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a b s t r a c t

Wegive closed form expressions for themean and variance of RTs for Ratcliff’s diffusionmodel [Ratcliff, R.
(1978). A theory of memory retrieval. Psychological Review, 85, 59–108] under the simplifying assumption
that there is no variability across trials in the parameters. These expressions are more general than those
currently available. As an application, we demonstrate their use in a method-of-moments estimation
procedure that addresses some of the weaknesses of the EZ method [Wagenmakers, E.-J., van der Maas,
H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic
Bulletin & Review, 14, 3–22], and illustrate this with lexical decision data. We discuss further possible
applications.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Speeded two-alternative forced choice experiments are ubiq-
uitous in cognitive psychology and neuroscience. Not surprisingly,
the most advanced statistical models in mathematical psychology
target these types of experiments. Sequential sampling models are
currently the most successful in capturing the statistical features
of the data observed in these experiments, and among these, one
of themost prominent classes of model are diffusionmodels (Luce,
1986; Ratcliff, 1978). In particular, sequential samplingmodels can
account for the speed-accuracy trade-off that has been a long-
standing source of controversy in experimental psychology (Wick-
elgren, 1977). Interpreting speed and accuracy data in terms of the
parameters that drive the underlying processes is more informa-
tive than the traditional analysis of either mean response times
or percentages correct (Wagenmakers, van der Maas, & Grasman,
2007). Often, however, themathematical complexity of thesemod-
els, and their computational requirement (even with today’s com-
puters), tends to discourage researchers from using them.
To study the relationship between mean response time

and response time variance predicted by this class of models,
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Wagenmakers, Grasman, and Molenaar (2005) (see also Palmer,
Huk, and Shadlen (2005)) presented closed form expressions for
the mean and variance of a simplified, yet analytically tractable,
special case of Ratcliff’s diffusion model.
These equations, subject to the imposed simplifying assump-

tions, provided the basis for a method-of-moments estimator for
the diffusion parameters that only involves a direct transform
of the mean response times (MRT ), the response time variances
(VRT ), and the proportions of correct responses (Pc). We dubbed
this method the ‘‘EZ method’’ (Wagenmakers et al., 2007).
A limitation of the equations and of the EZ method however,

is that they are based on the assumption that participants are
unbiased with respect to the two responses. In some experiments,
participants display bias towards one or other response alternative,
due to a participants’ response preference, or as a consequence
of an experimental manipulation (e.g., presenting 75% words and
25% nonwords in a lexical decision task). Although the equations
derived inWagenmakers et al. (2005) do cover a range of common
experimental situations, they tell us little about thesemore general
cases, as bias towards either alternative is an integral part of the
decision process as conceptualized in Ratcliff’s model.
Besides this limitation of the equations, their application in

the EZ method has an additional weakness. Many experimental
paradigms, such as, for example, the lexical decision paradigm,
comprise two conditions (a ‘word’ condition and a ‘nonword’
condition) in which correct and error responses play reversed
roles. These conditions are therefore logically intertwined and
the diffusion processes in these conditions logically must share
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parameters. The EZmethod does not support such constraints, and
handles each experimental condition separately.
The purpose of the present article is to derive a closed form

expression of the RT mean and variance for the more general case
than the one considered inWagenmakers et al. (2005). Specifically,
we do not assume that the decision is unbiased with respect
to the response alternatives. As a practical application of these
new expressions, we consider their use in a parameter estimation
procedure that is in line with the EZ method, but removes the
abovementionedweaknesses.We demonstrate its usefulnesswith
a real data example.
The EZ method is easy by virtue of the analytical invertibility

of the equations obtained in Wagenmakers et al. (2005). For the
new equations it is not possible to derive closed form expressions
for the parameters in terms of proportion correct, RT mean,
and RT variance. To use the new equations for the purpose of
estimation, we therefore resort to numerical procedures. We
demonstrate one such estimation procedure, and determine its
effectiveness in simulations. Like the EZ method, this procedure
produces method-of-moments estimates. The use of the equations
is, however, not limited to method-of-moments estimators as
we argue in the last section of the paper. It should be noted
that the implementation of the demonstrated procedure is much
easier than the statistically more optimal estimation procedures
proposed in the literature (e.g., Ratcliff and Tuerlinckx (2002)
and Voss and Voss (2008)). More importantly, this estimation
procedure is computationally much faster than other available
procedures. This can be an advantage when RT data of many
participants are to be analyzed on an individual basis, and
when estimates constitute the basis for online adjustments of an
experiment. The use of a numerical procedure furthermore frees
the algorithm from being specific to a single experimental design.
With such an algorithm it becomes easy to build more extensive
models that incorporate diffusion processes as building blocks for
decisions in complex experimental designs, in which parameters
are constrained across conditions or may be modeled as functions
of covariates or design factors. This is only practically feasiblewhen
estimates are obtained quick enough, especially when various
models have to be considered and compared.
The outline of this paper is as follows: In the next section,

we give a general description of the diffusion model as proposed
by Ratcliff (1978). In the subsequent section we derive expressions
for mean and variance of a diffusion process, which are more
general than those presented by Wagenmakers et al. (2005).
Then we apply the derived expressions to the estimation of
diffusion model parameters in a similar, but more general, vein
as the EZ method (Wagenmakers et al., 2007). We demonstrate
the effectiveness of this use in a simulation study, and apply
it to real data obtained in a lexical decision paradigm. In the
discussion we suggest other estimation methods in which the
present expressions can be used. In the appendix, finally, we
provide links to software we make available on the internet.

