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Abstract

This article reviews current methods for evaluating models in the cognitive sciences, including
theoretically based approaches, such as Bayes factors and minimum description length measures; sim-
ulation approaches, including model mimicry evaluations; and practical approaches, such as validation
and generalization measures. This article argues that, although often useful in specific settings, most of
these approaches are limited in their ability to give a general assessment of models. This article argues
that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a
more thorough evaluation of models in the cognitive sciences. This article presents two worked ex-
amples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of
descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent
ways.
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1. Introduction

Models play a central role in cognitive science. They provide the formal bridge between the-
ories and empirical evidence. They make explicit ideas about how cognitive processes operate
and how psychological variables guide those processes. They allow theoretical assumptions
to be tested in the laboratory, and make predictions about how cognition will behave in new
or different circumstances. The central role models play makes their evaluation an important
issue. It is necessary to be able to choose between models and decide whether a model is
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“good.” There is, however, no simple or unitary answer to the question of what makes a model
good. Our view is that good models should help in achieving at least the following five related,
but different, goals:

1. Achieve a basic level of descriptive adequacy: A model should agree with observed data
well enough that something sensible can be said about how a cognitive process behaves.
For example, a model of memory retention that shows a negatively accelerating decrease
in retention over time describes some basic aspects of the data. The model serves to give
a formal expression of important empirical regularities.

2. Provide insight and understanding: A model should help us understand things not di-
rectly evident from looking at the data, thereby leading to further studies and tests. It
should allow us to deepen, refine, and elaborate our understanding of the cognitive pro-
cesses at work. For example, a category learning model may account for data only when
using a particular value of a selective attention parameter. The value of this parameter
has psychological meaning and provides part of an explanation of how category learning
was achieved.

3. Facilitate prediction and generalization: A good model should help make predictions
about what will be observed in the future or generalizations about what would be
observed under altered circumstances.

4. Direct new empirical explorations: A good model should lead us to develop new empir-
ical studies that have the greatest chance of increasing our understanding and adding to
our knowledge.

5. Foster theoretical progress: There is a sense in which the goal of modeling is not to find
answers but to sharpen questions. Modeling forces theoretical ideas to take precise forms
and to encounter empirical evidence head-on. Models help make clear the predictions
of theories and suggest critical tests. To the extent that a model clarifies where theory is
working and where it is failing, it makes a valuable contribution.

In this article, we begin by reviewing current methods for evaluating models in the cognitive
sciences, many of which have been covered in recent special issues and review articles
(e.g., I. J. Myung, Forster, & Browne, 2000; Pitt, Myung, & Zhang, 2002; Wagenmakers
& Waldorp, 2006). These include theoretically based approaches, such as Bayes factors
and minimum description length (MDL) measures; simulation approaches, including model
mimicry evaluations; and practical approaches, such as validation and generalization measures.
We point out that, although often useful in specific settings, most of these approaches are
limited in their ability to give a general assessment of a model. Many of the measures focus on
only one narrow aspect of what makes a model good, and often provide too concise a summary
to guide further model development. We suggest that hierarchical methods—which are rapidly
becoming the approach of choice in scientific and statistical modeling—can provide a more
thorough evaluation of models in the cognitive sciences. Such methods are easily implemented
in a Bayesian framework, and in light of the general advantages of Bayesian inference, we
restrict our attention to hierarchical Bayesian methods. We present two worked examples
to demonstrate how the hierarchical Bayesian approach addresses questions of descriptive
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adequacy, parameter interference, and prediction and generalization in principled and coherent
ways.

2. Current approaches to model evaluation

Throughout the cognitive science literature, even with a restricted focus on quantitative and
statistical goals, a large number of approaches to model selection and evaluation have been
used. It is useful to classify these roughly into three classes: Theoretical approaches develop
formal measures designed to assess models on the basis of some well-justified criterion,
simulation approaches use computational methods to explore the relationship between models
and data, and applied approaches evaluate the ability of models to predict new or different
data.

Each of these approaches potentially offers different and useful information in evaluating
and comparing models. No two approaches, whether within or between these classes, always
agree with each other, but many pairs agree in substantial numbers of cases. Theoretical
approaches have the potential to offer deep and general insights, but are not guaranteed
to give better answers than the other approaches, especially in light of the many differing
goals of model evaluation. In addition, it is not always feasible to apply the best theoretical
approaches, especially for models so complex that it is hard to understand their full range
of behavior. Simulation approaches offer some insight into how and why models perform
differently, and usually scale better to the more complex models. Applied approaches are
almost always possible, but will not necessarily provide any insight into what underlies the
observed success or failure of a model to predict unseen data. Yet applied approaches map
well onto the goal of predicting new data that many researchers have in mind for selecting
models.

2.1. Theoretical approaches

One way of understanding the range of theoretical measures available to cognitive science
is to think in terms of three underlying philosophies (see Grünwald, 2005, p. 13). The Bayesian
philosophy champions the model or model class that is most likely, in the sense of providing
the most robust fit to the data (i.e., fits well at the most parameterizations), given a prior state
of knowledge. The MDL philosophy champions the model that best compresses the data,
in the sense that the length of the description of the model and the data as encoded by the
model is minimal. The prequential philosophy champions the model that best predicts unseen
data.

These philosophies are not necessarily in direct competition, and there are many consis-
tencies, both in terms of conceptual motivation and technical results, in their relationships
to each other. Often, a model that compresses the data the best is the one that fits the data
most robustly, and also predicts unseen data better. Nevertheless, the three philosophies give
theoretical primacy to different aspects of what makes a model good. It should be expected that
the three philosophies will give rise to measures that reach different conclusions for specific
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model evaluation problems. Such differences should be interpreted not in terms of flaws of
the measures, but in terms of the differing goals: robustness, compression, and prediction.

2.1.1. Bayesian methods
Bayesian inference has a clear and compelling foundation in probability theory (Jaynes,

2003; Lee & Wagenmakers, 2005). What makes a statistical inference Bayesian is the way
uncertainty is handled. The Bayesian assumption is that uncertainty is always represented by
probability distributions. This allows probability theory, in the form of Bayes Rule, to provide
an automatic method of inferential updating when useful information, such as empirical
observation, becomes available.

The use of probability theory also allows for “marginalization” in which what is known
about one variable can be conditioned on what is known about every other relevant variable.
Marginalization is the key component of Bayesian Model Selection because it allows the
robustness of the fit between a model and data to be measured, and embodies an automatic
form of Ockham’s razor.

As a simple example, consider the problem of testing whether a coin is fair or biased. The
fair model, Mf , asserts that the rate of observing heads is θ = 1/2. The biased model, Mb,
asserts that the rate could be 0 < θ < 1. If we assume that both heads and tails are observable
outcomes, there is a justification for making the prior assumption that each possible rate θ is
equally likely, therefore using a uniform prior (see Lee & Wagenmakers, 2005). For observed
data D giving k heads out of n tosses, the likelihood functions are as follows:
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for the fair model and
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for the biased model.
The fair model has no parameters, and so its likelihood provides a complete description of

how the model relates to the data. For the biased model, the Bayesian approach averages the
likelihood over all possible values of the parameter θ , as weighted by the prior. This average
is the marginal likelihood p (D | Mb), and provides a measure of how robustly the model—in
all of its possible forms—fits the data. Formally,
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The ratio of marginal likelihoods for the two models is known as the Bayes factor (Kass &
Raftery, 1995), and can also be thought of as the ratio of posterior to prior odds. In this sense,
the Bayes factor measures the evidence data provided for one model over another. The Bayes
factor is widely used for model selection, and is optimal under the assumption of 0–1 loss (i.e.,
that one model is the true data-generating model, and the other model is false). The Bayesian
framework has the potential to define alternative model selection measures, corresponding to
different loss assumptions, that deserve wider exposure and exploration for assessing models
of cognition (see Gelfand, 1996, p. 148).

For our coin example, the Bayes factor is:

p
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=
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)n

1
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, (4)

and therefore, for data giving k = 12 heads out of n = 20 tosses, gives approximately the value
2.52. This means that it is about 21/2 times more likely the coin is fair, rather than biased,
based on the evidence provided by the data. As this example makes clear, a feature of Bayesian
approaches to model selection is that its measures have naturally meaningful interpretations
because they are probability statements and do not require a separate calibration. It is arguable
that none of the other model selection approaches we discuss have this highly desirable
property.

