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Abstract

Of the seven elementary catastrophes in catastrophe theory, the “cusp” model is the
most widely applied. Most applications are however qualitative. Quantitative techniques
for catastrophe modeling have been developed, but so far the limited availability of flexible
software has hindered quantitative assessment. We present a package that implements and
extends the method of Cobb (Cobb and Watson 1980; Cobb, Koppstein, and Chen 1983),
and makes it easy to quantitatively fit and compare different cusp catastrophe models
in a statistically principled way. After a short introduction to the cusp catastrophe, we
demonstrate the package with two instructive examples.
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Catastrophe theory studies qualitative changes in behavior of systems under smooth gradual
changes of control factors that determine their behavioral state. In doing so, catastrophe
theory has been able to explain for example, how sudden abrupt changes in behavior can result
from minute changes in the controlling factors, and why such changes occur at different control
factor configurations depending on the past states of the system. Specifically, catastrophe
theory predicts all the types of qualitative behavioral changes that can occur in the class of
so called gradient systems, under influence of gradual changes in controlling factors (Poston
and Stewart 1996).

Catastrophe theory was popularized in the 1970’s (Thom 1973; Thom and Fowler 1975;
Gilmore 1993), and was suggested as a strategy for modeling in various disciplines, like
physics, biology, psychology, and economics, by Zeeman (1971)—as cited in Stewart and
Peregoy (1983), Zeeman (1973), Zeeman (1974), Isnard and Zeeman (1976), and Poston and
Stewart (1996). Although catastrophe theory is well established and applied in the physical
sciences, its applications in the biological sciences, and especially in the social and behavioral
sciences, has been criticized (Sussmann and Zahler 1978; Rosser 2007). Applications in the
latter fields range from modeling of exchange market crashes in economics (Zeeman 1974), to
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perception of bistable figures (Stewart and Peregoy 1983; Ta’eed, Ta’eed, and Wright 1988;
Fürstenau 2006) in psychology. The major points of criticism concerned the overly qualitative
methodology used in applications in the latter sciences, as well as the ad hoc nature of the
choice of variables used as control variables. The first of these seems to stem from the fact
that catastrophe theory concerned deterministic dynamical systems, whereas applications in
these sciences concern data that are more appropriately considered stochastic. For an histor-
ical summary of the developments and critiques of catastrophe theory we refer the reader to
Rosser (2007).

Stochastic formulations of catastrophe theory have been found, and statistical methods have
been developed that allow quantitative comparison of catastrophe models with data (Cobb
and Ragade 1978; Cobb and Watson 1980; Cobb 1981; Cobb et al. 1983; Guastello 1982; Oliva,
Desarbo, Day, and Jedidi 1987; Lange, Oliva, and McDade 2000; Wagenmakers, Molenaar,
Grasman, Hartelman, and van der Maas 2005a; Guastello 1992). Of these methods, the
maximum likelihood approach of Cobb and Watson (1980); Cobb et al. (1983) is arguably
most appealing for reasons that we discuss in the Appendix A.

In this paper we present an add-on package for the statistical computing environment R
(R Development Core Team 2009) which implements the method of (Cobb et al. 1983), and
extends it in a number of ways. In particular, the approach of Oliva et al. (1987) is adopted to
allow for a behavioral variable that is embedded in multivariate response space. Furthermore,
the implementation incorporates many of the suggestions of Hartelman (1997), and indeed
intends to succeed and update the cuspfit FORTRAN program of that author. The package
is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/
package=cusp.

1. Cusp catastrophe

Consider a (deterministic) dynamical system that obeys equations of motion of the form

∂y

∂t
= −∂V (y; c)

∂y
, y ∈ Rk, c ∈ Rp. (1)

In this equation y(t) represents the system’s state variable(s), and c represents one or multiple
(control) parameter(s) who’s value(s) determine the specific structure of the system. If the
system state y is at a point where ∂V (y; c)/dx = 0 the system is in equilibrium. If the
system is at a non-equilibrium point, the system will move towards an equilibrium point
where the function V (y; c) acquires a minimum with respect to y. These equilibrium points
are stable equilibrium points because the system will return to such a point after a small
perturbation to the system’s state. Equilibrium points that correspond to maxima of V (y; c)
are unstable equilibrium points because a perturbation of the system’s state will cause the
system to move away from the equilibrium point towards a stable equilibrium point. In
the physical world no system is fully isolated and there are always forces impinging on a
system. It is therefore highly unlikely to encounter a system in an unstable equilibrium
state. Equilibrium points that correspond neither to maxima nor to minima of V (y; c), at
which the Hessian matrix (∂2V (y)/∂yi∂yj) has eigenvalues equal to zero, are called degenerate
equilibrium points, and these are the points at which a system can give rise to unexpected
bifurcations in its equilibrium states when the control variables of the system are changed.

http://CRAN.R-project.org/package=cusp
http://CRAN.R-project.org/package=cusp
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1.1. Canonical form

Catastrophe theory (Thom 1973; Thom and Fowler 1975; Gilmore 1993; Poston and Stewart
1996) classifies the behavior of deterministic dynamical systems in the neighborhood of de-
generate critical points of the potential function V (y; c). One of the remarkable findings of
catastrophe theory is its discovery that degenerate equilibrium points of systems of the form
described above, which have an arbitrary numbers of state variables and are controlled by no
more than four control variables, can be characterized by a set of only seven canonical forms,
or “universal unfoldings”, in only one or two canonical state variables. These universal un-
foldings are called the “elementary catastrophes”. The canonical state variables are obtained
by smooth transformations of the original state variables. The elementary catastrophes con-
stitute the different families of catastrophe models.

