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In this rejoinder, we address two of Ratcliff’s main concerns 
with respect to the EZ-diffusion model (Ratcliff, 2008). First, 
we introduce “robust-EZ,” a mixture model approach to achieve 
robustness against the presence of response contaminants that 
might otherwise distort parameter estimates. Second, we dis-
cuss an extension of the EZ model that allows the estimation of 
starting point as an additional parameter. Together with recently 
developed, user-friendly software programs for fitting the full 
diffusion model (Vandekerckhove & Tuerlinckx, 2007; Voss & 
Voss, 2007), the development of the EZ model and its extensions 
is part of a larger effort to make diffusion model analyses acces-
sible to a broader audience, an effort that is long overdue.

In our original article (Wagenmakers, van der Maas, 
& Grasman, 2007), we extolled the virtues of the Rat­
cliff diffusion model for speeded two-choice tasks (Rat­
cliff, 1978; Ratcliff & McKoon, 2008; Wagenmakers, in 
press). In particular, we stressed that the model allows 
researchers to decompose observed performance (i.e., 
both response times [RTs] and proportions correct) into 
unobserved psychological processes. The most important 
psychological processes in the diffusion model are speed 
of information accumulation (i.e., drift rate v), response 
caution (i.e., boundary separation a), and time spent 
on processes, such as encoding and motor execution, 
that are not directly involved in discriminating between  
response alternatives (i.e., nondecision time Ter). We 
argued that a diffusion model decomposition of perfor­
mance is statistically more appropriate and theoretically 
more meaningful than the analyses that are currently 
standard in the field.

Despite its generality and impressive track record, 
however, only a few researchers have applied the dif­
fusion model in their own work. We believed that the 
reason for this state of affairs is twofold. First, at the 
time of writing, no model-fitting software was publicly 

available, and this meant that only a select group of 
researchers—those with the technical skill to program 
the required routines from scratch—were able to apply 
the model to data. The need for technical skill becomes 
apparent when we consider that a simplified version of 
the full Ratcliff diffusion model1 requires the evalua­
tion of the following integral (Ratcliff & Smith, 2004, 
Equation A13; Tuerlinckx, 2004) given in Equation 1 
below, where U6r denotes the uniform distribution on 
the interval (–r, r), N denotes the normal distribution, 
and G denotes the probability of an error response before 
time t, which (as Cox & Miller, 1970, described) is given 
by Equation 2. Here, Pe is the probability of an error, 
irrespective of the time when it was committed; ξ, ζ, 
and τ are, respectively, the drift rate, starting point, and 
nondecision time on a given trial; and v, z, and Ter are, 
respectively, the across-trials expected drift rate, start­
ing point, and nondecision time. Note that Equation 1 
contains a triple integral over trial-to-trial variability in 
nondecision time (Ter), a priori bias or starting point (z), 
and drift rate (v). Furthermore, Equation 2 contains an 
infinite sum. The expected time and effort associated 
with the implementation of this model may well have 
discouraged many researchers from pursuing it.

There is another reason why the diffusion model has 
not been widely adopted outside of a narrow circle of 
mathematical psychologists: The model is difficult to 
apply when the number of observations in each condition 
is low. One rule of thumb is that each condition should 
have about 10 error RTs for the model fit to be reliable.2 
Ratcliff (2008) provided two interesting exceptions that 
prove the rule. It is unfortunate that researchers, con­
vinced of the virtues of the diffusion model, subsequently 
have to accept that they can apply the model only if their 
sample sizes are much larger than those they routinely 
collect. For instance, experiments in visual word recogni­
tion often feature 25 or fewer observations per condition 
per participant; application of the rule of thumb would 
require participants to have an unacceptably high error 
rate of 40%.

To bridge the gap between what experimental psy­
chologists need and what the full Ratcliff diffusion 
model requires, we developed the “EZ”-diffusion model 
(Wagenmakers et al., 2007). The EZ model takes three 
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form poorly. None of this is surprising, and in fact, much 
of it was anticipated and acknowledged in the original EZ 
article (Wagenmakers et al., 2007). In general, it is easy 
to generate data from a complex model and show that the 
simpler model, nested within the complex model, fails to 
recover parameters well.