For most cognitive models, however, it is difficult or impossible to produce an analytic
expression for the marginal probabilities, so some sort of simulation or approximation must
be undertaken. Popular Bayesian measures such as the Bayesian (or Schwarz) Information
Criterion (BIC; Schwarz, 1978), the Laplace Approximation (Kass & Raftery, 1995), and the
Geometric Complexity Criterion (I. J. Myung, Balasubramanian, & Pitt, 2000) are asymptotic
analytic approximations to the marginal probabilities. The differences between them derive
from how close an approximation they are to the exact marginal probability and, in particular,
whether they are good enough approximations to be sensitive to the part of model complexity
that arises from the functional form of the interactions between parameters (I. J. Myung &
Pitt, 1997).

Computational methods have recently emerged in cognitive science and in computational
Bayesian statistics (Courville, Daw, & Touretzky, 2006; Lee, 2008) as an alternative approach
to approximating the integrated probability across the parameterized class. There exist vari-
ous computational algorithms, most often developed within the Markov chain Monte Carlo
(MCMC) framework, that are based on drawing samples from the joint posterior distribution
of the parameters of a model. Approximating the desired probability of the model class from
posterior samples is often difficult, but useful techniques are being developed along a number
of different lines (e.g., Carlin & Chib, 1995; Chib, 1995; Raftery, Newton, Satagopan, &
Krivitsky, 2007). A particularly useful approach may be that termed Reversible-Jump MCMC
(Green, 1995). We provide a concrete example of obtaining the Bayes factor using MCMC
methods later, when we discuss hierarchical Bayesian approaches.



R. M. Shiffrin, M. D. Lee, W. Kim, E.-J. Wagenmakers/Cognitive Science 32 (2008) 1253

2.1.2. MDL methods
The MDL approach (see Grünwald, 2007, for a thorough and recent treatment) has its

foundation in information and coding theory, and particularly in the theory of Kolmogorov
or algorithmic complexity. The basic idea is to view models as codes that express expected
regularities, and prefer those codes or models that best compress the observed data. The
key measure for model evaluation under the MDL approach is the code length, or stochastic
complexity, of the data under the model. The minimal code length used is the combined code
length for the model and data described by the model.

Various MDL measures have been developed as approximations to this code length. Ini-
tial two-part code approximations (Rissanen, 1978) were later extended to the Stochastic
Complexity Criterion (SCC; Rissanen, 1987, 1996), also sometimes described as the Fisher
Information Approximation. The most recent MDL measure is the normalized maximum
likelihood (NML; Rissanen, 2001), which is based in a reconceptualization of the original
stochastic complexity measure. NML measures how well a model fits observed data, relative
to how well that model could fit any possible data, and has found application to cognitive
models (I. J. Myung, Navarro, & Pitt, 2006). Formally, the NML is given by the following:

NML = p (D | θ∗ (D))∑
D′ p (D′ | θ∗ (D′))

, (5)

where D denotes the observed data, D′ denotes any possible data, and θ∗ (·) denotes the
maximum likelihood parameter values for a given set of data.

Loosely, it is reasonable to think of two-part code MDL measures as being like the BIC
approximation, which equates the complexity of a model with a count of parameters; the SCC
with the Bayesian Laplacian-style approximations, which are also sensitive to functional form
complexity; and the NML with the Bayesian marginal probability, which are exact.

To make the NML idea concrete, we apply it to our earlier coin example. The possible
observations involve k′ = 0, . . . , n heads out of the 20 tosses. Thus, for the fair model,
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For the biased model, the best fitting (i.e., maximum likelihood) value of the parameter is
θ∗ (D) = k/n for observed data with k heads out of n tosses; therefore,
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Given the observed data k = 12 heads out of n = 20 tosses we considered earlier, the NML
values are approximately 0.12 for the fair model and 0.04 for the biased model; therefore,
the fair model is preferred, as in the Bayesian analysis. It is interesting to note that although
the MDL and Bayesian approaches can give similar answers, their theoretical bases are quite
different. For example, the Bayesian approach relies on the likelihood principle: the idea
that only what has been observed matters, not what could have been observed. The Bayesian
approach, therefore, calculates the probability of the observed data for every parameterized
model in each model class in contention, and then normalizes so the probabilities add to one.
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In contrast, the normalized maximum likelihood approximation to MDL considers only the
model in each parameterized class that has the highest probability of the observed data, and
for each model class normalizes by the sum of these maximum probabilities for every data
set that could have been observed. These approaches appear almost polar opposites, and deep
and non-obvious analysis is needed to understand why they often produce similar results.

2.1.3. Prequential methods
The prequential method (from “sequential prediction”; Dawid, 1984, 1991, 1992; Dawid &

Vovk, 1999; Skouras & Dawid, 1998) is based on the philosophy that the relevant criterion for
model selection is the minimization of prediction error for unseen data. An ideal model—one
that captures only replicable structure and ignores all idiosyncratic noise—has the smallest
prediction errors for future data coming from the same source. The prequential method
estimates the predictive power of a model by using one part of the data to estimate the
parameters the model, and using another part of the data to assess the predictions of the model.
The model with the best predictive performance is preferred. The distinguishing features of
the prequential method are that the size of the data set used for estimation continually grows,
and that the method concerns itself only with one-step-ahead predictions.

For instance, when you want to know which of two weather forecasting systems is more
accurate, the prequential method prescribes that you consider only the forecasts for the next
day. As the days go by and more information becomes available, the forecasting systems are
free to continually update their predictions; their predictive performance, however, is assessed
only for the next-day weather that has not yet been observed. At each point in time, the
relative merit of the weather forecasting systems is given by the difference in the sum of
their prediction errors that have been observed so far (i.e., the Accumulated one–step–ahead
Prediction Errors or APE).

More specifically, assume that we have a data set xn = (x1, x2, . . . , xn), and a model Mj

for which one wants a prequential performance estimate. The calculation then proceeds as
follows (Wagenmakers, Grünwald, & Steyvers, 2006):

1. Based on the first i − 1 observations, calculate a prediction p̂i for the next observa-
tion i.

2. Calculate the prediction error for observation i (e.g., (xi − p̂i)2).
3. Increase i by 1 and repeat Steps 1 and 2 until i = n.
4. Sum all of the one-step-ahead prediction errors calculated in Step 2. This yields the

accumulative prediction error (APE). Thus, for model Mj , the accumulative prediction
error is given by

APE(Mj ) =
n∑
i

d[xi, (p̂i | xi−1)], (8)

where d indicates the specific function that quantifies the discrepancy between what is
observed and what is predicted.

In our coin example, suppose that the successive predictions for n coin tosses xn =
(x1, . . . , xn) are based on the logarithmic loss function − ln p̂i(xi), so that the larger the
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probability that p̂i (determined based on the previous observations xi−1) assigns to the ob-
served outcome xi , the smaller the loss. As in the Bayesian analysis, we assume a uniform
prior distribution. This distribution is used to provide a prediction for the first datum. Under
these conditions, the prequential method will always prefer the same model as the Bayes
factor. To see why this is the case, note that from the definition of conditional probability,
p(xi | xi−1) = p(xi)/p(xi−1), it follows that

p(x1, . . . , xn) = p(xn | xn−1)p(xn−1 | xn−2) . . . p(x2 | x1)p(x1). (9)

This equation shows that the probability of the data may be decomposed as a series of sequen-
tial probabilistic predictions p(xi | xi−1). The APE with logarithmic loss and the Bayesian
predictions satisfy

−lnp(xn | Mj ) =
n∑

i=1

− ln p(xi | xi−1, Mj ). (10)

The Bayes factor prefers the model Mj that minimizes the left-hand side, whereas the prequen-
tial method prefers the model that minimizes the right-hand side; hence, the two procedures
are equivalent (for details, see Wagenmakers et al., 2006, pp. 152–153).

This procedure may appear reasonable, but so do many others. For instance, why not use
“two-step-ahead prediction error,” or why not weight the most recent prediction errors more
than the older prediction errors? The reason is that the prequential method as previously
formulated has strong theoretical ties to both Bayesian methods and the predictive version
of the MDL principle (Rissanen, 1986b). In certain situations (i.e., logarithmic loss and
Bayesian one-step-ahead predictions), the prequential method and Bayesian model selection
are exactly equivalent, and in other situations (e.g., squared error loss and maximum likelihood
predictions) the methods converge as many data are collected (for details, see Wagenmakers et
al., 2006). This theoretical connection provides both a theoretical foundation for the prequential
method and a predictive interpretation of the Bayesian and MDL methods.