In the biological and behavioral sciences, the so-called cusp catastrophe model has been
applied most frequently, as it is the simplest of catastrophe models that exhibits discontinuous
transitions in equilibrium states as control parameters are varied. The canonical form of the
potential function for the cusp catastrophe is

−V (y;α, β) = αy +
1
2
β y2 − 1

4
y4. (2)

Its equilibrium points, as a function of the control parameters α and β, are solutions to the
equation

α+ β y − y3 = 0. (3)

This equation has one solution if δ = 27α− 4β3, which is known as Cardan’s discriminant, is
greater than zero, and has three solutions if δ < 0. These solutions are depicted in Figure 1
as a two dimensional surface living in three dimensional space, the floor of which is the two
dimensional (α, β) coordinate system called the “control plane”. The set of values of α and β
for which δ = 0 demarcates the bifurcation set, the cross hatched cusp shaped region on the
floor in Figure 1. From a regression perspective, the cusp equilibrium surface may be conceived
of as response surface, the height of which predicts the value of the dependent variable y given
the values of the control variables. This response surface has the peculiar property however,
that for some values of the control variables α and β the surface predicts two possible values
instead of one. In addition, this response surface has the unusual characteristic that it “anti-
predicts” an intermediate value for these values of the control variables—that is, the surface
predicts that certain state values, viz. unstable equilibrium states, should not occur (Cobb
1980). As indicated, the dependent variable y is not necessarily an observed quantity that
characterizes the system under study, but is in fact a canonical variable that in general
depends on a number of actually measurable dependent variables. Similarly, the control
coordinates α and β represent canonical coordinates that are dependent on actual measured
or controlled independent variables. The α coordinate is called the “normal” or “asymmetry”
coordinate, while the β coordinate is called the“bifurcation”or“splitting”coordinate (Stewart
and Peregoy 1983).

1.2. Cusp catastrophe as a model

In evaluating the cusp as a model for data there are two complementary approaches. The
first approach evaluates whether certain qualitative phenomena occur in the system under
consideration. In the second approach, a parameterized cusp is fitted to the data.
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Figure 1: Cusp surface.

Gilmore (1993) derived a number of qualitative behavioral characteristics of the cusp model;
the so-called catastrophe flags. Among the more prominent are sudden jumps in the value of
the (canonical) state variables; hysteresis—i.e., memory for the path through the phase space
of the system; and multi-modality—i.e., the simultaneously presence of multiple preferred
states. Verification of the presence of these flags constitute one important stage in gathering
evidence for the presence of a cusp catastrophe in the system under scrutiny. For extensive
discussions of these qualitative flags we refer to Gilmore (1993)—see also Stewart and Peregoy
(1983), van der Maas and Molenaar (1992), and van der Maas, Kolstein, and van der Pligt
(2003).

Most applications of catastrophe theory in general, and the cusp catastrophe in particular,
have focused entirely on this qualitative verification. An alternative approach is constituted
by a quantitative evaluation of an actual match between a cusp catastrophe model and the
data using statistical fitting procedures. This is indispensable for sound verification that a
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Figure 2: Shape of cusp density in different regions of the control plane. Bimodality of the
density only occurs in the “bifurcation set”, the cusp shaped shaded area of the control plane.

cusp catastrophe does a better job at describing the data than other conceivable models for
the data.

A difficulty that arises when constructing empirically testable catastrophe models is the fact
that catastrophe theory applies to deterministic systems as described by Equation 1. Being
inherently deterministic, catastrophe theory cannot be applied directly to systems that are
subject to random influences which is commonly the case for real physical systems, especially
in the biological and behavioral sciences.

To bridge the gap between determinism of catastrophe theory and applications in stochastic
environments, Loren Cobb and his colleagues (Cobb and Ragade 1978; Cobb 1980; Cobb and
Watson 1980; Cobb and Zacks 1985) proposed to turn catastrophe theory into a stochastic
catastrophe theory by adding to Equation 1 a (white noise) Wiener process, dW (t), with
variance σ2, and to treat the resulting equation as a stochastic differential equation (SDE):

dY =
∂V (Y ;α, β)

∂Y
dt+ dW (t).
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This SDE is then associated with a probability density that describes the distribution of the
system’s states on any moment in time, which may be expressed as

f(y) =
ψ

σ2
exp

[
α (y − λ) + 1

2β (y − λ)2 − 1
4(y − λ)4

σ2

]
. (4)

Here ψ is a normalizing constant, and λ merely determines the origin of scale of the state
variable. In this stochastic context β is called the bifurcation factor, as it determines the
number of modes of the density function, while α is called“asymmetry” factor as it determines
the direction of the skew of the density (the density is symmetric if α = 0 and becomes left
or right skewed depending on the sign of α; Cobb 1980). The function is implemented in the
R package described below as dcusp(). Figure 2 displays the density for different regions of
the control plane.

2. Estimation methods

As indicated earlier, the state variable y of the cusp is a “canonical variable”. This means that
it is a (generally unknown) smooth transformation of the actual state variables of the system.
If we have a set of measured dependent variables Y1, Y2, . . . , Yp, to a first order approximation
we may say

y = w0 + w1 Y1 + w2 Y2 + · · ·+ wp Yp, (5)

where w0, w1, . . . , wp are the first order coefficients of a polynomial approximation to the
“true” smooth transformation. Similarly, the parameters α and β are “canonical variates” in
the sense that they are (generally unknown) smooth transformations of actual control variates.
Again to first approximation, for experimental parameters or measured independent variables
X1, . . . , Xq, we may write

α = a0 + a1X1 + a2X2 + aqXq, (6)
β = b0 + b1X1 + b2X2 + bqXq. (7)

Fitting the cusp model to empirical data then reduces to estimating the parameters w0, w1, . . .,
wp, a0, . . . , aq, b0, . . . , bq.

On the basis of Equation 4 and the associated stochastic differential equation discussed earlier,
Cobb (1981) and Cobb et al. (1983) respectively developed method of moments estimators
and maximum likelihood estimators. The maximum likelihood method of Cobb (Cobb and
Watson 1980; Cobb and Zacks 1985) has not been commonly used however. Two important
reasons for this are instability of Cobb’s software for fitting the cusp density, and difficulties
in its use (see van der Maas et al. 2003 for a discussion; see the appendix for a discussion of
other estimation methods that have been proposed in the literature).

Cobb’s methods assume that the state variable is directly accessible to measurement. As
argued by Oliva et al. (1987), in the behavioral sciences both dependent (state) as well as
independent (control) variables are more often than not constructs which cannot be easily
measured directly. It is therefore important to incorporate Equation 5 so that the state
variable that adheres to the cusp catastrophe may be embedded in the linear space spanned
by a set of dependent variables.
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In the cusp package that we describe below, we use the maximum likelihood approach of Cobb
and Watson (1980), augmented with the subspace fitting method (Equation 5) proposed by
(Oliva et al. 1987)

3. Package description

The cusp package is a package for the statistical computing language and environment R
(R Development Core Team 2009). The package contains a number of functions for use
with catastrophe modeling, including utility functions to generate observations from the cusp
density, to evaluate the cusp density and cumulative distribution function, to fit the cusp
catastrophe, to evaluate the model fit, and to display the results. The core user interface
functions of the package are listed in Table 1.