Nevertheless, we concede that the demonstrated sensi­
tivity of the EZ model to the presence of contaminants is 
worrying, and that the assumption that the starting point 
is exactly between the two response boundaries may be 
overly restrictive. Consequently, we have extended the EZ 
model to address both issues, producing the “robust-EZ” 
model.

EZ extension 1: Robustness against contaminants. 
Ratcliff and Tuerlinckx (2002) put forward the notion that, 
on a certain proportion of trials, participants may expe­
rience a temporary lapse of attention. Processing of the 
stimulus stops when the attentional lapse starts, and re­
sumes without loss of information when the attentional 
lapse ends. This means that lapses do not influence the 
proportion of errors; lapses, or response contaminants, 
only add a variable delay to the RT that would otherwise 
have been observed, irrespective of whether the RT ends 
up belonging to a correct or an error trial.

Ratcliff (2008) showed that the presence of response 
contaminants can greatly bias the parameter estimates of 
the EZ model. To increase the robustness of the EZ model 
to the presence of response contaminants, we have fol­
lowed Ratcliff and Tuerlinckx (2002) in proposing a mix­
ture modeling approach.

We assume that the observed distribution of RTs is a 
mixture of two components. The first represents the re­
sponse contaminants and follows a uniform distribution 
that ranges from the fastest to the slowest RT. The second 
component represents the RTs of interest—namely, those 
that are generated by the diffusion model. We assume that 
this second component is adequately captured by the ex-
Gaussian distribution (see, e.g., Ratcliff, 1978, 1979).

As the name suggests, the ex-Gaussian distribution is 
the additive combination of an exponentially distributed 
random variable with rate 1/τ and a Gaussian, or normally 
distributed, random variable with mean m and standard 
deviation σ (Hohle, 1965; Luce, 1986). Although the ex-
Gaussian distribution may not be very satisfactory from 
a theoretical perspective, it is relatively easy to use, and 
it generally produces a good fit to empirical RT distribu­
tions (see, e.g., Ratcliff, 1979, Figure 3).

Thus, the mixture model involves the estimation of four 
parameters—that is, the mixture proportion α and the ex-
Gaussian parameters m, σ, and τ. From the last three param­
eters, one can calculate the mean and the variance of the ex-
Gaussian distribution. The idea of the robust-EZ model is 
to use as input to the EZ equations not the observed sample 
moments MRT and VRT, but the inferred mean and variance 
from the ex-Gaussian component of the mixture model—
that is, MRTEG and VRTEG. In this way, the mixture model 
filters out the effects of contaminants on the observed sam­
ple MRT and VRT, and thereby greatly reduces the impact 
of response contaminants on the parameter estimates. The 

observed quantities from each condition—namely, the 
mean RT for correct responses (i.e., MRT ), the variance 
in RTs for correct responses (i.e., VRT ), and the propor­
tion correct (i.e., Pc)—and transforms these quantities 
into estimates for drift rate v, boundary separation a, 
and nondecision time Ter. The one-to-one transforma­
tions are achieved using closed-form equations and do 
not require an iterative fitting program.3 The tractability 
of the transformations does come at a cost, however; in 
its calculations, the EZ model makes two simplifying 
assumptions—namely, the absence of trial-to-trial vari­
ability in v, z, and Ter, and the absence of any a priori 
response bias toward one of the two choice alternatives 
(i.e., starting point z is equal to a/2).

We hoped that the EZ-diffusion model would help 
popularize the full diffusion model; when researchers use 
the EZ model and experience the advantages of a diffu­
sion model analysis firsthand, they might then start to ex­
plore methods that are more sophisticated but that are also 
more demanding, in the sense of requiring more data and 
a higher level of statistical expertise. We emphasize, as 
we did in our original article, that our aim was not to offer 
a substitute for the full Ratcliff diffusion model; rather, 
our aim was to provide a means to obtain a rough-and-
ready estimate of the underlying psychological processes, 
an estimate that could, if possible, later be improved upon 
through a more complete analysis.

In a response published in this journal, Ratcliff (2008) 
criticized our original EZ article and the EZ model on 
several counts. In this rejoinder, we ignore some of the 
more philosophical differences of opinion between Dr. 
Ratcliff and ourselves. Instead, we wish to focus on what 
we perceive to be the most practically relevant concerns—
namely, the imperfections and limitations of the EZ 
method that were highlighted in the Ratcliff simulations. 
In our original EZ article, we had already identified some 
of these imperfections and limitations; nevertheless, the 
Ratcliff (2008) article contains new results that warrant a 
closer examination.