Although the prequential method has seen little application in psychological research, its
advantages are readily apparent. The prequential method is a data-driven procedure that at least
partly approximates Bayesian model selection, and yet it does not require the specification of
priors. It lends itself readily to simulation methods, and model complexity is taken into account
easily and automatically through the focus on predictive performance. The only requirement
for the prequential procedure to work is that the models under consideration are able to
generate predictions for the next observation. This means that the general method is very
flexible and can, for instance, also be applied to complex models or architectures of cognition
that may not even have a likelihood function. Finally, prequential model selection is consistent
in the sense that when the set of candidate models contains the true data-generating model, the
prequential model will start to prefer it over the other models as the number of observations
increases. In our opinion, the prequential method and its variants are under-appreciated and
deserve more study.

The prequential method, promising as it is, also has its limitations (Wagenmakers et al.,
2006, pp. 154–155). One problem is that it is not immediately clear how the method should
be applied in case the data do not have a natural ordering. In weather forecasting, data
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arrive sequentially, and there can be no discussion about what observation to predict next. In
most psychological experiments, however, the data may arrive sequentially, but this is often
considered accidental. When the sequential predictions are not made by a Bayesian system,
the ordering of the data can lead to different results, at least for small data sets. One solution
to this problem calculates the final APE as an average of APEs for many random orderings of
the same data set (Kontkanen, Myllymäki, & Tirri, 2001; Rissanen, 1986a).

2.2. Simulation approaches

In many psychological applications, only a handful of candidate models carry substantive
interest. Often, the investigation centers on which one of two competing models is to be
preferred. In such cases, an important question concerns the extent to which the models are
able to mimic each other’s behavior (Navarro, Pitt, & Myung, 2004; Wagenmakers, Ratcliff,
Gomez, & Iverson, 2004).

Suppose, for instance, that a researcher sets out to determine what model of response time
is best: the diffusion model (e.g., Ratcliff, 1978) or the mutual inhibition model (e.g., Usher &
McClelland, 2001). Both models may differ in the number of parameters, and the parameters
of the two models certainly differ in functional form. It may transpire that for a particular data
set, the diffusion model provides a better fit to the data. To what extent is this diagnostic?
Perhaps the diffusion model is a chameleon-like model that is able to fit well not just its own
data, but also data generated by the mutual inhibition model. The mimicry method involves
generating data sets with each of the two model classes and fitting each generated data set
with both models. At the end, one has two distributions of fit differences—one when Model
A generated the data sets and one when Model B generated the data sets. The potential ability
to select the actual generating model, with choice of a suitable choice criterion, is determined
by the separation of the two distributions. The mimicry characteristics are determined by the
placement of each distribution relative to the zero difference of fit.

To be more specific, the following steps are used to produce the desired distributions
(Navarro et al., 2004; Wagenmakers et al., 2004):

1. Generate data from Model A.
2. Fit data from Step 1 with Model A and Model B, and calculate the difference in

goodness-of-fit �GOFA.
3. Generate data from model B.
4. Fit data from Step 3 with Model A and Model B, and calculate the difference in

goodness-of-fit �GOFB .
5. Repeat Steps 1 through 4 n times to yield �GOFA[1, 2, . . . , n] and �GOFB[1, 2, . . . , n].

An important question involves the best way to generate data from the model classes
because one would want to generate data sets with different parameter choices and perhaps
with differences across subjects. One local or data-informed method generates data from the
posterior distribution for the parameters. This method is computationally straightforward, but
from a model selection perspective, it often assigns too much weight to the complex model (cf.
Wagenmakers et al., 2004, Fig. 8). The global or data-uninformed method generates data from
the prior distribution for the parameters (Navarro et al., 2004). The choice of parameters for
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generating data sets is critical to the method, and involves choices of the range and distributions
of parameters within that range for each model class. How to choose these in a way that is fair
to the model classes under comparison is an open question, analogous to questions about the
way in Bayesian methods to choose priors that are fair to the model classes under comparison.
For an example of the use of these methods in practice, applied to model selection for models
in different classes for different tasks, see Cohen, Sanborn, and Shiffrin (2008). Whatever
method is used to generate data sets, one can find the criterion (on the difference-of-fit axis)
that maximizes the choice of the actual generating model. When the data sets are generated
in a way that does match the actual environment, then classifying them with this optimal
criterion will optimize the total number of correct classifications.

In the coin example, model Mf assumes a fair coin, θ = 1
2 , whereas model Mb assumes a

biased coin, 0 < θ < 1. Model Mb will therefore always be able to mimic model Mf perfectly,
whereas model Mf will only be able to mimic Mb for values of θ that are close to 1

2 . To illustrate
the model mimicry method, we applied the data-uninformed parametric bootstrap cross-fitting
method and generated 1,000,000 simulated data sets from both Mf and Mb. Under model Mb,
each data set was generated by first sampling a particular θ from a uniform distribution. Note
that, just as the observed data, each simulated data set contained exactly 20 observations.

The two models were fitted to the 2,000,000 simulated data sets, and the difference in
goodness of fit was quantified by the differences in the log probability that Mf and Mb assign
to the data; that is,

log

(
Pr(k | n = 20, Mb)

Pr(k | n = 20, Mf )

)
.

For instance, for the observed data (i.e., k = 12) we calculate

Pr(k = 12 | n = 20, Mf ) =
(

n

k

)
1

2

n

≈ 0.12

and

Pr(k = 12 | n = 20, Mb) =
(

n

k

)
θ̂ k(1 − θ̂ )n−k ≈ 0.18,

where θ̂ = k/n is the maximum likelihood estimate. The difference between 0.12 and 0.18 is
log( 0.18

0.12 ) ≈ 0.403.
An examination of the discrete distributions of log differences revealed that the observed

difference of approximately 0.403 is more likely to occur under Mf than it is under Mb.
Specifically, the difference of approximately 0.403 is observed with a probability of 0.24
under Mf and 0.10 under Mb. It is tempting to conclude that the data are 2.4 times more likely
under Mf than they are under Mb. Note the quantitative correspondence to the Bayes factor
conclusion that the data are about 21/2 times more likely under the fair coin model than under
the biased coin model.

It is not always the case, however, that the Bayes factor analysis and the model mimicry
analysis produce almost exactly the same answer. For instance, J. I. Myung, Pitt, and Navarro
(2007) showed that adding parameters may substantially increase a model’s complexity (as
indicated by MDL or Bayes factor methods) but does not necessarily increase a model’s
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ability to mimic a competing model. The advantages of the model mimicry method are clear:
It is easy to apply to complex models, and it yields an intuitive measure for the capacity
of models to mimic each other. It also can be used to optimize the goal of the selection of
the actual generating model, although it could be argued that this goal does not penalize
complexity sufficiently. Also, the method can be used to determine how many experimental
trials are necessary to distinguish two models. The model mimicry method is still relatively
unexplored. Future work will have to study more carefully the extent to which the mimicry
method is related to other model selection procedures.

2.3. Practical validation approaches

The philosophy that underlies validation methods is the same as the one that underlies
the prequential method: The preferred model class is the one whose (weighted) parameter-
ized models best predict unseen data from the same source. In usual approaches, the best
parameterized model in the class is used for prediction, but it is also possible to predict by
weighting the predictions of all parameterized models in the class. In these approaches, the
models are fitted to one part of the data—the “calibration” or training set—and their predictive
performance is assessed for the remaining part of the data—the “validation” or test set.

Although validation methods divide the observed data in a training set and a test set, there
are many ways in which this can be done. This is illustrated by a summary of the most popular
methods:1

1. Split-sample or hold-out method: This method is often used to assess predictive perfor-
mance of neural networks. In the split-sample method, only one part of the data is ever
used for fitting (i.e., the training set and the test set do not change roles), and this leads
to results with a relatively high variance.

2. Split-half cross-validation: In split-half cross-validation, the first half of the data forms
the training set, and the second half of the data forms the test set. After the prediction
error for the test set has been assessed, the same procedure is repeated, but now the
second half of the data forms the training, set, and the first half of the data forms the test
set (i.e., training and test set “cross”). The overall prediction error is the average of the
prediction error on the two test sets. Note that each time the model is fitted to only 50%
of the data—a procedure that yields relatively large prediction errors.