2. Ratcliff’s diffusion model

For a single decision, Ratcliff’s diffusionmodel can be conceived
of as an information accumulating process over a noisy channel.
This process is modeled as the movements of a particle on the
interval (0, a). Each of the boundaries of the interval is associated
with one alternative (e.g., nonwords and words in a lexical
decision task). The particle’s position X reflects the accumulation
of evidence for one or other alternative. The initial position of
the particle at time zero, denoted z, represents the bias towards
either of the alternatives. The process is illustrated in Fig. 1. The
Fig. 1. Illustration of the stochastic information accumulation process underlying
the decision component in the diffusion model for simple decisions.

particle’smovements are assumed to be governed by the stochastic
differential equation

dX(t) = νdt + s dW (t). (1)

The equation expresses that themomentary change in evidence
follows a constant accumulation rate ν with added random distur-
bances. The random disturbances, s dW (t), are zero-mean random
increments with infinitesimal variance s2dt . The infinitesimal vari-
ance ensures that the disturbances are small enough to let the evi-
dence X(t) vary almost always continuously over time, but is large
enough to make the process behave erratically and ultimately un-
predictably. Once the process exceeds one of the boundaries, the
accumulation halts, and the evidence is taken as supporting one or
other alternative. The diffusion model can be related to sequential
likelihood ratio testing for optimal decision making under uncer-
tainty (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). In fact,
this provided the impetus for the introduction of sequential sam-
pling models (Stone, 1960).
It is instructive to consider how three parameters in the model

affect the speed-accuracy trade-off. The accumulation rate, or
drift rate, ν controls the speed of the deterministic information
accumulation. Clearly, the greater the value of the drift rate, the
more strongly the process is influenced by the deterministic part
of equation Eq. (1); hence, the more likely it is to exit the correct
end of the interval and the more rapidly it will reach a decision.
The boundary separation, controlled by a, not only affects the
likelihood of terminating at the correct end of the interval, but also
affects the amount of time the decision will take. The particle’s
starting position is equally important to the likelihood of leaving
the correct end of the interval, and the amount of time it takes to
reach it. If the process starts close to a, for instance, it will be more
likely to exit through a before it can reach 0 than when it starts
close to 0. Moreover, it will do so in a shorter amount of time.
The drift rate reflects the correspondence between a probe

(stimulus) presented to the participant and an item in his or
her task related memory set—i.e., the goodness-of-match (Ratcliff,
1978, 1985; Ratcliff & McKoon, 1988; Ratcliff & Smith, 2004). The
drift rate is therefore determined by the properties of the probe
and by the quality of the memory set, and is under the control
of the experimenter rather than the participant. The boundary
separation allows theparticipant to control the conservativeness of
his or her evidence criterion (e.g., in response to task instruction).
The starting point allows the decision to be biased towards one
of the alternatives. Setting the starting point thus provides the
participant with a means to increase the response speed in the
case that one alternative is expected to be more likely than the
other. Empirical validation for these interpretationswas presented
by Voss, Rothermund, and Voss (2004).
Because the physical properties of the stimuli, or their

representation inmemory, or both,may vary across trials, Ratcliff’s
model generalizes to repeated decisions by allowing variability in
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the drift rate ν. In addition, in an extended version of the model,
the starting point z is also allowed to vary across trials (Ratcliff,
1978; Ratcliff & McKoon, 1988). The drift rate is usually assumed
to be normally distributed around ν with variance η2. The starting
point is usually assumed to be uniformly distributed in the range
(z − sz/2, z + sz/2). These distributional assumptions are ad
hoc, and should be considered as first approximations to the
true underlying distributions. Furthermore, the diffusion process
only models the decision process and not to the time needed
to encode the stimulus and execute a response. This latter time,
whose mean is denoted Ter, and decision time are assumed to
be additive in the total RT (e.g., Luce (1986)). Ter is usually
referred to as the (mean) non-decision component. The non-
decision component is also allowed to vary randomly across trials.
Its law is usually assumed to be uniform over the interval (Ter −
sTer/2, Ter + sTer/2) as a first approximation to the true underlying
distribution. Tuerlinckx (2004) proposes a normal distribution on
the basis of computational considerations.1

3. Decision time mean and variance

The attraction of the diffusion model for the decision process is
not only its theoretical account of how information accumulates
in the brain to trigger a decision, but also its ability to provide
an accurate description of, and explanation for, many phenomena
observed in human and animal RTs (Bogacz et al., 2006; Gold &
Shadlen, 2007; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004;
Ratcliff, Thapar, & McKoon, 2001; Smith & Ratcliff, 2004). One
such phenomenon concerns the well established (linear) relation
between the means and standard deviations of RT distributions.
The predictions made by the diffusion model about this relation
were studied in Wagenmakers et al. (2005), where expressions
for the first two central moments were derived for the case in
which the between-trial variabilities were assumed to be absent,
and the starting point z was assumed to be equidistant from the
two decision boundaries. The latter assumption corresponds to
unbiased decisions.
In this section, we derive closed-form expressions for the

centralmoments in themore general case that the decision process
is possibly biased. As in Wagenmakers et al. (2005), we will still
assume that there is no between-trial variability in any of the
diffusion parameters (i.e., sz = 0 and η2 = 0). We consider two
cases. In the first case, we determine the mean and variance of
the time that the process described by equation Eq. (1) exits the
interval at either boundary—i.e., the cumulants of the correct and
error decision times combined. In the second case we focus on the
mean and variance of the time that the diffusion process exits at
a particular boundary—i.e., the cumulants of the correct or error
decision time only.
To put the derived expressions to some direct practical use,

in the next section we apply them in a method-of-moments
estimation procedure similar to the EZ method.
Here we switch to the terminology that is common in the

literature on stochastic processes, and refer to a particle’s position
and exit time rather than accumulated evidence and decision time.