The Ratcliff Simulations
The simulations reported in Ratcliff (2008) cover 

a lot of ground, but they also share a common theme. 
This theme is to take the full Ratcliff diffusion model, 
to generate data using components that the EZ model 
had discarded to achieve tractability, and then to show 
that the EZ model poorly recovers the parameters that 
generated the data. Thus, the EZ model assumes the ab­
sence of “response contaminants” (Ratcliff & Tuerlinckx, 
2002). Ratcliff ’s simulations showed that when the data 
do have response contaminants, the EZ model may per­
form poorly. The EZ model also assumes that the starting 
point is exactly in-between the response boundaries, so 
that there is no a priori bias. Ratcliff (2008) showed that 
when there is a priori bias, the EZ model may again per­
form poorly. Finally, the EZ model assumes the absence 
of trial-to-trial variability in drift rate, starting point, and 
nondecision time. Ratcliff (2008) showed that when such 
variability is present, the EZ model may, once again, per­
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Figure 1 shows the effects of contamination both for the 
original EZ model and for robust-EZ. In agreement with 
Ratcliff, it is clear that the original EZ model is sensitive 
to the presence of contaminants. Specifically, contami­
nants lead to an overestimation of boundary separation 
(i.e., middle panels) and underestimations of drift rate 
(i.e., left panels) and nondecision time (i.e., right panels). 
This pattern is more pronounced when drift rate is high 
than when it is low. Robust-EZ, as one would expect, is 
not much affected by the insertion of contaminants.

The foregoing may be viewed as a proof of principle, in 
that the simulation shows that the robust-EZ procedure is 
able—for very large data sets—to correctly estimate the 
EZ parameters, even in the presence of contaminants. Of 
course, practically relevant settings feature many fewer 
observations, and in this case performance of the robust-
EZ procedure will decrease because of sampling error. We 
conducted two additional simulations to study the extent 
to which robust-EZ can recover parameter values when 
the number of observations is low.

In the first additional simulation, we generated data from 
a single-condition EZ model with these parameters: drift 

Appendix describes in more detail both the fitting proce­
dure and the associated software in which the model com­
plexities are hidden from the user. It is true that robust-EZ is 
slightly more involved than the original EZ model. Still, the 
only thing users have to do to obtain robust-EZ parameter 
values is to construct a file that lists the total number of 
observations and the correct RTs, and then to call the fitting 
routine by issuing a single command.

In order to ascertain that robust-EZ works as intended, 
we compared its performance against that of the original EZ 
model for eight synthetic data sets of 10,000 observations 
each (see Ratcliff, 2008, for a similar procedure). For data 
generation, boundary separation a was fixed at 0.12, and 
nondecision time Ter was fixed at 0.300 sec. Four data sets 
had a relatively low value for drift rate (i.e., v 5 0.1), and 
the other four data sets had a high value for drift rate (i.e., 
v 5 0.3). Each of the two drift rates was associated with 
four levels of contamination: 0%, 2%, 5%, and 10%. Spe­
cifically, in each data set, x% of EZ-generated correct RTs 
were “contaminated” by adding an RT that was drawn from 
a uniform distribution ranging from 0 to 2 sec. Finally, RTs 
higher than 2.5 sec were eliminated from the analyses.
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Figure 1. Parameter estimation of the standard EZ method versus the robust-EZ method under different levels of contamination. 
The horizontal dotted lines indicate the true parameter values.
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However, the goal of experimental work is often not to 
estimate parameters for a single participant; rather, the 
goal is almost always to draw conclusions from a group 
average of individual parameter estimates. To highlight 
the extent to which parameter uncertainty can be reduced 
by considering more than a single participant, a second 
simulation replicated the first, but now we averaged pa­
rameters over 30 synthetic participants.