3. Leave-one-out cross-validation: In leave-one-out cross-validation, a data set of n ob-
servations is repeatedly split into a training set of size n − 1 and a test set of size 1.
The overall prediction error is given by the average prediction error for the n test sets
(Browne, 2000; Stone, 1974). The computational advantage of this procedure is that it
only requires a sequence of n model predictions.

4. K-fold cross-validation: In K-fold cross-validation, the data are split in K blocks, and
one of those blocks is successively selected to be the test set (i.e., the training set is
always K − 1 blocks large). The overall prediction error is the average of the prediction
error on the K test sets. The problem with this method is that different choices of K

may lead to different results.
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5. Delete-d cross-validation: This method is the same as K-fold cross-validation, except
that the test blocks consist of every subset of d observations from the data. As with
K-fold cross-validation, different choices of d may lead to different results.

6. Bootstrap model selection: The bootstrap method (e.g., Efron & Tibshirani, 1993) is
usually applied to obtain standard errors for parameter estimates. The bootstrap pro-
cedure works by resampling the observed data (with replacement) in order to use the
variability in the observed data as a plug-in estimate for the variability in the population.
The bootstrap method can, however, also be applied to smooth the results obtained by
cross-validation. In particular, the so-called .632+ bootstrap procedure has been shown
to improve on cross-validation in a number of problems (Efron & Tibshirani, 1997).
Because the bootstrap resamples are supported by approximately 63.2% of the original
sample points, results from the .632+ bootstrap method generally correspond closely to
those from split-half cross-validation.

Model selection by validation has a number of clear advantages. Validation methods are
data-driven, and replace complicated mathematical analysis by raw computing power (Efron
& Gong, 1983). Validation methods are relatively easy to implement, and they can be applied
to complicated models without much thought. Despite the intuitive and practical appeal
of validation, the many variants of the method show there are open questions about the
best implementation. In particular, the balance point between training data and test data
remains an open question. Relatively large training sets lead to overfitting, but relatively
small training sets lead to underfitting. Further, as the number of observations increases,
most cross-validation methods will start to prefer models that are overly complex (i.e., the
methods are not consistent; for a discussion, see Shao, 1993; Stone, 1977). These problems
of choice and consistency go back to the fact that cross-validation does not make explicit
its underlying assumptions. These considerations negate some of the appeal of the validation
methods.

We illustrate both leave-one-out cross-validation and split-half validation by revisiting the
example of a coin that comes up heads 12 out of 20 tosses. For the leave-one-out method, the
biased coin model Mb is fit to training sets of 19 observations, and the maximum likelihood
estimate θ̂ is then used to determine the fit to the remaining data point (i.e., the test set). The
fair coin model Mf does not learn from the training data, as it always predicts that heads will
come up with probability θ = 1

2 . The difference in goodness of fit between the models for the
data from the test set, Dv, is calculated by the ratio of the probabilities that the models assign
to the data: R = Pr(Dv | θ̂ )/P r(Dv | θ = 1

2 ). For the leave-one-out method, this procedure
only needs to be repeated 20 times. Somewhat surprisingly, the leave-one-out method prefers
the biased coin model in 12 out of the 20 cases. The average value of R is 1, indicating no
preference for one or the other model.

For the split-half validation method, the data are divided in 10 observations that form the
training set and 10 observations that form the test set. This procedure was repeated 10,000
times for random permutations of the data. The assessment of the ratio of probabilities R

proceeds in the same way as it did for the leave-one-out model. In 34% of cases, the split-
half method preferred the biased coin model Hb, in 42% of cases it preferred the fair coin
model Hf , and in 24% of cases their was an exact tie (a tie occurs when the biased coin
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model has θ̂ = 1
2 ). The average value of R is about 0.80, indicating a preference for the

fair coin model. In sum, the results show that leave-one-out cross-validation has a slight
preference for the biased coin model, whereas the split-half procedure prefers the fair coin
model.

When carrying out simulations, it is possible to explore predictive validation as a model
selection criterion in a way that eliminates many of the problems that arise in practice because
one knows the “true” model and its generating parameter values. Thus, for a given data set
one can estimate parameters for the models in contention, and then determine how well those
estimated parameters predict the (infinite) data distributions produced by the true model with
its true generating parameters. The model that on the average does the best job of predicting
the true distribution of future data is to be preferred. In one sense, this simulation method
can be used to compare and contrast different model selection methods. For an example, see
Cohen, Sanborn, and Shiffrin (2008).

2.3.1. The generalization criterion method
The goal of the generalization criterion method (Busemeyer & Wang, 2000) is to quantify

model adequacy by assessing predictive performance. As in cross-validation, the observed
data are divided in two sets: a calibration or training set to estimate the model parameters, and
a validation or test set to assess predictive performance. The crucial difference with cross-
validation is that in the generalization criterion method, the training set and the test set do
not overlap in terms of experimental design. For instance, Ahn, Busemeyer, Wagenmakers,
and Stout (2008) compared several models of reinforcement learning by fitting them to one
experiment (e.g., the Iowa gambling task; Bechara, Damasio, Damasio, & Anderson, 1994)
and evaluating them on a different experiment (e.g., the Soochow gambling task; Chiu et al.,
2005).

Thus, in the generalization criterion method, parameters are fit to different conditions than
those that are used to evaluate predictive performance. This way, the model comparisons “are
based on a priori predictions concerning new experimental conditions. Essentially, this tests
the models ability to accurately interpolate and extrapolate, which is one of the major goals of
a general scientific theory” (Busemeyer & Wang, 2000, p. 179). In contrast to cross-validation,
the generalization criterion method does not necessarily favor complex models over simple
models when the sample size grows large.

3. Worked hierarchical Bayesian examples

All of the approaches to model evaluation we have reviewed have important limitations in
their ability to address the basic goals of modeling—achieving descriptive adequacy, enhancing
explanation through inference about parameters, making predictions and generalizations, and
furthering theoretical development—that we identified at the outset. A theoretical Bayes
factor, MDL or predictive measure, or a validation or generalization test result provide useful
information about which of a number of competing models has better performance. These
measures will usually give some indication of likely parameter values, and give a basis for
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inferring which model will predict future data better. However, they do not give a full account
of how and why the models succeed and fail to various degrees, and provide little direct
information to drive subsequent theorizing.

3.1. Hierarchical methods

We believe hierarchical methods, in general, and hierarchical Bayesian methods, in partic-
ular, represent an approach to model development and evaluation in the cognitive sciences that
address many of these concerns. Hierarchical Bayesian methods are standard and powerful
ways of analyzing models and drawing inferences about parameters from data, and are widely
used in statistics, machine learning, and throughout the empirical sciences. The hierarchical
Bayesian approach employs the basic machinery of Bayesian statistical inference, with all
the advantages it entails (e.g., Jaynes, 2003; Sivia, 1996), but is designed to work with richly
structured hierarchical models. Introductions to hierarchical Bayesian methods can be gained
from textbook accounts in statistics and machine learning (e.g., Gelman, Carlin, Stern, & Ru-
bin, 2004; MacKay, 2003) or from recent expositions aimed at psychologists (e.g., Griffiths,
Kemp, & Tenenbaum, 2008; Lee, 2008). We do not, of course, claim this approach is a final
solution or the only sensible approach. However, it has a number of important and useful fea-
tures, including the ability to check descriptive adequacy, allow inferences about parameters,
make predictions and generalizations, compare models, and suggest modeling extensions and
refinements that we hope to make clear.

We emphasize that hierarchical models should not be confused with models having a tree
structure, such as a neural net with a hidden layer. For present purposes, we may define
hierarchical models as models in which some parameters are partly determined (e.g., chosen
from distributions defined by) other parameters. The determining parameters are typically
termed hyperparameters. As a concrete example, consider modeling data from several subjects.
Each subject is assumed to produce data according to the same class of model, but with
different parameter values. In a hierarchical model, one might assume that the parameters
for each subject are chosen from a normal distribution with mean and variance parameters,
and the mean and variance would be the hyperparameters. As usual, one would determine the
likelihood of the observed data for all subjects for each combination of the two hyperparameters
and each choice of individual parameters. In this example, we see the usual tension between
fitting each subject as well as possible (optimal choice of individual parameters) and fitting
the group as a whole (by choosing a small variance for the Gaussian hyperparameter). This
tension results in a movement of the individual parameters toward the group mean, a desirable
characteristic given that we do not desire to overfit the data, and fit the noise in each individual’s
data.