1 Assuming a normal instead of a uniform distribution allows to reduce the
computational complexity of evaluating the density function that is implied by the
diffusion model because one integral can be carried out analytically.
3.1. Moments of exit times irrespective of exit boundary

Most steps for this case were already discussed in Wagenmak-
ers et al. (2005); hence we only briefly summarize the derivation
here and quickly turn to the more general expressions.
The process in Eq. (1) is associated with a partial differential

equation (PDE) that governs the evolution of the probability
distribution of X(t) across time, given that the process started out
at the point z:

∂tp(x, t|z, 0) = ν ∂zp(x, t|z, 0)+
s2

2
∂2z p(x, t|z, 0). (2)

This equation is known as the Kolmogorov backward equation,
or to be more precise, this is one form of the Kolmogorov
backward equation of a timehomogenous system. TheKolmogorov
backward equation, as opposed to the associated Kolmogorov
forward or Fokker–Planck equation, is the usual starting point for
considerations about the exit times of a diffusion process.
We consider the exit time T of the process. Let G(t, z) = P(T >

t) denote the probability that a process that started at z exits the
interval after time t . Recall that the process terminates as soon as it
hits one of the boundaries; i.e., the boundaries are absorbing. Now,
suppose the process exits the interval after time t , i.e., T > t . Then,
because of the absorbing boundaries, the process must still be in
the interval at time t (otherwise the process would have stopped
earlier than, or at, time t; that is, T ≤ t , which would contradict
our assumption that T > t). Hence, for p(x, t|z, 0) to be a valid
function for the density of this process that is subject to absorbing
boundaries, it must satisfy the equality

G(t, z) =
∫ a

0
p(x, t|z, 0)dx,

in addition to satisfying the backward equation (2). The backward
equation then implies that G satisfies

∂tG(t, z) = ν ∂zG(t, z)+
s2

2
∂2z G(t, z), (3)

with boundary conditions G(t, 0) = G(t, a) = 0, as both
boundaries are absorbing and hence, P(T > t) = 0 for any t > 0
(cf., Gardiner (2004) andWagenmakers et al. (2005)). Note that the
assumption that the process starts in z can be stated symbolically
as limt↓0 p(x, t|z, 0) = δ(x − z), where δ(·) is Dirac’s delta.
Furthermore, as indicated, absorbing boundaries mean that the
probability that the particle reenters the interval after it has visited
a boundary is zero, which, because the process is (time) homo-
genous, can be stated formally as p(x, t|a, 0) = p(x, t|0, 0) = 0.
The moments of the exit times are given by

Tn(z) ≡ E{T n} =
∫
∞

0
tn[∂t ′P(T ≤ t ′)]tdt

= −

∫
∞

0
tn[∂t ′G(t ′, z)]tdt = n

∫
∞

0
tn−1G(t, z)dt,

where the latter equality results from integration by parts. This
equation can be applied in (3) to obtain the equation for the
moments of the exit times:

ν ∂zTn(z)+
s2

2
∂2z Tn(z) = −nTn−1(z). (4)

Note that the equation is recursive in the moment order
n. Busemeyer and Townsend (1992) provide an alternative
derivation of the analogous equation for the more general
Ornstein–Uhlenbeck process.
A general solution can be obtained by direct integration of (4)

(see Gardiner (2004), but we shall not do so here—the result is
analogous to the derivation of the mean an variance of the correct
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responses that is outlined in the next section. For the first and
second order moments the equations turn out to be analytically
solvable, which allows us to obtain expressions for the mean and
variance of the exit times:

E{T } = −
z
ν
+
a
ν
Z/A, (5)

and

Var(T ) =
−νa2(Z + 4)Z/A2 + ((−3νa2 + 4νza+ s2a)Z + 4νza)/A− s2z

ν3
,

(6)

where, A = exp{−2νa/s2} − 1, and Z = exp{−2νz/s2} − 1.
As indicated, these equations are themoments of the exit times

conditioned on the starting point, but irrespective of their point
of exit. In RT terms: These are the first two cumulants of the
RTs of the aggregated correct and incorrect responses. We next
consider the cumulants of the exit times given that the process
exits through a particular end of the interval—i.e. the cumulants
of the responses conditioned on the correctness of the response.
Some exact and approximate results for the discrete time random
walk counterpart of the diffusion model in this case were derived
by Schwartz (1991).

