 (in our 
notation), some of the entries in Table 1 change in the second decimal 
place by 0.01, but most do not change at all.

and forces the data to say things they do not mean, and 
that are not true.

Intuitively, because prep assumes a flat prior, it does 
not give sufficient prior probability to small effect sizes 
around 0. This means it is overly optimistic about the mag-
nitude of the effect sizes it expects to exist in nature, and 
so overestimates the probability of replication on the basis 
of the single observed effect size it receives as a datum. 
It follows that it is possible to improve the bias prep by 
making more realistic prior assumptions. The generaliza-
tion of prep given by pθ

rep in Equation 5 of the Appendix 
allows for nonuniform priors, taking the form of 0-mean 
normal distributions over effect sizes. Setting this prior to 
Strategy A or C, which are also 0-mean normal distribu-
tions over effect sizes, removes the bias from prep. It also, 
however, results in smaller prep values.

Removing the variability of prep is more challenging. 
One basic problem is the conception—fundamental to the 
definition of prep—that agreeing in sign is a good way to 
measure replication. This conception forces prep to attempt 
the estimation of a binary quantity, which makes high vari-
ability almost inevitable. Removing the bias in prep, using 
the approach outlined above, will not address the problem 
of variability. Note that in Table 1, even for Strategy C with 
n 5 100, where the effect sizes and sample size are large 
enough that bias is not severe, prep continues to perform 
poorly in terms of its RMSE, because it remains variable.

Conclusion

We have presented direct tests of prep as an estimate 
of the probability replication for different underlying ef-
fect sizes, and as a predictor of replication for different 
experimental strategies. Because it is biased and highly 
variable, prep performs poorly on both. It overestimates 
the probability of replication for small observed effect 
sizes, which are exactly those it was developed to help 
diagnose, and which are the most important ones for 
helping develop models and theories in psychology. The 
nature of the bias that leads prep to exaggerate evidence 
is general, and is founded, at least in part, on a flawed 
assumption about the information conveyed by effect 
sizes. In addition, prep suffers from having to estimate the 
binary quantity of agreement in sign, which makes it a 
highly variable measure.

In short, our results show that prep is a poor estima-
tor and predictor. Thus, although we agree with several 
of the motivations behind prep—including the focus on 
prediction to evaluate models and data, and the need to 
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Appendix 
Formal Details

This appendix gives formal details of the derivation of prep in a Bayesian context, and closely follows the origi-
nal work of Doros and Geier (2005). The prior on the true effect size δ we assume to be normal, with variance τ2 
(we will later let its variance go to infinity, so that the normal becomes the uniform assumed by prep):

	 δ τ Normal(0, 2 ).	 (1)

For experimental and control groups with equal numbers of subjects, n, the observed effect size is then

	
d

n
 Normal δ , .2( ) 	

(2)
 

The posterior of the true effect size conditional on this observation is now 

	
δ θ θ| , ,d d

n
 Normal 2( ) 	

(3)
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This makes the posterior predictive density of drep, the next effect,

	
d d d
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(4)

Since prep is the probability that d and drep agree in sign, it is given by
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Now we let the normal become uniform, by letting τ  ∞, so that θ  1, and we get

	
p d n
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


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Φ
4

,
	

(6)

where Φ(·) is the cumulative distribution function of the standard normal random variable.
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