3.2. Our two examples

Our examples present generative models for a cognitive task. Such models describe how
the theory, with its probabilities and parameters, produce the observed data. For a given model
class, and a given set of parameters, the observed data is produced with a specifiable and
derivable probability. Of course, some parameters give rise to higher probabilities than others.
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If our model is “heads occur with probability θ” and we observe 20 heads in 25 coin flips, a
θ of 0.8 (say) gives rise to a high probability of the observed outcome, and a θ of 0.2 (say)
gives rise to a low probability of the outcome. The general Bayesian approach is to convert
these differing probabilities into degrees of plausibility or belief for the θ values, based on
both the probabilities assigned to the observed data by the different θ values, and also their
prior probabilities.

It is becoming common to represent probabilistic generative models as graphical mod-
els (for introductions, see Griffiths et al., 2008; Jordan, 2004; Lee, 2008). We believe
these conventions are quite useful, and deserve to be seen and understood by mem-
bers of our field. Hence, we present our models using these descriptive formalisms, and
try to aid understanding by showing how the example models are represented in this
format.

4. Example 1: Memory retention

Finding a lawful relationship between memory retention and time is about the oldest
cognitive modeling question, going back to Ebbinghaus in the 1880s. The usual experiment
involves giving people (or animals) many items of information on a list, and then testing their
ability to remember items from the list after different periods of time have elapsed. Various
mathematical functions, usually with psychological interpretations, have been proposed as
describing the relation between time and the level of retention. These include models like
exponential decay, power, and hyperbolic functions (Rubin, Hinton, & Wenzel, 1999; Rubin
& Wenzel, 1996).

Our case study relies on a simplified version of the exponential decay model. The model
assumes that the probability an item will be remembered after a period of time t has elapsed
is θt = exp (−αt) + β, with the restriction 0 < θt < 1. The α parameter corresponds to the
rate of decay of information. The β parameter corresponds to a baseline level of remembering
that is assumed to remain even after very long time periods. This model may or may not be
regarded as a serious theoretical contender in the memory retention modeling literature, but is
useful for simulation and illustrative purposes. Our analyses are based on fictitious data from
a potential memory retention study.

Our fictitious data are given in Table 1, and relate to 4 participants tested on 18 items at
10 time intervals: 1, 2, 4, 7, 12, 21, 35, 59, 99, and 200 sec. The number of items tested and
the first 9 time intervals are those used by Rubin et al. (1999) in an attempt to consider data
that realistically could be measured in a psychological experiment. Each datum in Table 1
simply counts the number of correct memory recalls for each participant at each time interval.
Included in Table 1 are missing data, shown by dashes, so that we can test the prediction and
generalization properties of models. All of the participants have missing data for the final time
period of 200 sec, so we can test the ability of the model to generalize to new measurements.
For Participant 4, there are no data at all, so we can test the ability of models to generalize to
new participants.
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Table 1
Fictitious memory retention data, giving the number out of 18 items correctly recalled for three
participants over nine time intervals and including an extra retention interval of 200 sec and
an extra participant as missing data

Time Interval In Seconds

Participant 1 2 4 7 12 21 35 59 99 200

1 18 18 16 13 9 6 4 4 4 —
2 17 13 9 6 4 4 4 4 4 —
3 14 10 6 4 4 4 4 4 4 —
4 — — — — — — — — — —

4.1. No individual differences

4.1.1. Graphical model
The graphical model for our first attempt to account for the data is shown in Fig. 1. In

the graphical model, nodes represent variables of interest, and the graph structure is used to
indicate dependencies between the variables, with children depending on their parents. We use
the conventions of representing continuous variables with circular nodes and discrete variables
with square nodes, and unobserved variables without shading and observed variables with
shading. For unobserved variables, we distinguish between stochastic variables with single
borders and deterministic variables with double borders. We also use plate notation, enclosing
with square boundaries subsets of the graph that have independent replications in the model.

The model in Fig. 1 assumes that every participant has the same retention curve, and so there
is one true value for the α and β parameters. The outer plate with j = 1, . . . , T corresponds
to the T = 10 different time periods, whose values are given by the observed tj variable.
Together with the α and β parameters, these time periods define the probability and item to

Fig. 1. Graphical model for the exponential decay model of memory retention, assuming no individual differences.
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be remembered. The probability of remembering for the j th time period is the deterministic
θj node.

The inner plate with i = 1, . . . , N corresponds to the N = 4 participants. Each has the
same probability of recall at any given time period, but their experimental data, given by the
success counts kij and (potentially) the number of trials nij , vary, and so are inside the plate.
For the data in Table 1, the kij data are the counts of remembered items and nij = 18 because
18 items were presented for every participant at every time interval. The success counts are
binomially distributed according to the success rate and number of trials.

4.1.2. Inference via posterior sampling
The graphical model in Fig. 1 defines a complete probabilistic relation between the model

parameters and the observed data. The graphical model is a generative one, specifying how an
α rate of decay rate and a β level of permanent retention combine to produce observed retention
performance. Once the data in Table 1 are observed, each set of parameter values assigns a
probability to that data set, and Bayesian inference allows us to reverse the generative process
and assign probabilities to the various parameter sets. The posterior probability distribution
represents this information, specifying the relative probability of each possible combination
of α and β being the ones that generated the data.

Modern Bayesian inference approximates the posterior distribution by drawing samples
using computational methods. Throughout this case study, we implement the graphical mod-
els using WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), which uses a range of
MCMC computational methods including adaptive rejection sampling, slice sampling, and
Metropolis–Hastings (e.g., see Chen, Shao, & Ibrahim, 2000; Gilks, Richardson, & Spiegel-
halter, 1996; MacKay, 2003) to perform posterior sampling. The basic idea is that, over a large
number of samples, the relative frequency of a particular combination of parameter values
appearing corresponds to the relative probability of those values in the posterior distribution.
This correspondence allows the information that is conceptually in the exact joint posterior
distribution to be accessed approximately by simple computations across the posterior sam-
ples. For example, a histogram of the sampled values of a variable approximates its marginal
posterior distribution, and the arithmetic average over these values approximates its expected
posterior value.

4.1.3. Results
We evaluated the retention model in Fig. 1 using the data in Table 1, by drawing 105 posterior
samples after a “burn-in” period (i.e., a set of samples that are not recorded, so that the
sampling algorithms can adapt) of 103 samples. The joint posterior distribution over α and β

is shown in the main panel of Fig. 2, as a two-dimensional scatterplot. Each of the 50 points
in the scatterplot corresponds to a posterior sample selected at random from the 105 available.
The marginal distributions of both α and β are shown below and to the right, and are based
on all 105 samples. The marginals show the distribution of each parameter, conditioned on the
data, considered independently from (i.e., averaged across) the other parameter.

It is clear from Fig. 2 that the joint posterior carries more information than the two marginal
distributions. If the joint posterior were independent, it would be just the product of the two
marginals and would carry no extra information. However, the joint posterior shows a mild
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Fig. 2. The joint posterior over the decay and permanent retention parameters α and β for the model that assumes
no individual differences.

relationship, with larger values of α generally corresponding to larger values of β. This can
be interpreted psychologically as meaning the relatively higher baselines are needed to model
the data if relatively greater rates of decay are used.

Fig. 3 shows the posterior predictive distribution over the number of successful retentions
at each time interval. The posterior predictive is the prediction about observed data for each
possible combination of parameter values under the model, weighted according to the posterior
probability of each combination (as represented in Fig. 2). For each participant, at each interval,
the squares show the posterior mass given to each possible number of items recalled. These
correspond to the models predictions about observed behavior in the retention experiment,
based on what the model has learned from the data. Also shown, by the black squares and
connecting lines, are the actual observed data for each participant, where available.

It is important to understand that the predictions shown are not generated for each time lag
independently. Rather, for each sampled posterior parameter value we generate predictions
for all time points, and this procedure is repeated to produce the observed predictions. This
is the same generative procedure used to determine the likelihood of the observed data in the
process of determining the posterior for the model parameters.

The obvious feature of Fig. 3 is that the current model does not meet a basic requirement
of descriptive adequacy. For both Participants 1 and 3, the model gives little posterior prob-
ability to the observed data at many time periods. It predicts a steeper rate of decay than
shown by the data of Participant 1, and a shallower rate of decay than shown by the data of
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Fig. 3. The posterior predictive for the model that assumes no individual differences against data from the four
participants.