3.2. Mean and variance of exit times through the lower bound

Before we proceed, consider again the Kolmogorov backward
equation in (2) associated with the decision process. As indicated
above, this equation is associated with the Kolmogorov forward or
Fokker–Planck equation, which reads

∂tp(x, t|z, 0) = −ν ∂xp(x, t|z, 0)+
s2

2
∂2x p(x, t|z, 0). (7)

This equation is in fact a completely equivalent, but slightly
alternative, specification of the probability density p(x, t|z, t ′).
Both equations give rise to the same probability density function
(Gardiner, 2004).
The forward equation can be written

∂tp(x, t|z, 0)+ ∂xj(x, t|z, 0) = 0,

where j(x, t|z, 0) = νp(x, t|z, 0) − s2
2 ∂xp(x, t|z, 0). The

function j(x, t; z, 0) is termed the probability current because
mathematically, it behaves as a physical current or flux (see
Gardiner (2004), sect. 5.2). The probability current describes how
much of the probability per unit time flows through a particular
point x at time t , as the probability density p(x, t|z, 0) evolves over
time. By convention, the direction of flow is here assumed to be
pointing to the right. In particular, for the type of processes under
consideration,−j(0, t|z, 0) and j(a, t|z, 0)measure the amount of
probability that leaks away per unit time at the end points of the
interval. Clearly then, the probability that a particle which started
at z leaves the interval at the lower boundary after time t is

g0(z, t) = −
∫
∞

t
j(0, t ′|z, 0)dt ′

=

∫
∞

t

(
−ν +

s2

2
∂x
)
p(x, t ′|z, 0)

∣∣∣∣
x=0
dt ′

(cf., Gardiner (2004)), where the first equality expresses the total
amount of probability that leaks through 0 after time t . Therefore,
the probability that the exit time, T (0, z), of the particle is larger
than t given that it exits through 0 is

P(T (0, z) > t) = g0(z, t)/g0(z, 0), (8)
Here, the notation T (0, z) emphasizes that the exit is through
the lower boundary 0 and that it depends on the starting point z
of the particle. The change in the total probability of the particle
being inside the interval at time t is the total probability current
that flows out of the interval at the boundaries

∂P(X(t) ∈ (0, a))
∂t

= j(a, t)− j(0, t)

where the minus sign arises because the current is taken to point
to the right.
By calculating the partials ∂tg0, ∂zg0, and ∂2z g0, and using the

backward equation (2), it may be verified that g0(z, t) therefore
satisfies the equation

∂tg0(z, t) = j(0, t|z, 0) = ν ∂zg0(z, t)+
s2

2
∂2z g0(z, t). (9)

As was the case for G(z, t) in the previous section, g0(z, t) gives
rise to an equation for themoments of the exit times, given that the
exit is at 0. The n-th order moment of T (z, 0), Tn(z, 0), is defined
by

Tn(z, 0) = −
∫
∞

0
tn∂t ′P(T (z, 0) > t ′)

∣∣∣∣
t
dt

= n
∫
∞

0
tn−1g0(z, t)/g0(z, 0)dt,

where the second equality result from integration by parts.
On the other hand, using the PDE for g0 above

−g0(z, 0)Tn(z, 0) = ν ∂z

∫
∞

0
tng0(z, t)dt

+
s2

2
∂2z

∫
∞

0
tng0(z, t)dt.

Combining these equations, and defining π0(z) = g0(z, 0), we
obtain

ν ∂z(π0(z)Tn(z, 0))+
s2

2
∂2z (π0(z)Tn(z, 0))

= −nπ0(z)Tn−1(z, 0). (10)

This equation recursively relates the moments of the exit times
to each other, conditioned on the exit point 0. Note that the zero-th
moment T0(z, 0) ≡ 1. It is clear that the boundary conditions for
the solution π0(z)T (z, 0) are

π0(a)T (a, 0) = π0(0)T (0, 0) = 0, (11)

which result directly from the boundary conditions of the
backward Kolmogorov equation in case of absorbing boundaries
(the decision process terminates as soon as it hits one of the
boundaries). Following (Gardiner (2004), p. 143) T (0, 0) = 0, as
a process starting at the boundary immediately terminates, and
π0(a) = 0, as the probability that the process terminates at a if
it started at the boundary 0 is zero.
If t in (9) approaches 0, the equation reduces to an equation for

g0(z, 0) = π0(z),

ν ∂zπ0(z)+
s2

2
∂2z π0(z) = 0, (12)

which, together with the obvious boundary conditions π0(0) = 1
and π0(a) = 0, gives rise to the equation for the probability of an
error response given in Ratcliff (1978).
We obtain the mean RT of the error responses by solving

(10) for T1(z, 0), subject to the indicated boundary conditions.
An alternative expression was obtained in Palmer et al. (2005)
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using different methods. Note that T0(z, 0) ≡ 1. Introducing
ϕ(x, y) = exp{2 ν y/s2} − exp{2 ν x/s2}, the solution is found by
straightforward integration:

T1(z, 0) =
z (ϕ(z − a, a)+ ϕ(0, z))+ 2 a ϕ(z, 0)

ν ϕ(z, a)ϕ(−a, 0)
. (13)

The derivation of the expression for the second moment of the
decision times is outlined in Appendix A. The variance is obtained
by subtracting the square of the mean. Tedious simplifications
yield

Var(T (z, 0)) =

−2 aϕ(0, z)(2 ν aϕ(z, 2 a)+ s2 ϕ(0, a) ϕ(z, a)) e2 νa/s
2

ν3 ϕ2(0, a) ϕ2(z, a)

+
4ν z (2 a− z) e2ν (z+a)/s

2
+ z s2 ϕ(2 z, 2 a)

ν3 ϕ2(z, a)
. (14)

To obtain the corresponding equations for the correct re-
sponses, use (ν, z) 7→ (−ν, a− z).