3.1. Model specification

As is the with many model fitting routines R, the fitting routines in the cusp package allow
the user to specify models in terms of dependent and independent variables in a compact
symbolic form. Basic to the formation of such models is the ~ (tilde) operator. An expression
of the form y ~ model signifies that the response y is modeled by a linear predictor that
is specified in model. In the cusp package, the dependent variables are however always y,
α, and β, in accordance with Equations 8–10 discussed below. Model formulas are used
to generate an appropriate design matrix. It should be mentioned that R makes a strict
distinction between “factors” and variables. The former are study design factors that have
an enumerable number of levels (e.g., education level, treatment level, etc.), whereas the
former are continuous variates (e.g., age, heart rate, response time). Factors and variates are
(appropriately) treated differently in the constructing the design matrix.

3.2. Cost function (likelihood function)

At the heart of the package is the fitting routine that performs maximum likelihood esti-
mation of all the parameters in Equations 5–7. That is, for observed dependent variables
Yi1, Yi2, . . . , Yip, and independent variables Xi1, Xi2, . . . , Xiq, for subjects i = 1, . . . , n, the
distribution of

yi = w0 + w1Yi1 + w2Yi2 + · · ·+ wpYip (8)

is modeled by the density (4), with α 7→ αi, β 7→ βi, where

αi = a0 + a1Xi1 + a2Xi2 + · · ·+ aqXiq (9)
βi = b0 + b1Xi1 + b2Xi2 + · · ·+ bqXiq. (10)

If we collect the observed dependent variables in the n × (p + 1) matrix Y = [1n|(Yij)], the
independent variables in the n× (q+1) matrix X = [1n|(Xik)], where 1n is an n-vector whose
entries all equal 1, and furthermore collect the coefficients in the vectors w = (w0, w1, . . . , wp)′,
a = (a0, a1, . . . , aq)′, and b = (b0, b1, . . . , bq)′, where ′ denotes transpose, we can write these
equations succinctly as

y = Yw, α = Xa, β = Xb,
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Function name Description and example call
cusp Fits cusp catastrophe to data.

fit <- cusp(y ~ z, alpha ~ x1 + x2, beta ~ x1 + x2,
data)

summary method Computes statistics on parameter estimates and model fit (by de-
fault this function compares the cusp model to a linear regression
model). For model comparison a pseudo-R2 statistic, AIC and BIC
are computed.
summary(fit)

confint method Computes confidence intervals for the parameter estimates.
confint(fit)

vcov method Computes an approximation to the parameter estimator variance-
covariance matrix.
vcov(fit)

logLik method Returns the optimized value of the log-likelihood.
logLik(fit)

plot method Generates a graphical display of the fit, including the estimated
locations on the cusp control surface for each observation, non-
parametric density estimates for different regions of the control sur-
face, and a residuals plot. An example is provided in Figure 3. The
graph is fully customizable.
plot(fit)

cusp3d Generates a three dimensional display of the cusp equilibrium sur-
face on which the estimated states are displayed. The graphic is
fully customizable. Figure 5 displays an example.
cusp3d(fit)

cusp3d.surface Generates a three dimensional display of the cusp equilibrium sur-
face. Figure 1 was generated with it.
cusp3d.surface()

rcusp Generates a random sample from the cusp distribution.
y <- rcusp(n = 100, alpha = -1/2, beta = 2)

dcusp, pcusp
qcusp The cusp density, cumulative distribution and quantile functions.

dcusp(y = 1.0, alpha = -1/2, beta = 2)
cusp.logist Fits an logistic curve to the data. Is used in summary method if op-

tional parameter logist = TRUE is specified for testing the presence
of observations in the bifurcation set.
fit <- cusp.logist(y ~ z, alpha ~ x1 + x2, beta ~ x1 +
x2, data)

Table 1: Summary, including example calls, of most important functions in cusp package. A
full description of these functions and others are given in the package documentation.
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where y = (y1, . . . , yn)′, α = (α1, . . . , αn)′, and β = (β1, . . . , βn)′. Therefore, the negative
log-likelihood for a sample of observed values (xi1, . . . , xiq, yi1, . . . , yip), i = 1, . . . , n, is

L(a,b,w; Y,X) =
n∑
i=1

logψi −
n∑
i=0

[
αi yi +

1
2
βi y

2
i −

1
4
y4
i

]
. (11)

Note that compared to Equation 4, here we have absorbed the location and scale parameters
λ and σ into the coefficients w0, w1, . . . , wp. It should be noted furthermore that there is an
ambiguity in the equations above: The signs of the aj and wj may all be switched without
affecting the value negative log-likelihood function. This is the case, because the quadratic
and quartic terms in yi do not determine the sign of yi (i.e., y2

i = (−yi)2 and y4
i = (−yi)4),

while for the linear term αiyi = (−αi)(−yi) holds. Thus the sign of yi (and hence, the sign
for the wj ’s) can be switched without affecting the value of (11) if the sign of αi, and hence
the signs of the aj ’s, is switched as well. The estimates of a1, . . . , aq, w1, . . . , wp are therefore
identifiable up to a change in sign.

The cusp routine of the package minimizes L with respect to the parameters w0, . . ., wp, a0,
. . . , ap, b0, . . . , bq. The computational load of evaluating L is mainly burdened by the calcula-
tion of the normalization constants ψi, which has to be carried out numerically. To this end,
we use an adaptive quadrature routine to minimize the computational cost. To speed up the
calculations substantively, this is carried out in linked C code. Speed is especially important
from the user experience perspective, if different models are to be tried and compared.

Internally, the data are standardized using a QR decomposition. This is both for stability
of the estimation algorithm, as well as handling collinear predictors in the design matrix.
Only coefficients for each dimension of the column space of the design matrix are estimated.
The estimated coefficients are related back to the actual dependent variables. If the design
matrix does not have full column rank, coefficients for some independent variables—those that
are fully explained by others—are not determined. For which of the independent variables
coefficients are estimated in such collinear cases depends partly on the order of their occurrence
in the formula.

Note that, because the models for αi’s and βi’s are specified separately, different sets of
independent variables can figure in each, hence allowing for confirmatory data analysis. This
has been considered a deficiency the method of Cobb (Stewart and Peregoy 1983; Alexander,
Herbert, DeShon, and Hanges 1992), although this option has been present in Hartelman’s
(1997) program.