Participant 3. Evaluating the model using the posterior predictive analysis, we conclude the
assumption that there are no individual differences is inappropriate, and needs to be relaxed
in subsequent model development. It is important to understand that this conclusion negates
the usefulness of the posterior distribution over parameters, as shown in Fig. 2. This posterior
distribution is conditioned on the assumption that the model is appropriate, and is not relevant
when our conclusion is that the model is fundamentally deficient.

4.2. Full individual differences

A revised graphical model that does accommodate individual differences is shown in
Fig. 4. The change from the previous model is that every participant now has their own αi

and βi parameters, and that the probability of retention for an item θij now changes for both
participants and retention intervals.

Once again, we evaluated the model by drawing 105 posterior samples after a burn-in period
of 103 samples. The joint posterior distributions for each participant are shown in the main
panel of Fig. 5. Each point on the scatterplot corresponds to a posterior sample, with different
markers representing different participants. The first, second, third, and fourth participants use
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Fig. 4. Graphical model for the exponential decay model of memory retention, assuming full individual differences.

“+,” “�,” “x,” and “o” markers, respectively. The marginal distributions are shown below and
to the right and use different line styles to represent the participants.

Fig. 6 shows the same analysis of the posterior predictive distribution over the number
of successful retentions at each time interval for each participant. It is clear that allowing

Fig. 5. The joint posterior of all four participants over the decay and permanent retention parameters α and β, for
the model that assumes full individual differences.
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Fig. 6. The posterior predictive for the model that assumes full individual differences, against data from the four
participants.

for individual differences lets the model achieve a basic level of descriptive adequacy for
Participants 1 and 3. The posteriors in Fig. 5 show that different values for the α decay
parameter are used for Participants 1, 2, and 3, corresponding to our intuitions from the earlier
analysis.

The weakness in this model is evident in its predictions for Participant 4. Because each
participant is assumed to have decay and permanent retention parameters that are different,
the only information the model has about the new participant are the priors for the α and
β parameters. The relations between parameters for participants that are visually evident in
Fig. 5 are not formally captured by the model. This means, as shown in Fig. 5, the posteriors
for Participant 4 are just the priors, and so the posterior predictive does not have any useful
structure. In this way, this model fails a basic test of generalizability because it does not make
sensible predictions for the behavior of future participants.

Intuitively, one might want to predict that Participant 4, will be likely to have model
parameters represented by some sort of average of Participants 1 to 3. Carrying this intuition a
bit further, one might also want Participants 1 to 3 to have their highest likelihood parameters
closer to their group mean than is the case when choosing individual parameters independently.
These intuitions are captured formally in the hierarchical model we turn to next.
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4.3. Structured individual differences

The relation between the parameters of structures is naturally addressed in a hierarchical
model, which is able to represent knowledge at different levels of abstraction in a cognitive
model. Just as the data have been assumed to be generated by the latent decay and perma-
nent retention parameters for individual participants, we now assume that those parameters
themselves are generated by more abstract latent parameters that describe group distributions
across participants.

The specific graphical model we used to implement this idea is in Fig. 7. The key change
is that now we are modeling the variation in the different αi and βi parameters for each
participant by assuming they have a Gaussian distribution across participants. This means
that the αi and βi parameters are now sampled from over-arching Gaussian distributions,
themselves with unknown parameters in the form of means µα and µβ and precisions λα

and λβ .
Because they are now sampled, the αi memory decay and βi permanent retention parameters

no longer have priors explicitly specified, but inherit them from the priors on the means and
precisions of the Gaussian distributions. It is important to understand this means inferences
made for one participant influence predictions made for another. Because the means and
precisions of the group-level distributions are common to all participants, what is learned
about them from one participant affects what is known about another. It is in this way the
hierarchical model formally represents the relations between participants.

Once again, we evaluated the model by drawing 105 posterior samples after a burn-in
period of 103 samples. The joint and marginal posterior distributions for this model are

Fig. 7. Graphical model for the exponential decay model of memory retention, assuming structured individual
differences.
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Fig. 8. The joint posterior of all four participants over the decay and permanent retention parameters α and β, for
the model that assumes full individual differences.

shown in Fig. 8 using the same markers and lines as before. For Participants 1, 2, and
3, these distributions are extremely similar to those found using the full individual differ-
ences model. The important difference is for Participant 4, who now has sensible poste-
rior distributions for both parameters. For the decay parameter α, there is still consider-
able uncertainty, consistent with the range of values seen for the first three participants; but
for the permanent retention parameter β, Participant 4 now has a much more constrained
posterior.

The posterior predictive distributions for each subject under the hierarchical model are
shown in Fig. 9. The predictions remain useful for the first three participants, and are
now also appropriate for Participant 4. This effective prediction for a participant from
whom no data have yet been collected arises directly from the nature of the hierarchical
model. Based on the data from Participants 1, 2, and 3, inferences are made about the
means and precisions of the group distributions for the two parameters of the retention
model. The new Participant 4 has values sampled from the Gaussians with these param-
eters, producing the sensible distributions in Fig. 8 that lead to the sensible predictions
in Fig. 9.

4.4. Comparing models

At this point, we have developed a model that seems to describe adequately the observed
retention data, makes sensible predictions about a future time interval for which no data
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Fig. 9. The posterior predictive for the model that assumes structured individual differences, against data from the
four participants.

have been collected, and generalizes reasonably to a new participant for whom no data have
been collected. A useful question to ask is whether the same properties could be achieved
with a simpler version of the model. Visual examination of the marginal distribution of the
permanent retention parameter β for each participant in Figs. 5 and 8 suggests that there
might not be individual differences for this aspect of retention. This observation could also be
supported by examination of the marginal posterior for the precision λβ , which we have not
shown.

The obvious possibility for a simpler model, then, is one that assumes a single β parameter
for all participants, but retains the full hierarchical account for the α decay parameter. It is
straightforward to formulate the corresponding graphical model, and its parameter estimation
and prediction properties are indeed extremely similar to the hierarchical model in Fig. 7. Our
analysis here seeks to evaluate formally the simpler model against the more complicated one
from which it was developed.

To do the evaluation, we use the graphical model in Fig. 10 as a means of calculating the
Bayes factor. The graphical model represents the full hierarchical model on the left as Model
A; and the simplified version with the single β parameter on the right as Model B. These two
models independently generate their predicted retention rates θA

ij and θB
ij for each participant
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Fig. 10. Graphical model for comparing a full hierarchical model of retention (Model A on the left) to a simpler
version that assumes no individual differences in the β parameter (Model B on the right) using a latent model
indicator variable z to move between the models.

at each time interval. Which of these is used to model the observed data is determined by the
latent binary variable z. When z = 0, the retention rate of the simpler model is used; but when
z = 1, the rate of the full model is used.

The posterior sampling of z, counting the proportion of times it is 0 and 1, then amounts to
an evaluation of the relative usefulness of each model. By setting a Bernoulli (1/2) prior on z,
its posterior mean z̄ estimates the Bayes factor as z̄/(1 − z̄).2

We evaluated the Bayes factor using the graphical model in Fig. 10, and drawing 105

posterior samples after a burn-in period of 103 samples for four independent chains (i.e.,
separate runs of the sampling algorithm, with two initialized with z = 0 and the other two
initialized with z = 1). We observed that the four chains converged to give the mean z̄ = 0.998,
corresponding to a Bayes factor of about 900 in favor of the simpler model.

As mentioned earlier, because probabilities and odds lie on a meaningful scale calibrated by
betting, this Bayes factor can be interpreted in the context of the research question it addresses.
Our conclusion would be that there is strong evidence that the permanent retention level does
not differ across participants, and the simpler model is the better one.

5. Example 2: The SIMPLE model

In this example, we move beyond toy models and fabricated data, and consider a recently
proposed model of memory and seminal data. Brown, Neath, and Chater (2007) proposed a
temporal ratio model of memory called SIMPLE. The model assumes memories are encoding
with a temporal component, but that the representations are logarithmically compressed, so
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that more distant memories are more similar. The model also assumes distinctiveness plays
a central role in performance on memory tasks, and that interference rather than decay is
responsible for forgetting. Perhaps most importantly, SIMPLE assumes the same memory
processes operate at all time scales, unlike theories and models that assume different short-
and long-term memory mechanisms.