3.3. Unconditional versus conditional cumulants

We note several differences between the conditional and
unconditionalmean and variance. First, conditioned on the point of
exit, both the mean and the variance of the exit times converge to
an asymptotic value as the starting point approaches the opposite
end. That is, for the exits of the process through the lower boundary
0, themean exit time tends to a finite limit as z → a, and vice versa.
The same holds for the variance of the exit time. The unconditional
mean and variance on the other hand, both become zero when the
starting point approaches either boundary,which is to be expected.
A more noteworthy difference is that, while the unconditional
mean and variance are reflected in the point z = a/2 as the sign of
ν is changed, the conditionalmean and variance are even functions
of ν—i.e., they are symmetrical in the point ν = 0. That is, given a
drift rate ν and starting point z, the unconditional mean exit time
equals the unconditionalmean exit timewith drift−ν and starting
point a− z. The same is true for the variance of the exit times. The
conditional mean and variance on the other hand, are the same
for drift rates ν and −ν. The latter implies that the conditional
mean and variance do not provide information about the sign of ν,
whereas the unconditional mean and variance do. If z = a/2 then
both unconditional and conditional mean and variance are even
functions of ν, and neither contains information about the sign of
ν. Only the proportion of correct responses provides information
about the sign of ν in that case.

4. Application to parameter estimation

In this section we use the derived equations in a estimation
procedure similar to the EZ method. Although the use of the
equations and the technique presented in this section can be easily
extended to more general use, for simplicity here we concentrate
on the method-of-moments, which is the approach of the EZ
method.
First, however, we give a brief overview of other approaches

that produce estimators with statistically more desirable prop-
erties, at the cost of greater computational burden. As indicated
earlier, there are several situations in which computation time
may be an issue. These include situations in which estimates per
participant are desired, and situations in which different complex
models, possibly including covariates, need to be compared. A fur-
ther situation in which computational speed is important is for in-
stance an experimental procedure inwhich stimulus properties are
adaptively changed in response to a participants’ performance. In
such a situation (near) real-time estimation is necessary.

4.1. Chi-square, WLS, and ML estimation methods

Several methods for estimating the parameters have been pro-
posed (Ratcliff & Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx,
2007; Voss et al., 2004; Wagenmakers, in press). Ratcliff and Tuer-
linckx (2002) have extensively reviewed and evaluated three of
these methods, namely, minimum chi-square, a weighted least
squares method, and maximum likelihood. In the minimum chi-
square method the distribution is binned by computing a num-
ber of quantiles from the cumulative distribution of both correct
and error responses, and fits the model by minimizing the (χ2-)
discrepancy between observed bin frequencies and bin sizes. The
weighted least squares (WLS) method on the other hand, directly
minimizes the squared differences between computed quantiles
and observed quantiles, weighted by their asymptotic accuracy.
The maximum likelihood (ML) method used by Ratcliff and Tuer-
linckx (2002) evaluates the likelihood by numerically differentiat-
ing the cumulative distribution function.
Vandekerckhove and Tuerlinckx (2007) proposed a grouped

data maximum likelihood approach to reduce the computation
time of full maximum likelihood estimation. In their software, they
also provide an option to use the method of Brown and Heathcote
(2003). This method, called QMLE, quantizes the observed correct
and error RT distributions into several bins, towhich amultinomial
distribution is fitted by maximum likelihood. The multinomial
probabilities are predicted from the diffusion model. Voss et al.
(2004) and Voss and Voss (2008) propose to minimize the
maximum of the Kolmogorov–Smirnov statistics of correct and
error RT distributions.
ML estimators are preferred in many cases, in view of the

associated optimal asymptotic properties. (Cases that undermine
the usual assumptions of ML theory, some of which are relevant
to RTs, are discussed by Cheng and Iles (1987) and Heathcote and
Brown (2004).) Even so, Ratcliff and Tuerlinckx (2002) recommend
the use of the chi-square estimator, because in their simulations
these were more robust than the outlier sensitive ML estimators.
Moreover, they were more precise than WLS estimators.

4.2. EZ estimation method

Despite the evident utility of the diffusionmodel in interpreting
the speed and accuracy data, it has failed to catch on in a
wider audience of researchers. This may have several causes,
the most prominent of which are probably the amount of effort
a researcher needs to invest in devising an implementation of
one of the estimation methods, and the computational burden
of these methods — even on modern computers. The latter is
especially problematic when one wishes to investigate different
models for complex experimental designs, or to fit the model at
the individual level in a large group of participants. For online
estimation, as required in adaptive experimental paradigms (e.g., if
stimulus discriminability is to be equalized across participants),
these methods are impractical.
The EZ method (Wagenmakers et al., 2007) provides easily

computable estimates of the parameters of the diffusion model.
These are obtained by virtue of the analytical invertibility of
the expressions for the moments derived in the previous section
for the special case that z = a/2—i.e., for the case that the
decision is unbiased with respect to either response categories.
Furthermore, the EZ method ignores variability in parameters
across trials. Thus the EZ method sacrifices some aspects of the
full diffusion model for computational ease, and consequently has



60 R.P.P.P. Grasman et al. / Journal of Mathematical Psychology 53 (2009) 55–68
a more modest range of applicability. The simulations presented
by Wagenmakers et al. (2007) showed however that these
method-of-moments estimators perform quite well, even when
the simplifying assumptions were slightly violated. The method
has recently been criticized however (see Ratcliff (in press)
and Wagenmakers, van der Maas, Dolan, and Grasman (in press)).
A second disadvantage alluded to earlier is that the EZ

method handles a single experimental condition at a time.
Random intermixing of trials from different conditions however
necessitates that boundary separation must be the same in
different types of trials. The EZmethod gives separate estimates for
each condition however. This constitutes a somewhat inefficient
use of the data.