3.3. Optimization algorithm

The negative log-likelihood function is minimized using one of the built-in optimization rou-
tines of R. By default the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
bounds (L-BFGS-B; Zhu, Byrd, Lu, and Nocedal 1997) is used by the cusp function. Other
methods provided by R can be used, but in our experience L-BFGS-B works best. The main
problem is that the cusp density quickly decreases beyond numerical precision for |α|, |β| > 5,
and hence some boundary restrictions are helpful. Boundaries (both lower and upper) default
to −10 and 10, which is sufficiently large in combination with the internal standardization
of the data in al the cases we have encountered. Different boundaries may be specified, but
our experience with earlier applications of the method is that the values of |α| and |β| rarely
exceed 3.
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3.4. Starting point

The starting values used by default turn out to often render convergence of the optimization
algorithm without problems. When convergence problems arise a warning is issued, and this
may be interpreted as an invitation to the user to provide alternative starting values. In our
experience convergence to a proper minimum of the negative log-likelihood can be achieved
most of the time by providing alternative starting values. A strong indication of improper
convergence is a warning about NaN’s that is issued when summary statistics are computed.
If this happens, the model should be refit using a different set of starting values.

3.5. Statistical evaluation of model fit

To assess the correspondence of data with the predictions made by the cusp catastrophe, a
number of diagnostic tools have been suggested.

Maxwell vs delay convention and R2

First of all, Cobb (1998)—see also Stewart and Peregoy (1983) and Hartelman (1997)—have
suggested a pseudo-R2 as a measure of explained variance defined by

1− error variance
Var(y)

. (12)

This is clearly inspired by the familiar relation between the squared (multiple) correlation
coefficient and the “explained variance” from ordinary regression. However, the term “error
variance” needs to be defined, which is not trivial for the cusp catastrophe model.

As indicated previously, the cusp catastrophe is not an ordinary regression model. Rather,
it is an implicit regression model of an irregular type.1 As such, unlike ordinary regression
models, for a given set of values of the independent variables the model may predict multiple
values for the dependent variable. In ordinary regression the predicted value is usually the
expected value of the dependent variable given the values of the independent variables. In
the case of the cusp density, for certain values of α and β the cusp density is bimodal, and
the expected value of this density lies in a region of low probability between the two modi.
That is, the mathematical expectation of the cusp density is a value that in itself is relatively
unlikely to be observed. Two alternatives for the expected value as the predicted value can be
used, which are closely related to a similar problem regarding interpretation conventions in
deterministic catastrophe theory: One can choose the mode of the density closest to the state
values as the predicted value, or one can use the mode at which the density is highest. The
former is known as the delay convention, the latter as the Maxwell convention. Although in
the physical sciences both have their uses, Cobb and Watson (1980) and Cobb (1998) suggest
to use the delay convention (Stewart and Peregoy 1983). Both conventions are provided by
the package, the default being the delay convention.

Hence, in the pseudo-R2 statistic defined above, the error variance is defined as the variance
of the differences between the observed (or estimated) states and the mode of the distribution
that is closest to this value. It should be noted however that this pseudo-R2 can become
negative if many of the αi’s deviate from 0 in the same direction—in that case the distribution

1The cusp catastrophe is an irregular implicit regression model in the sense that the available statistical
theory for implicit regression models cannot be applied to catastrophe models (Hartelman 1997).
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is strongly skewed, and deviation from the mode is on average larger than deviation from the
mean. Negative pseudo-R2’s are thus perfectly legitimate for the cusp density, which limits
its value for model fit assessment. Alternatives to the pseudo-R2 are discussed below.

AIC, BIC and logistic curve

In addition to the pseudo-R2 statistic, to establish convincingly the presence of a cusp catas-
trophe, Cobb gives three guidelines for evaluating the model fit (Cobb 1998; Hartelman 1997):
First, the fit of the cusp should be substantially better than multiple linear regression—i.e., its
likelihood should be significantly higher than that of the ordinary regression model. Second,
any of the coefficients w1, . . . , wp should deviate significantly from zero (w0 does not have to),
as well as at least one of the aj ’s or bj ’s. Thirdly, at least 10% of the (αi, βi) pairs should lie
within the bifurcation region. The former two guidelines can be assessed with the summary
function of the packages; the latter guideline can be assessed with the plot function; both of
these are detailed in the Examples section below.

A problem arises when the general case of Equation 8 with more than one dependent variable
is used: The linear regression model with which to compare the cusp model is not uniquely
defined. The most natural approach seems to be linear subspace regression: The first canonical
variate between the Xji’s and the Yki’s is used as the predicted value, and the first canonical
correlation is used for calculating the explained and residual variance. For models in which
(8) contains only one dependent variable this automatically reduces to standard univariate
linear regression.

The 10% guideline of Cobb is somewhat arbitrary, and Hartelman (1997); Hartelman, van
der Maas, and Molenaar (1998); van der Maas et al. (2003) propose a more stringent test of
the presence of bifurcation points: They suggest to compare the model fit to the non-linear
least squares regression to the logistic curve

yi =
1

1 + e−αi/β2
i

+ εi, i = 1, . . . , n, (13)

where yi, αi, βi are defined in Equations 8–10, and the εi’s are zero mean random disturbances.
(One may assume εi to be normally distributed, but this is not necessary; see e.g., Seber
and Wild 1989.) The rationale for the logistic function is that this function does not posses
degenerate critical points, while it does have the possibility to model arbitrarily steep changes
in the (canonical) state variable as a function of minute changes in an independent variable,
thus mimicking “sudden” transitions of the cusp (Hartelman 1997). The summary function in
the package provides an option to fit this logistic curve to the data. Because the cusp density
and the logistic functions are not nested models, the fit cannot be assessed on the basis of
differences in the likelihood, and one has to resort to other indicators such as AIC and BIC.
These fit indices are both computed by the summary function, as well as an AIC corrected
for small sample sizes (AICc; Burnham and Anderson 2004).

Instead of the 10% guideline, Hartelman (1997) proposes to require that the AIC and BIC
indicate a better fit for the cusp density than for the logistic curve. Wagenmakers, van der
Maas, and Molenaar (2005b) suggest to use the BIC of both models to compute approxima-
tion of the posterior odds for the cusp relative to the logistic curve, assuming equal prior
probabilities for both models.



12 cusp: Fitting the Cusp Catastrophe in R

4. Examples

For illustration purposes, we provide three example analyses with the package. The first two
examples entail data that have been analyzed with cusp catastrophe methods before and have
been published elsewhere.