Brown et al. (2007) evaluated SIMPLE on a wide range of memory tasks, fitting the model
to many classic data sets from the memory literature. All of the parameter fitting is based on
minimizing a sum-squared error criterion, producing point parameter estimates, and goodness
of fit is primarily assessed using R2 variance explained measures. Although this approach
provides a useful first look at how the model relates to data, it allows only limited exploration
of what the model tells us about human memory.

Brown et al. (2007) seemed aware of these limitations, saying, “We report R2 values as a
measure of fit despite the problems with the measure; direct log-likelihood calculations and
model comparison are infeasible in most cases” (p. 545). It is probably worth pointing out
the claim about infeasibility of direct log-likelihood calculations is technically inaccurate.
The sum-squared error criterion used corresponds exactly to a log-likelihood if the data are
assumed to be drawn from Gaussian distributions with common variance (see I. J. Myung,
2003, for a tutorial). In this sense, the analyses reported by Brown et al. already incorporate
direct log-likelihood calculations, although with an unusual choice of likelihood function.
The current (implied) Gaussian choice assumes, among other things, that a 0.99 probability of
recall is as variable as a 0.50 probability, and allows for the possibility of recall probabilities
less than 0 and greater than 1. A more natural choice of likelihood function, which we adopt,
is a binomial that relates the ki times the ith item was recalled in the n total trials across all
participants to a θi probability of recall.

More importantly, it is not difficult to implement fully Bayesian analyses of the SIMPLE
model. Our goal in this example is to show how the straightforward application of hierarchical
Bayesian analysis permits stronger evaluation and deeper exploration of the model.

5.1. Bayesian analysis of SIMPLE

We focus our demonstration on the first application considered by Brown et al. (2007),
which involves seminal immediate free recall data reported by Murdock (1962). The data give
the proportion of words correctly recalled averaged across participants, for lists of 10, 15, and
20 words presented at a rate of 1 sec per word; and lists of 20, 30, and 40 words presented at
a rate of 2 sec per word.

Brown et al. (2007) made some reasonable assumptions about undocumented aspects of the
task (e.g., the mean time of recall from the end of list presentation), to set the time, Ti , between
the learning and retrieval of the ith item. With these times established, the application of the
SIMPLE free-recall data involves five stages, as conveniently described in the Appendix in
Brown et al.

First, the ith presented item, associated with time Ti , is represented in memory using
logarithmic compression, given by Mi = log Ti . Second, the similarity between each pair
of items is calculated as ηij = exp(−c|Mi − Mj |), where c is a parameter measuring the
“distinctiveness” of memory. Third, the discriminability of each pair of items is calculated
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Fig. 11. Graphical model implementing the SIMPLE model of memory.

as dij = ηij /
∑

k ηik. Fourth, the retrieval probability of each pair of items is calculated as
rij = 1/(1 + exp(−s(dij − t))), where t is a threshold parameter and s is a threshold noise
parameter. Finally, the probability the ith item in the presented sequence will be recalled is
calculated as θi = min(1,

∑
k rik).

5.1.1. Graphical model
These stages are implemented by the graphical model shown in Fig. 11, which makes it

possible to subject SIMPLE to a fully Bayesian analysis. The graphical model has nodes cor-
responding to the observed times between learning and retrieval, Ti , and the observed number
of correct responses ki for the ith item and total trials n. The similarity (ηij ), discriminability
(dij ), retrieval (rij ), and free-recall probability (θi) nodes are deterministic and simply link the
time properties of the items to their accuracy of recall according to the SIMPLE model and
its three parameters.

In Fig. 11 the times, responses, and free-recall probabilities apply per item, and so are en-
closed in a plate replicating over items. The similarity, discriminability, and retrieval measures
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Fig. 12. Posterior prediction of SIMPLE model for the six conditions of the Murdock (1962) immediate free-recall
data. The solid lines show the data, and the gray areas show 50 posterior predictive samples for the item at each
serial position. The conditions are labeled according to the number of items and the rate of presentation so that,
for example, the “10-2” condition had 10 items presented at 1 sec per item.

apply to pairs of variables, and so involve an additional plate also replicating over items. We
follow Brown et al. (2007) by fitting the c, t , and s parameters independently for each con-
dition. This means the entire graphical model is also enclosed in a plate replicating over the
x = 1, . . . , 6 conditions in the Murdock (1962) data.

5.1.2. Results
Our results are based on 105 posterior samples, collected after a burn-in of 105 samples,

and using multiple chains to assess convergence. Fig. 12 shows the posterior prediction of the
SIMPLE model for the six Murdock (1962) data sets. The solid lines show the probability the
item in each serial position was correctly recalled. A total of 50 samples from the posterior
predictive are shown for each serial position as gray points, making a gray area that spans the
range in which the model expects the data to lie. It is clear that, consistent with the excellent
R2 model fits reported by Brown et al. (2007), the SIMPLE model accounts well for all of the
serial position curves.

Where the Bayesian approach significantly extends the original model fitting is in under-
standing the inference made about the parameters. Fig. 13 shows the joint posterior parameter
distribution as a three-dimensional plot, with 20 posterior samples for each condition shown
by different markers. Also shown, projected onto the planes are the pairwise joint distributions
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Fig. 13. Joint posterior parameter space for the SIMPLE model for the six conditions of the Murdock (1962)
immediate free-recall data.

of each possible combination of parameters (marginalized over the other parameter in each
case). Finally, the marginal distributions for each parameter are shown along the three axes.

Fig. 13 attempts to convey the detailed information about the distinctiveness, threshold,
and threshold noise parameters provided by the computational Bayesian approach. The point
estimates of the original analysis are now extended to include information about variability and
co-variation. This additional information is important to understanding how parameters should
be interpreted and for suggesting model development. For example, the lack of overlap of the
three-dimensional points for the six conditions suggests that there are important differences in
model parameters for different item list lengths and presentation rates. In particular, it seems
unlikely that an alternative approach to fitting the six conditions using a single discriminability
level and threshold function will be adequate.

Another intuition, this time coming from the two-dimensional joint posteriors, is that
there is a trade-off between the threshold and threshold noise parameters because their joint
distributions (shown by the points in the bottom plane) show a high level of correlation for
all of the conditions. This means that the data in each condition are consistent with relatively
high thresholds and relatively low levels of threshold noise, or with relatively low thresholds
and relatively high levels of threshold noise. This is probably not an ideal state of affairs:
Generally, parameters are more easily interpreted and theoretically compelling if they operate
independently of each other. In this way, the information in the joint parameter posterior
suggests an area in which the model might need further development or refinement.

As a final example of the information in the joint posterior, we note that the marginal
distributions for the threshold parameter shown in Fig. 13 seem to show a systematic relation
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with item list length. In particular, the threshold decreases as the item list length increases
from 10 to 40, with overlap between the two conditions with the most similar lengths (i.e., the
“10-2” and “15-2” conditions, and the “20-2” and “20-1” conditions). This type of systematic
relation suggests that, rather than treating the threshold as a free parameter, it can be modeled
in terms of the known item list length. We now consider how this idea can be implemented in
a hierarchical extension to the SIMPLE model.

5.2. A hierarchical Bayesian extension of SIMPLE

5.2.1. Graphical model
Our hierarchical Bayesian extension of SIMPLE is represented by the graphical model

shown in Fig. 14. There are two important changes from the model that replicated the assump-
tions of Brown et al. (2007). First, the distinctiveness (c) and threshold noise (s) parameters
are now assumed to have the same value for all experimental conditions. In Fig. 14, their
nodes are outside the plate replicated over conditions, and they are no longer indexed by x.

Fig. 14. Graphical model implementing a hierarchical extension to the SIMPLE model of memory.
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We do not believe this is a theoretically realistic assumption (indeed, as we pointed out, the
joint posterior in Fig. 13 argues against it), but it allows us to construct a tutorial example to
demonstrate our main point.

It is the second change that captures this main point and corresponds to the way the
thresholds tx are determined. Rather than being assumed to be independent, these thresholds
now depend on the item list length, denoted Wx for the xth condition, via a linear regression
function tx = a1Wx + a2 parameterized by the coefficients a1 and a2. Consistent with the
intuitions gained from Fig. 13, we make the assumption the linear relationship expresses a
decrease in threshold as item list length increases, by using the prior a1 ∼ Uniform(−1, 0).