4.3. Easy estimation method for biased decisions

In this section we discuss how the equations of the previous
section can be used to address the starting point problem of the
EZ method. Note that the problem of parameter constraints across
conditions becomes more prominent in the biased response case.
We therefore will have to address this problem too.
To obtain method-of-moment estimators, we have to equate

as many observed moments (i.e., proportions of errors, RT means
and variances) to the expression of the corresponding theoretical
population values derived in the previous section as there are
unknownparameters, and then solve for the unknownparameters.
Unlike the EZ case, analytical inversion of the method-of-

moment equations is not possible, and therefore, closed form
expressions for the estimators cannot be found. Hence we resort
to a numerical algorithm. The resulting estimation procedure turns
out to be sufficiently fast to be computed in a web page script,
and is simple to implement in a spreadsheet program. To ease the
discussion we refer to this method as ‘‘EZ2’’.
We take as an example the common situation where there are

two types of trials in which a correct response for one type is an
error response for the other and vice versa—a lexical decision task,
for example. Assume that the decision processes associated with
the two conditions (i.e., words and nonwords) share the starting
value z and the boundary separation a, which is appropriate if a
participant cannot know in advance the nature of the next trial.
Assume further that the decision process associatedwith each type
of condition has its own drift parameter—ν0 for nonwords and ν1
for words, say. In addition, assume that RTs modeled with both
types of processes have the same non-decision time Ter. Then there
are five unknown parameters andwe need fivemoment equations.
In both the ‘word’ and the ‘nonword’ condition, the proportion

of errors, conditional and unconditional means, and conditional
and unconditional variances can be calculated. This constitutes a
total of ten observed moments. In order to choose an appropriate
subset of moments, we consider the following. First, from the
previous section we know that in order to be able to estimate
the sign of ν we have to include at least one error proportion
or an unconditional moment. Second, to be able to estimate Ter
we have to use at least one mean RT. In fact, the mean RT is
not only the sole moment that provides information about Ter, it
essentially only provides information about Ter. This can be seen
if one considers the partition MRT = MDT + Ter, where MDT
is the mean decision time (or mean exit time in diffusion terms)
determined by the diffusion parameters. As long asMDT is smaller
than the observed mean RT, which is clearly required, Ter will
absorb any discrepancy between observed and predictedmean RT.
Hence the observed mean RT only bounds the region in which the
diffusion parameters must lie, and does not provide information
about the specific valueswithin that region. Often, furthermore, Ter
is not of primary interest and the equations involving means then
can safely be ignored (except of course for checking the condition
MDT < MRT ). Finally, it sometimes seems reasonable to assume
that error responses have a higher proportion of contamination
and, therefore, to restrict the attention to correct responses.We are
then left with 4 observed moments and 4 unknown parameters: a
variance for the correct RTs for words, a variance for the correct
RTs for nonwords, a percentage of errors for the words and a
percentage of errors for the nonwords, The nonlinear system that
needs to be solved then consists of 4 equations. The simulations
presented below focus on this setting.
Numerical methods to solve such nonlinear systems of

equations are discussed in Press, Flannery, Teukolsky, and
Vetterling (1993). These generally involve defining a nonnegative
potential function (e.g., a least-squares function), whose gradient
involves the system in a way that the gradient is zero if and only
if the system is solved. The system is then solved by finding the
minimumof the potential function using an optimization scheme.2
The next section demonstrates the ability of this procedure to
produce valid parameter estimates in a number of numerical
simulations.

4.4. Simulations

The simulations follow essentially the same setup as those
in Wagenmakers et al. (2007). Overall the simulations show that
when the starting point is not too close to the boundary separation
parameter, the EZ2 estimators perform well when the number of
trials per condition exceeds about 250, or when the number of
trials per condition exceeds 125 and drift rates are not very high.
Overall it appears to bemore difficult to estimate parameterswhen
the drift rates are very high andwhen the proportions of errors are
very low.

4.4.1. Setup
We simulated RTs under conditions like those in a lexical

decision task. The values of the drift rates, boundary separation and
starting point, are listed in Table 1. Drift rates ν1 and ν2 (for ‘word’
and ‘nonword’ conditions) were chosen such that ν1 was always
strictly larger than ν2. The table also shows the theoretical mean
RTs, the percentages of errors, and the RT variances corresponding
to these parameter values. For each combination of parameters, we
simulated 100 data sets, with N = 50, 250, or 1000 trials, of which
the word- and nonword conditions each received N/2 trials.
A problem with using only few simulated trials is the possible

occurrence of perfect performance (absence of errors). Because
the method only works if the proportion of errors is nonzero, we
discarded data sets without error responses. The results below are
therefore conditioned on the presence of error responses. Perfect
performance can be dealt with as suggested inWagenmakers et al.
(2007). Here we did not do so, in order to be able to separate pure
estimator bias from bias due to bias in the estimated moments.
We found the EZ estimates of ν, a, and Ter, together with z equal

to half the estimate of a, to be effective starting values.Weobtained
two sets of EZ estimates – one based on the statistics from one
condition and one based on the statistics from the other – and used
both in a separate round of fitting. We retained those estimates
where the gradient of the potential had the smallest L2-norm.
We have explored several standard optimization algorithms,

including the Nelder–Mead (or ‘simplex’) algorithm, the Hooke
and Jeeves algorithm, and quasi-Newton and Newton–Raphson
algorithms (Gill, Wright, & Murray, 1986; Hooke & Jeeves, 1961;

2 Note that although this may seem very similar to a least squares fit, it is in fact
not—the difference being that in order to solve the system, the minimum of the
objective function must be identically zero.
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Table 1
Parameter values as used in the simulations, and corresponding moments of the
correct responses.