Example I

The first example is taken from van der Maas et al. (2003), and concerns attitudinal response
transitions with respect to the statement “The government must force companies to let their
workers benefit from the profit as much as the shareholders do”. Some 3000 Dutch respondents
indicated their level of agreement with this statement on a 5 point scale (1 = totally agree,
5 = totally disagree). As a normal factor political orientation (measures on a 10 point scale
from 1 = left wing to 10 = right wing) was used. As a bifurcation factor the total score on a
12 item “political involvement” scale was used. The theoretical social psychological details are
discussed in (van der Maas et al. 2003). The data thus consist of a table with three columns:
Orient, Involv, and Attitude.

We use the same subset of 1387 cases that was also analyzed in van der Maas et al. (2003). In
that paper an extensive comparison of models was done. These data are made available in the
package and can be loaded using the data("attitudes") command. Here we only present
the analysis for the best fitting model (model 12 in van der Maas et al. 2003, according to
AIC and BIC). In that model, the bifurcation factor (βi) is determined exclusively by Involv,
while the normal factor (αi) is determined by both Orient and Involv. This model can be
fitted with the command

R> fit <- cusp(y ~ Attitude, alpha ~ Orient + Involv, beta ~ Involv,

+ data = attitudes, start = attitudeStartingValues)

Here attitudes is the data.frame in which the table with data is stored, and the vector
attitudeStartingValues is a set starting values that is included in the package to obtain a
solution quickly for this example. Both were loaded with a data call. Note the use of formula’s
discussed earlier: The first formula specifies that the state variable yi is determined by the
variable Attitude for which a location and scaling parameter (w0 and w1 in Equation 8)
have to be estimated. The second formula states that the normal factor αi is determined by
the variables Orient and Involv for which regression coefficients and an intercept must be
estimated. Similarly the third formula which specifies that the bifurcation factor is determined
by the variable Involv for which an intercept and a regression coefficient have to be estimated.
When the cusp function returns, the estimates can be printed to the console window of R
by typing print(fit).More informative however is a summary of the parameters and the
associated statistics, which is obtained with the statement

R> summary(fit, logist = TRUE)

where logist is set to TRUE to compare the cusp to the logistic curve fit, in addition to a
comparison with a linear model. Part of the result is display in Tables 2 and 3. There are
only very small differences between the fit presented here and the fit presented in (van der
Maas et al. 2003), which are entirely due to differences in optimization algorithm. It should
be mentioned that in (van der Maas et al. 2003) the parameter estimates are the coefficients
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Estimate Std. Error z value P(> |z|)
a[(Intercept)] 0.15271 0.56218 0.272 0.7859
a[Orient]∗ 0.46210 0.06414 7.204 < 0.0001
a[Involv] 0.09736 0.05445 1.788 0.0738
b[(Intercept)] 0.12397 0.38643 0.321 0.7484
b[Involv]∗ 0.22738 0.02993 7.597 < 0.0001
w[(Intercept)] 0.10543 0.24485 0.431 0.6668
w[Attitude]∗ 0.87758 0.06682 13.134 < 0.0001

Table 2: Coefficient summary table for attitudes example obtained with the summary method.

R2 AIC AICc BIC
Linear model 0.1309 3997.6 3997.6 4018.5
Logist model 0.1599 3954.5 3954.5 3985.9
Cusp model −0.0962 3623.8 3623.9 3660.4

Table 3: Model fit statistics for synthetic data example as obtained with summary. The
column labeled “R2” gives conventional R2 for the linear and logist model, and the pseudo-R2

statistic for the cusp model.

with respect to standardized data. To standardize the data the scale function of R can be
used. The column headed “R2” in Table 3 lists the squared multiple correlation for the linear
regression model and logistic curve model, and the pseudo-R2 for the cusp catastrophe model.

A visual display of the data fit and diagnostic plots is generated with the command plot(fit);
the result is displayed in Figure 3. The figure display the control plane along with the
estimated (αi, βi), i = 1, . . . , n, for each of the observations. Furthermore, it (optionally)
displays for each of four regions in the control plane a density estimate of the estimated
state variable in that region. These are displayed on the right in the figure: The top two
panels reflect the densities in the region left and right of the bifurcation region respectively.
These should be positively skewed for the left side and negatively skewed for the right side
(compare Figure 2). The next panel display the density estimate for the state estimates
below the bifurcation region. Here the density estimate should be approximately uni-modal
and less skewed than in the other two regions. The last panel displays the density estimate
for estimated state values within the bifurcation region. In this region the density should be
bimodal. For the data displayed here the first three densities seem heavily multi-modal. This
is due to the fact that the bifurcation factor “political orientation” was measured on a discrete
ordinal 10 points scale, thus artifactually introducing modes around these values. The residual
versus fitted plot displays the estimated errors as a function of predicted states. As indicated
earlier, by default the errors are computed using the delay convention. Although with a good
model fit one would expect to see no systematic relationship between the estimated errors
and the predicted states, we have observed a consistent negative trend between the two—even
when the data were generated from the cusp density in simulations. This may simply result
from cases of which the density is strongly skewed. Hence, a slight negative trend should not
be taken too seriously as an indication of model misfit.

Note from Figure 3 that the overwhelming majority of cases lie in regions where the cusp
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Figure 3: Diagnostic plot of fit of attitude data obtained with the plot method that is
available in the package.

density is moderate to strongly skewed. This fact accounts for the negative pseudo-R2. Lange
et al. (2000) recommend to reject the cusp model entirely when negative pseudo R2 result.
This seems to be an unwarranted recommendation because negative pseudo-R2 values are—
because of the definition of this measure of fit—entirely possible for the cusp density. In fact,
negative pseudo-R2 statistics are possible for all (strongly) skewed distribution such as for
instance a chi-square distribution. Rather than rejecting the cusp catastrophe model on the
basis of a negative pseudo-R2, one might consider forgetting about this measure of fit entirely,
as it clearly is not well-suited for its intended purposes in non-symmetrical distributions.
Instead, one can use AIC and BIC to compare the cusp model with competitor models such
as the linear regression model and the logistic curve.
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Example II

In the second example we use the model specified by Oliva et al. (1987) to demonstrate the use
of multiple state variables. The model corresponds to the data in Table 2 of that paper, which
displays synthetic data for 50 cases with scores on two (dependent) state variables (Z1 and Z2),
four (independent) bifurcation variables (Y1, Y4, Y4, and Y4), and three (independent) normal
variables (X1, X2, and X3). The data can be loaded from the package with data(oliva).
The “true” model for their synthetic data is

αi = X1 − 0.969X2 − 0.201X3,

βi = 0.44Y1 + 0.08Y2 + 0.67Y3 + 0.19Y4, (14)
yi = −0.52Z1 − 1.60Z2.