The goal of our hierarchical extensions is to move away from thinking of parameters as
psychological variables that vary independently for every possible immediate serial recall task.
Rather, we now conceive of the parameters as psychological variables that themselves now
need explanation, and attempt to model how they change in terms of more general parameters.

This approach not only forces theorizing and modeling to tackle new basic questions
about how serial recall processes work, but also facilitates evaluation of the prediction and
generalization capabilities of the basic model. By making the threshold parameter depend
on characteristics of the task (i.e., the number of words in the list) in systematic ways, and
by treating the other parameters as invariant, our hierarchical extension automatically allows
SIMPLE to make predictions about other tasks.

5.2.2. Results
To demonstrate these capabilities, we applied the hierarchical model in Fig. 14 to the

Murdock (1962) conditions, and also to three other possible conditions for which data are not
available. These generalization conditions all involve presentations rates of 1 sec per item, but
with 10, 25, and 50 items corresponding to both interpolations and extrapolations relative to
the collected data.

Our results are again based on 105 posterior samples from the graphical model, collected
after a burn-in of 105 samples, and using multiple chains to assess convergence. The posterior
predictive performance is shown in Fig. 15. The top two rows show the Murdock (1962) condi-
tions, whereas the bottom row shows the predictions the model makes about the generalization
conditions.

Fig. 16 shows the modeling inferences about the distinctiveness, threshold noise, and
threshold parameters. For the first two of these, the inferences take the form of single posterior
distributions. For the threshold parameter, however, the posterior inference is now about
its functional relationship to item list length. The posterior distribution for this function is
represented in Fig. 16 by showing 50 posterior samples at each possible length W = 1, . . . , 50.
These posterior samples are found by taking joint posterior samples (a1, a2) and finding
t = a1W + a2 for all values of W .

We emphasize that the particular model being evaluated is not being proposed as a useful or
realistic one, but simply to demonstrate what hierarchical Bayesian methods can provide for
evaluating a cognitive process model like SIMPLE. In this context, we emphasize that Fig. 15
shows the descriptive adequacies and inadequacies of the hierarchical model in relation to
the available data, and details its prediction to new experimental situations for which data
are not available. We also emphasize that Fig. 16 shows not only the posterior distribution
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Fig. 15. Posterior prediction of the hierarchical extension of the SIMPLE model for the six conditions of the
Murdock (1962) immediate free-recall data and in generalizing to three new conditions. The solid lines show the
data, and the gray areas show 50 posterior predictive samples for the item at each serial position.

of individual parameters, but the posterior distribution over the functional relation between
parameters and characteristics of the experimental task.

6. Discussion

In this article, we have motivated the use of hierarchical Bayesian methods by arguing they
provide the sorts of inferential power and flexibility to evaluate and refine cognitive models.
We have tried to demonstrate this power and flexibility using two worked examples, relying

Fig. 16. Posterior parameter inference for the SIMPLE model parameters in its hierarchically extended form.



1280 R. M. Shiffrin, M. D. Lee, W. Kim, E.-J. Wagenmakers/Cognitive Science 32 (2008)

on graphical modeling and posterior sampling as a means of specifying and doing inference
with psychological models and data.

One possible practical objection is that it may require considerable intellectual investment
to master Bayesian methods, leaving a temptation to continue applying traditional frequentist
techniques. It is true that traditional frequentist statistical approaches are commonly applied to
hierarchical models. However, we think it is extremely difficult to make sure these traditional
methods are adequately implemented, and almost impossible to insure they reach the same
standards as the Bayesian approach. Traditional approaches do not naturally represent uncer-
tainty, automatically control for model complexity, easily marginalize nuisance parameters,
represent relevant prior information, work in the same way for all sample sizes, or do a range
of other things needed to guarantee good inference. For some hierarchical models and data
sets and analyses, it may be that these deficiencies do not affect the conclusions, but there
must always be the concern that one or more of them is causing a problem. Remedying the
inherent weakness of traditional statistical methods requires ad-hoc workarounds, which may
have to be tailored for each specific problem, and usually demand considerable statistical
sophistication. All of these difficulties in retaining traditional statistical methods stand in stark
contrast to the conceptual and practical simplicity of implementing the Bayesian approach.
For this reason, we believe the investment in learning Bayesian methods will be worthwhile
for any researcher interested in making complete, coherent, and principled inferences about
their models and data.

In this context, our examples show advantages both of Bayesian analysis generally
and hierarchical Bayesian analysis in particular, for the purposes of model evaluation
and comparison. The information in posterior distributions over parameters, and poste-
rior predictive distributions over data, both provide very direct information about how a
model accounts for data and allow strengths in a model to be identified and weaknesses
to be remedied. Allowing hierarchical development also means that modeling can take
place at different levels of psychological abstraction, so that both the parameters con-
trolling memory retention for individuals, and the parameters controlling individual dif-
ferences can be considered simultaneously. We showed that it is conceptually straightfor-
ward to test alternative models using MCMC methods that can provide measures like Bayes
Factors.3

Although our examples considered relatively straightforward models, the hierarchical
Bayesian framework can, in principle, be applied to any model amenable to probabilistic
characterization. Lee (2008) presented a number of additional working examples includ-
ing the multidimensional scaling model of stimulus representation, the Generalized Con-
text Model of category learning, and a signal detection theory account of decision making.
Other excellent applications of hierarchical Bayesian methods to cognitive science models
are provided by Rouder and Lu (2005); Rouder, Lu, Morey, Sun, and Speckman (2008);
and Rouder, Lu, Speckman, Sun, and Jiang (2005). Finally, Lee and Vanpaemel (this issue)
presented an involved category learning example showing, among other things, how hierar-
chical Bayesian methods can be used to specify theoretically based priors over competing
models.

We see the hierarchical Bayesian framework as a powerful and general one for developing,
evaluating, and choosing between computational models of cognition. Of course, no method
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is perfect, and hierarchical Bayesian methods share with all Bayesian methods the problem
of finding suitably formal ways to convert all relevant forms of prior knowledge into prior
probability distributions for parameters. Also, the computational demands in fully Bayesian
analyses may mean they do not scale to the most simulation-intensive cognitive models.
However, we hope our examples make it clear that hierarchical Bayesian methods can make a
significant, positive contribution to the enterprise of model development and testing for many
areas in cognitive science.

It is noteworthy that advances in the field have brought hierarchical modeling within the
reach of many researchers who produce models for data. For example, in a recent article,
Cohen, Sanborn, and Shiffrin (2008) examined model selection methods when there are few
data for individual participants. They focused solely on two approaches: analyzing participants
separately and then combining the results, or analyzing grouped data formed by combining
the data from all participants into a single pseudo-participant. They pointed out the obvious
advantages of using hierarchical approaches, but did not pursue these partly on the basis that
such approaches would be out of reach not only for most non-modelers, but also most modelers.
As illustrated in this article, the field is advancing rapidly and, with useful and sophisticated
software like WinBUGS increasingly available, we should see hierarchical Bayesian modeling
increasingly considered and used by modelers. We would be surprised if this approach does
not become the method of choice for years to come.

To sum up, the ability to evaluate whether a model is useful, and to choose between numbers
of competing models, is a basic requirement for progress in cognitive science. In this review,
we have tried to emphasize the multidimensional nature of model evaluation and selection,
arguing that good models should describe data well, allow for inferences about psychologically
meaningful variables, be able to predict new data, and facilitate future empirical and theoretical
progress. We have reviewed a number of theoretical, simulation-based, and practical validation
methods for evaluation and selecting models, but highlighted their limitations in addressing
the general question of model evaluation. We think that a practical and useful alternative
involves hierarchical Bayesian methods. We have tried to demonstrate in worked examples
that these methods offer very general and powerful capabilities for developing, evaluating,
and choosing between models of cognition.

Notes

1. This summary is based in part on http://www.faqs.org/faqs/ai-faq/neural-nets/part3/
section-12.html, a neural net FAQ maintained by Warren S. Sarle.

2. Technically, our approach could be regarded as a variant of the Carlin and Chib (1995)
product space method, which requires specifying “pseudo-priors” through which the
parameters of the model not being indexed by the indicator variable are updated. For
conceptual simplicity, these pseudo-priors were not included in the graphical model
(i.e., we view them as part of the sampling method rather than as part of the substantive
probabilistic model).
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3. Although our Bayes factor example was between nested models, there is no theoretical
difficulty in using the same approach to compare any classes of models.
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