Parameters Moments

ν z a % Error MRT VRT

0.1 0.03 0.08 43.5 424.9 15827.4
0.2 0.03 0.08 27.1 404.7 11514.4
0.3 0.03 0.08 15.8 381.5 7499.4
0.1 0.05 0.08 20.8 372.8 13531.0
0.2 0.05 0.08 9.9 355.7 9532.4
0.3 0.05 0.08 4.2 337.0 5915.4
0.1 0.07 0.08 5.6 296.5 6437.5
0.2 0.07 0.08 2.1 288.7 4239.8
0.3 0.07 0.08 0.7 280.7 2420.1
0.1 0.03 0.11 49.3 594.3 52057.5
0.2 0.03 0.11 29.3 534.4 30808.8
0.3 0.03 0.11 16.4 478.1 16583.4
0.1 0.05 0.11 28.9 542.2 49761.1
0.2 0.05 0.11 12.5 485.4 28826.9
0.3 0.05 0.11 4.8 433.5 14999.4
0.1 0.07 0.11 15.3 465.9 42667.6
0.2 0.07 0.11 4.9 418.3 23534.2
0.3 0.07 0.11 1.4 377.2 11504.1
0.1 0.03 0.14 52.0 801.5 121424.9
0.2 0.03 0.14 29.9 675.9 58264.2
0.3 0.03 0.14 16.5 577.3 27069.2
0.1 0.05 0.14 32.7 749.3 119128.5
0.2 0.05 0.14 13.2 626.9 56282.2
0.3 0.05 0.14 5.0 532.7 25485.3
0.1 0.07 0.14 19.8 673.1 112035.0
0.2 0.07 0.14 5.7 559.9 50989.6
0.3 0.07 0.14 1.5 476.4 21989.9

Note.Units of MRT and VRT in this table were rescaled and rounded tomilliseconds.
Ter = 250 ms in all cases.

Kaupe, 1963; Press et al., 1993; Seber&Wild, 1989). The algorithms
did not differ very much, although the Hooke and Jeeves algorithm
seemed to be slightly more accurate than the simplex algorithm,
and is far simpler to implement than the other algorithms.
Although possible (e.g., Gill et al. (1986)), we did not put any

effort into imposing any of the natural constraints on parameters
(e.g., 0 < z < a). We never encountered estimates that violated
these constraints,3 thus keeping the method simple.

4.4.2. Results
Figs. 2–5 display the EZ2 results for the parameters a, z, ν1

and ν2, respectively in box-and-whisker plots. These estimates
were based on the correct responses only. The results based on
the pooled correct and error responses were very similar, and
the conclusions that can be drawn from these simulations are
essentially the same. We therefore limit the discussion to the
results displayed in Figs. 2–5. We discuss the performance of the
parameter estimators in terms of bias below.
Consecutive columns in the three-by-three panel array in Fig. 2

indicate that the boundary separation a is well recovered. The
performance deteriorates, however, as the drift rate increases,
unless the number of trials is increased. The distance between z
and a also influences the recovery of a, but the adverse effects of
the distance on the estimate disappear when the number of trials
is high.
Similar conclusions hold for the starting point z. Higher drift

rates also worsen the recovery of z, as do smaller distances

3 This should not be surprising because both the variance formulas as well as
the error proportion formula become negative when z is outside of (0, a), and the
observed values of course never are.
between starting point and boundary separation. The latter is
especially noticeable from the top row of panels in Fig. 3. The
distribution of z estimates is also more symmetrical and narrower
as z is more equidistant from the boundaries.
The recovery of the drift rates is also affected by the values of the

drift rates themselves (compare middle row panels in Figs. 4 and
5), as well as by the distance of starting point from the boundaries
(see bottom row panels of Figs. 4 and 5). However as trial numbers
increase, the bias quickly vanishes in all cases.
In conclusion, the parameter recovery performance of these

method-of-moment estimators seems satisfactory, provided num-
bers of trials are sufficiently large when drift rates are large or the
decision bias is strong. The key factor in the performance of this
estimator seems to be the proportion of errors: the fewer the er-
rors, the poorer the recovery. Incidentally, Ratcliff and Tuerlinckx
(2002) draw the same conclusion for the chi-square, WLS, and ML
methods. Bearing these results in mind, we apply this method to
data from an actual experiment in the next section.