For testing purposes, Oliva et al. (1987) did not add noise to any of the variables, and hence,
the data perfectly comply with their implicit regression Equation 3.

Because we are using the stochastic approach of Cobb, we cannot use these deterministic data.
We therefore generated data in accordance with the model in Equation 14, where X1, X2,
and X3 were uniformly distributed on the interval (−2, 2), Y1, Y2 and Z1 were uniformly
distributed on (−3, 3), and Y3 and Y4 were uniformly distributed on (−5, 5). The states
yi were then generated from the cusp density with their respective α and β as normal and
splitting factors, and then Z2 was computed as Z2i = (yi + 0.52Z1i)/(−1.60).

The call for fitting the model of Oliva et al. (1987) for the resulting data set is

R> oliva.fit <- cusp(y ~ z1 + z2 - 1, alpha ~ x1 + x2 + x3 - 1,

+ beta ~ y1 + y2 + y3 + y4 - 1, data = oliva)

Note that in the model there are no intercept coefficients; this is signified in the cusp call by
the -1 added to the formula’s (see the formula section of the R manual, R Development Core
Team 2009 for details). The data are stored in the data frame oliva in this case. The result
from summary(oliva.fit, logist = TRUE) is displayed in the upper part of Table 4.

Some of the estimates differ substantially from the true values. This should however not be
too surprising given that there are 9 estimated parameters and only 50 observations, yield-
ing a ratio of 55/9 ≈ 5.5 observations per parameter. Six coefficients differ significantly
from zero: ax1, ax2, by1, by3, and both wz1 and wz2. Using confint to calculate confidence
intervals, we obtain for ax1, ax2, by1, by3, wz1 and wz2 95% confidence intervals of respec-
tively (−1.26,−0.3979), (0.2864, 1.0676), (0.1749, 0.7197), (0.5658, 1.07), (0.4074, 0.589) and
(1.333, 1.669), which all neatly cover the true values. The same confidence interval for by4
however, is (−0.4271, 0.134), which does not contain the true value. This may indicate that
the estimator is biased. Indeed Hartelman (1997) showed in simulations that the estimators
are in fact biased. The control factors (αi’s and βi’s) were however recovered quite decently:
Correlations between the actual αi’s and those predicted by the model fit (which can be ob-
tained with the function predict) was .996, and the correlation between actual βi’s and those
predicted by the model fit was .924.

In contrast to the model specified in this fit, which is rather informed on the variables and
their role in the cusp catastrophe, it is often the case that one doesn’t know which variables
determine the splitting factor, and which variables determine the normal factor. We therefore
also fitted a less informed model, in which both alpha and beta are specified as x1 + x2
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Model I
Estimate Std. Error z value P(> |z|)

a[x1]∗ 0.82896 0.21994 3.769 0.0002
a[x2]∗ −0.67698 0.19928 −3.397 0.0007
a[x3] −0.17317 0.15706 −1.103 0.2702
b[y1]∗ 0.44729 0.13899 3.218 0.0013
b[y2] 0.24059 0.16021 1.502 0.1332
b[y3]∗ 0.81809 0.12873 6.355 < 0.001
b[y4] −0.14654 0.14315 −1.024 0.3060
w[z1]∗ −0.49822 0.04633 −10.753 < 0.001
w[z2]∗ −1.50097 0.08555 −17.545 < 0.001

Model II
Estimate Std. Error z value P(> |z|)

a[(Intercept)] −0.8868 0.6240 −1.4213 0.1552
a[x1]∗ −0.9109 0.2564 −3.5527 0.0004
a[x2]∗ 0.7251 0.2191 3.3100 0.0009
a[x3] 0.1584 0.1735 0.9130 0.3613
a[y1] 0.0653 0.0933 0.6998 0.4841
a[y2] −0.0341 0.1099 −0.3108 0.7560
a[y3] 0.1474 0.1318 1.1182 0.2635
a[y4] 0.0590 0.1149 0.5131 0.6079
b[(Intercept)] 0.1572 0.9575 0.1642 0.8696
b[x1] 0.0317 0.3053 0.1039 0.9173
b[x2] −0.3197 0.2690 −1.1883 0.2347
b[x3] −0.2083 0.2428 −0.8581 0.3909
b[y1]∗ 0.4379 0.1389 3.1528 0.0016
b[y2] 0.2794 0.1721 1.6235 0.1045
b[y3]∗ 0.7788 0.1983 3.9266 0.0001
b[y4] −0.1432 0.1701 −0.8419 0.3999
w[(Intercept)] −0.0976 0.1046 −0.9328 0.3509
w[z1]∗ 0.4963 0.0493 10.0720 < 0.000
w[z2]∗ 1.5186 0.0897 16.9330 < 0.000

Table 4: Coefficient summary table for synthetic data example obtained with summary. Sig-
nificant parameters are indicated with an asteriks (∗). Model I: y ~ z1 + z2 - 1, alpha ~ x1
+ x2 + x3 - 1, beta ~ y1 + y2 + y3 + y4 - 1. Model II: y ~ z1 + z2, alpha, beta ~ x1
+ x2 + x3 + y1 + y2 + y3 + y4.

+ x3 + y1 + y2 + y3 + y4. That is, all independent variables are used to model both the
splitting as well as the normal factor. The resulting estimates are given in the second part of
Table 4. The same set of estimates differs significantly from zero, demonstrating the usefulness
of having significance tests for each estimate separately. The confidence intervals all covered
the true parameter value, except for the same parameter as in the informed model.

The fit indices for this less informed model are displayed in Table 5. Note that the pseudo-R2
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R2 AIC AICc BIC
Linear model 0.5381 131.72 137.37 150.84
Logist model 0.8485 92.17 114.23 126.58
Cusp model 0.7821 80.60 105.93 116.93

Table 5: Model fit statistics for Oliva et al. (1987) synthetic data example obtained with
summary for the less informed model (Model II; see text for details). Note: “R2” value for
cusp is pseudo-R2.
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Figure 4: Fit of simulated data generated conform the Oliva et al. (1987) synthetic data
example.

statistics indicates that the fit does not differ substantially between the cusp model and the
logistic curve model. In fact, it even indicates that the logistic curve model gives a slightly
better fit! Thus clearly, the pseudo R2 is not in all cases a trustworthy guide in selecting a
model, and since we are usually unaware of what the “correct” model is, this makes it difficult
to rely on it at all. The AIC, AICc, and BIC on the other hand all (correctly) indicate that
the cusp is the best model (of the ones compared) for these data. The chi-square Likelihood
Ratio test given in the program output indicated that the cusp model fit was significantly
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Figure 5: Three dimensional display of the fit of the Oliva et al. (1987) synthetic data example
generated with the cusp3d function.

better than the linear model with normal errors (χ2 = 68.71, df = 9, p < 0.0001).

A control plane scatter plot of the synthetic data for the Oliva et al. (1987) model fit is
presented in Figure 4. A three dimensional display of the model fit as generated with cusp3d
is presented in Figure 5. A couple of things may be noted from the scatter plot: First of
all, the sizes of the dots differ. In fact the size of the dots, each of which corresponds to a
single case, varies according to the observed bivariate density of the control factor values at
the location of the point. A second observation is that cases that lie inside the bifurcation set
are plotted indiscriminately of whether they lie on the upper surface or on the lower surface.
To make it possible to visually distinguish these cases, the color of the points vary according
to the value of the state variable; higher values are associate with more intense purple, lower
values with more intense green.
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Figure 6: Diagram of the Zeeman cusp catastrophe machine.

Example III: The Zeeman cusp catastrophe machine

To exemplify the (deterministic) catastrophe program, Zeeman invented a physical device
which provides the archetypal example of a physical system demonstrating the cusp catastro-
phe. This device, which has become known as the Zeeman catastrophe machine, consists of
a wheel that is tethered by an elastic chord to a fixed point on a board. The central axis of
the system is defined as the line that runs through both the fixed point and the center of the
wheel. Another elastic, one end of which is also attached to the wheel, is moved about in the
‘control plane’ area underneath the wheel opposite to the fixed point. The shortest distance
between the strap point on the wheel and the central axis is recorded as a function of the
position in the control plane.2 See Figure 6 for a diagram of the machine, and see (Phillips
2000) for a vivid illustration of the machine.

Measurements from this machine will be made with measurement errors, e.g., due to parallax,
friction, writing mistakes etc. The measurements will fit the following model, that we will

2In the original machine the angle between this axis and the line through the wheel center and the strap
point is used.
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Estimate Std. Error z value P(> |z|)
a[(Intercept)] 0.21470 0.25516 0.841 0.40011
a[x]∗ 1.15341 0.15558 7.414 1.23e-13
a[y] −0.16460 0.11996 −1.372 0.17002
b[(Intercept)]∗ 1.04763 0.37401 2.801 0.00509
b[x] 0.02851 0.14058 0.203 0.83927
b[y]∗ −1.48202 0.13634 −10.870 < 2e-16
w[(Intercept)] −0.02387 0.13178 −0.181 0.85625
w[z]∗ 0.90316 0.02723 33.168 < 2e-16

Table 6: Coefficient summary table for zeeman1 data set obtained with summary. The model
specification was y ~ z, alpha ~ x + y, beta ~ x + y.

R2 AIC AICc BIC
Linear model 0.8711298 348.8954 349.1713 360.9379
Logist model 0.9749158 109.4103 110.1990 130.4847
Cusp model 0.9554786 −136.4639 −135.4426 −112.3788

Table 7: Model fit statistics for zeeman1 data obtained with summary. Note: The R2 value
for cusp is pseudo-R2.

dub the measurement error model:

yi = zi + εi, i = 1, . . . , n,

where εi is a zero mean random variable, e.g., εi ∼ N(0, σ2) for some σ2, and zi is one of the
extremal real roots of the cusp catastrophe equation

αi + βiz − z3 = 0.

Note that this model is quite different from Cobb’s conceptualization of the stochastic cusp
catastrophe. The cusp package is intended for the latter model (i.e., for Cobb’s stochastic
catastrophe model), however, the data from the Zeeman catastrophe machine below show
that it is also quite accomodating for the measurement error model.
The data, that were recorded using a physical instance of the machine and a measurement
tape, are available in the package as zeeman1.3 The data set contains 150 observations from
the state variable z (the shortest distance of the strap point on the wheel to the central axis)
as a function of the bifurcation variable labeled y (running parallel to the central axis), and
the asymmetry variable labeled x (running orthogonal to the central axis). The control plane
was sampled on a regular grid.
A fit of the cusp density to these data, which actually conform to the measurement error
model and not to the cusp SDE of Cobb, using the command

R> fit.zeeman <- cusp(y ~ z, alpha ~ x + y, beta ~ x + y, data = zeeman1)

R> summary(fit.zeeman)

3In fact three data sets from three different instances recorded by separate individuals are available as
zeeman1, zeeman2, and zeeman3.
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Zeeman Cusp Catastrophe Machine Data

Figure 7: Three dimensional display of the fit of the Zeeman data example generated with
the cusp3d function.

gives the summary table in Table 6, with the model fit evaluation in Table 7.

The significance test for the parameters clearly indicate that for the asymmetry factor α only
x is explanatory, which corresponds quite correctly with the theoretical asymmetry axis for
the cusp catastrophe machine, while only y is explanatory for the bifurcation factor β. Only
the bifurcation factor β requires an intercept because only for this axis of the control plane
there is no natural origin.

The information criteria for model selection all indicate that the cusp model is most appro-
priate of the models compared, even though the pseudo-R2 indicates that the logistic surface
model explains slightly more variance than the cusp.
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5. Discussion

In this paper we have presented an add-on package for cusp catastrophe modeling in R. The
core user interface functions allow the user to easily specify and fit a broad range of models
using the maximum likelihood approach of Cobb (Cobb 1980; Cobb and Watson 1980). It
also provides the user a number of tools for the assessment of the cusp catastrophe model fit.

Although the focus of this paper was entirely on quantitative methodology, by no means do
we consider the statistically satisfactory fit of a cusp catastrophe model—or any catastrophy
model for that matter—definite evidence for the for the presence of dynamical phase transi-
tions. Without concurrent qualitative assessment of the presence of catastrophe flags implied
by the model, and without a sound theoretical framework that implicates an underlying gra-
dient system near equilibrium states, any catatrophe model fit remains unconvincing.