4.5. Application to lexical decision data

For illustrative purposes, we apply the EZ2 method to empiri-
cal data. The complete task is described in Wagenmakers, Ratcliff,
Gomez, and McKoon (2008); here we only summarize the rele-
vant features. The RT data were collected in 19 university students,
who participated in a lexical decision task with 75% nonwords and
25% words. Word frequency was varied from ‘very low’ to ‘low’
to ‘high’. The preponderance of nonwords presumably biases the
starting point towards the nonword boundary, whereas the word
frequency should affect drift rate for words but not for nonwords—
that is, higher frequency words are presumablymore strongly rep-
resented in memory, and hence their drift rate should be higher.
The nonwords consisted of pseudo-words that were generated by
changing the vowels of existing high frequency, low frequency, and
very low frequency words. Because ‘very low’, ‘low’, and ‘high’ fre-
quency words were randomly intermixed, the bias should not be
affected by word frequency, and neither should boundary separa-
tion andnonworddrift rate. Twoof the participants showedperfect
performance in one of the conditions. Although this can be dealt
with using the method suggested in Wagenmakers et al. (2008),
we discarded these two cases from the present, illustrative analy-
sis. Variances of correct responses and percentages of errors of 17
participants were fitted individually to a model in which the lower
boundary and upper boundary corresponded to a word response
and a nonword response, respectively. The word and nonword re-
sponses from different word frequencies were fitted separately, so
that for each word frequency condition, we obtained a boundary
separation (a), a starting point (z), a drift rate for words (ν1) and a
drift rate for nonwords (ν0). Themeans of the parameter estimates
across participants are given in Table 2, along with their standard
errors in parentheses. A Hotelling’s T 2 test revealed significant dif-
ferences in parameter vectors for the different word frequencies
(F(8, 9) = 5.144, p = .0122). Post hoc analysis revealed that
these could only be attributed to differences between very low and
high frequency words (F(4, 13) = 12.51, p = .0008), to differ-
ences between low and high frequency words (F(4, 13) = 7.509,
p = .0023), but not between very low and low frequency words
(F(4, 13) = .404, p = .316). Subsequent t-tests revealed signifi-
cant differences only for the word drift rates (ν1) between low and
high word frequencies (t(16) = 3.259, p = .005) and between
very low and high word frequencies (t(16) = 5.731, p = .00003).
Note that these results are consistent with our expectations,

except perhaps for the lack of the anticipated difference between
the word drift rates in the very low word frequency and the low
frequency conditions. The latter however may be due to a lack of
statistical power. Note furthermore that the drift rate for nonwords
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Fig. 2. Box-and-whisker plots for the EZ2 estimates of the boundary separation a. The dotted line indicate the true values a = 0.08 (white boxes), a = 0.11 (light gray
boxes), and a = 0.14 (dark gray boxes).
Table 2
EZ2 Parameter estimates for correct responses in the lexical decision task.

Word frequency ν0 ν1 z a

Very low .177 (.018) −.195 (.028) .1013 (.0069) .149 (.0083)
Low .168 (.012) −.252 (.022) .1034 (.0064) .143 (.0073)
High .186 (.013) −.362 (.028) .0939 (.0054) .141 (.0075)

Note. Parameter estimates from fits to variances of correct responses and error percentages in the lexical decision task. Standard errors as determined from across participant
variance are indicated between parentheses. Only the differences in words drift rate ν1 between low frequency words condition and the high frequency words condition,
and between very low frequency words condition and the high frequency words condition are statistically significant.
Note that the drift rates for words are here signed negatively by the convention. In the EZ2-method, word and nonword conditions are conceptualized as separate diffusions
of which the starting point is constraint by the starting point in the word conditions (i.e., if z is the starting point in the nonword condition, a− z is taken to be the starting
point in theword condition). In this conceptualization, the correct alternative is always assigned to the upper boundary and the incorrect alternative is always assigned to the
lower boundary, so that a positive drift rate will always indicate a drift towards the correct decision boundary. Hence both word conditions and nonword conditions will be
associated with a positive drift rate in normal circumstances. In the more conventional conceptualization the boundaries are always associated with response alternatives.
Hence, the drift rates for the alternative assigned to the lower boundary (e.g., words) will be associated with a negative drift rate.



R.P.P.P. Grasman et al. / Journal of Mathematical Psychology 53 (2009) 55–68 63

error and correct responses. The means of the estimates are
tabulated in Table 3. Using RTs variances of pooled error and
correct responses instead of using only correct responses hardly
affects the estimates and their standard errors,5 except for a
slightly lowermean estimated value of ν1 in the very low frequency
words condition (i.e., .188 vs. .195). The statistical analysis of
these estimates led to the same results as above, except that here
an additional marginal difference was detected in ν1 between
low frequency words and very low frequency words. This is
presumably caused by a somewhat more pronounced difference
between the low word frequencies condition and the very low
word frequencies condition.
In Wagenmakers et al. (2008) the chi-square method was used

to fit the full diffusion model to the .1, .3, .5, .7, .9 quantiles
that were averaged across participants. In the fit of the model

5 Correlations between parameter estimates all>.9; for z and a all>.96.
Fig. 3. Box-and-whisker plots for the EZ2 estimates of the parameter z. The dotted line indicate the true values z = 0.03 (white boxes), z = 0.05 (light gray boxes), and
z = 0.07 (dark gray boxes).
is close to the drift rate for very low frequency words.4 Given that
drift rate is indicative of the quality of the memory representation
for the item, this seems quite reasonable theoretically for the
pseudo-words used. In addition, the starting point z is closer to
a, the nonword boundary, which indicates a clear bias towards
nonword responses, as is to be expected from the nonword/word
ratios.
Because we only used correct responses for the parameter

estimation we may have lost information that will enable us
to detect the word drift rate difference between the very low
and low word frequencies conditions. We repeated the analysis
on parameter estimates that were obtained from fitting the
percentages of errors and variances computed over the pooled

4 A pairwise comparison did not detect a significant difference between ν1 and
ν0 for the very low word frequencies whereas it did for the low and high frequency
words.