Cobb’s method is not without it limitations. Deterministic catastrophe classifies systems up
to a set of smooth nonlinear scalings of the state variables. Hartelman (1997) points out that
this poses a problem for Cobb’s approach. The alternative approach offered in (Hartelman
1997; see also Wagenmakers et al. 2005a) however, only works for time series. Practical
experience with applications to cross-sectional data indicates that Cobb’s method is suitable
for these cases.

A number of improvement of the package can be thought of. The current package tests for
the presence of bifurcation points by fitting a logistic curve that accommodates arbitrarily
sudden changes in the state variable as a function of smooth gradual changes in the control
variables. More ideally, to test for the presence of bifurcation points one should minimize the
negative log-likelihood L of Equation 11 subject to the n constraints δi = α2

i /4− β3
i /27 ≤ 0.

The parameter δi is known as Cardan’s Discriminant, named after the 16th century Italian
mathematician who first published it (Cobb and Zacks 1985). It is positive, only if the cusp
Equation 3 has three solutions–i.e., only if there are multiple equilibrium states. One then can
use likelihood ratio chi-square testing to compare this model with the unconstrained model.
This could be a viable alternative approach to the logistic curve fit, but it would require a
different optimization routine. Unfortunately, R currently has no optimization routine that
allows for arbitrary nonlinear inequality constraints.

One might further consider a Bayesian approach to estimation. The Bayesian approach how-
ever, comes of course at the cost of having to specify a prior belief about the likelihood of
parameter values. Given the relations between parameters w0, w1, . . . , bq−1, bq and the data in
Equations 8–10 the latter seems rather laborious in the most general case, and a far from in-
tuitive enterprise. Only (relatively) uninformative priors seem straightforward, hence leaving
out the heart of a true Bayesian approach.

These considerations will be explored in future improvements of the package.
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A. Other estimation methods

Different fitting techniques for the cusp catastrophe, and for catastrophe models in general,
have been proposed in the literature. Two of the most prominent seem to suffer from a
number of problems, one of which is that the “anti-predictions” of the cusp model are not
taken into account. The polynomial regression technique of Guastello (1988) approximates
Cobb’s stochastic form of Equation 1 by a difference equation which essentially results in
a polynomial regression equation. Least squares regression is then used to estimate the
parameters. In this regression procedure however, the occurrence of unstable equilibrium
states is rewarded just as much as stable states, rather than punished (Hartelman 1997).

Alexander et al. (1992) have furthermore criticized this approach because the dependent
variable in the regression is a difference score of two variables, one of which is also present
as a predictor. As a consequence, the explained variance can be up to 50% for completely
random data. Thus the method cannot distinguish between a (cusp) catastrophe model and
a linear model. In a reply to Alexander et al. (1992), Guastello (1992) demonstrates that his
polynomial regression technique can give an R2 estimate of 0.55 for purely random data. By
constructing the bifurcation and asymmetry factors to be “known”, as the author calls it, “a
near-perfect [i.e., R2 = 0.99] cusp model could be obtained” (Guastello 1992, p. 387). On the
basis of an, in our view misguided, interpretation of chaos theory, the author argues that from
these examples it can be concluded that these random numbers conform to a fold- and even a
cusp-catastrophe. Clearly, this cannot be a “cusp” in the sense of Cobb’s stochastic version of
Equation 3. The polynomial regression method of Guastello (1992) estimates the coefficients
correctly if the data set is a time series, in which case we can show however, at least for an
Ornstein-Uhlenbeck SDE, that theoretically R2 ranges from 0 for closely spaced samples to
0.5 for widely spaces samples (when samples are nearly uncorrelated). For the cusp SDE a
similar result can be demonstrated using simulation. A scenario under which the method
would yield correct coefficient estimates and a high R2, is when multiple independent systems
are observed on two occasions in which the systems are perturbed on the first occasion by at
least two standard deviations of the equilibrium noise level.

The multivariate “GEMCAT” methodology proposed in (Oliva et al. 1987; Lange et al. 2000)
assumes that the measured states are at the equilibrium surface and that any discrepancy is
due to additive noise (much like Cobb’s stochastic extension of catastrophe theory but, as
we shall see, not quite the same). Hence, GEMCAT simply minimizes the square of the left
hand side of Equation 3, summed across all observed states. The qualification “multivariate”
refers to the fact that GEMCAT allows for the use of Equation 5, whereas the technique of
Guastello (1988) presumes that the state variable y is accessible for direct measurement, and
is not, as implicated by Equation 5, a set of dependent variables that “predict” the state.
As is true for the method of Guastello (1988), a problem with this approach is that stable
and unstable equilibrium states are treated indiscriminately, and both types of states are
“rewarded” for their presence in the model fit. In fact, in the multivariate synthetic data
example, for eleven of the cases in Table 2 of (Oliva et al. 1987), the simulated observed
states were unstable (i.e., inaccessible) equilibrium states. This is opposite to the predictions
from the cusp catastrophe that the unstable equilibrium state is unlikely to be observed, and
contrasts with Cobb’s conception of stochastic catastrophe theory. Furthermore, as noted
in Hartelman (1997), the approach for model evaluation proposed in Oliva et al. (1987) is
not valid because their stochastic counterpart of Equation 3 as a model, entails an implicit
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equation to which data should adhere—save for random disturbances. Unlike conventional
non-linear regression, implicit equations allow for multiple predictions for each set of values
of the predictor variables. Equation 3 and its stochastic counterpart thus do not constitute
non-linear regression in the conventional sense. Even more importantly, the conditions under
which (asymptotic) statistical inference theory is developed for such implicit models (Seber
and Wild 1989) precisely excludes those cases that are central to catastrophe theory (Hartel-
man 1997). As a consequence, the suggested chi-square statistics initially used in GEMCAT
for model comparison and model selection are rendered invalid. In a new version of GEM-
CAT, GEMCAT II (Lange et al. 2000), this situation was changed and inference is based on
resampling techniques (jacknife and non-parametric bootstrap).

In contrast to the other techniques which are solely based on the derivative in Equation 1.
The methods developed by Cobb and his colleagues are based on the density in (4) and
therefore take into account all characterizing aspects of the system’s potential function V .
For instance, where the two previous methods “reward” the presence of unstable equilibrium
states, the maximum likelihood approach of Cobb et al. (1983) punishes for their presence,
as these correspond to points in an area of the density function of low probability, that lies
in between two high probability states.
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