In this second additional simulation, we assumed the fol­
lowing three independent sources of between-participants 
variability: Drift rate v was uniformly distributed between 
0.15 and 0.25, boundary separation a was uniformly dis­
tributed between 0.10 and 0.14, and nondecision time Ter 
was uniformly distributed between 0.250 and 0.350. For all 
synthetic participants, the proportion of contaminants was 
fixed at .05 (uniformly distributed between 0 and 2 sec). 
We again conducted 1,000 experiments, for each of 30 
participants and for each of 10 different numbers of trials, 
ranging from N 5 25 to N 5 250 in steps of 25.

Figure 3 shows the results. As is evident from a com­
parison of Figures 2 and 3, the uncertainty in estimation 
is much smaller when parameters are averaged across 
several participants, despite the presence of participant-to-
participant variability in all three EZ parameters. Figures 2 
and 3 both show the same qualitative pattern of bias for 
N , 100: an overestimation of the proportion of contami­
nants, with an associated overestimation of drift rate and 
nondecision time, and an underestimation of boundary 

rate v 5 0.2, boundary separation a 5 0.12, nondecision 
time Ter 5 0.300, and the proportion of contaminants p 5 
.05 (uniformly distributed between 0 and 2 sec). We con­
ducted 1,000 synthetic experiments, for each of 10 different 
numbers of trials, ranging from N 5 25 to N 5 250 in steps 
of 25. For this single-participant scenario, the parameter 
recovery is shown in Figure 2, in which each panel plots 
10 box-and-whiskers plots, 1 for each N, N, ranging from 
25 to 250 in steps of 25. A box-and-whiskers plot (Tukey, 
1977, pp. 39–43) provides an efficient way to summarize 
an entire distribution, in this case a distribution of recovered 
parameter values. The box extends from the .25 quartile to 
the .75 quartile, and the dot in the middle of the box is the .50 
quartile (i.e., the median). The whiskers extend to the far­
thest points that are within 3/2 times the height of the box.

As can be seen in Figure 2, for N $ 100, parameter 
recovery is generally unbiased; that is, the median of the 
recovered parameter values (i.e., the dots in the boxes) is 
close to the horizontal line that indicates the parameter 
value with which the data were generated. For N , 100, 
the bottom right panel shows that the proportion of con­
taminants is overestimated, and this is associated with an 
overestimation of drift rate and nondecision time, as well 
as an underestimation of boundary separation.

Figure 2 also shows that, in the case of low N, parameter 
recovery is relatively imprecise. This problem becomes 
less serious as N grows large, but even for N 5 250, pa­
rameter estimation comes with nonnegligible uncertainty. 
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Figure 2. Parameter estimation of the robust-EZ procedure for a single participant in a single 
condition, as a function of the total number of trials. The horizontal dotted lines indicate the true 
parameter values.



Notes and Comment        1233

drift rates yet share values for decision criteria. Thus, for 
example, for old and new words in a recognition memory 
task, the extended model takes as input Pc

old, Pc
new, VRTold, 

VRTnew, MRTold, and MRTnew and returns as output esti­
mates for vold, vnew, a, z, T er

old, and T er
new. Note that a and 

z are response criteria that are assumed to be determined 
prior to stimulus processing, and so are independent of 
whether the stimulus word is old or new. If desired, the 
online program can determine a common estimate for Ter 
using a least-squares fitting procedure.

Other Recent Developments in  
Fitting the Diffusion Model

Since the introduction of EZ a year ago, two computer 
programs that greatly facilitate diffusion model analyses 
have been made publicly available. These programs are 
DMAT,5 a MATLAB toolbox by Joachim Vandekerck­
hove and Francis Tuerlinckx (2007, 2008), and fast-dm,6 
a platform-independent command line tool developed by 
Andreas and Jochen Voss (2007, 2008). DMAT and fast-
dm both use the original EZ parameters as default start­
ing values for their optimization routines. These excellent 
programs are well-documented, are user-friendly, and 
come free of charge.

Although these programs should be used whenever 
possible—something that Dr. Ratcliff fully agrees with—

separation. When N $ 100, parameter estimation is rela­
tively unbiased and precise. Increasing the number of trials 
beyond 100 does not appear to yield much improvement.

The previous two simulations provide a rough indication 
of the amount of variability that might be expected when 
the robust-EZ procedure is applied to small-N data sets 
such as those that often occur in experimental psychology. 
Of course, the results shown in Figures 2 and 3 hold for a 
particular, albeit representative, set of generative param­
eters. Also note that with few observations per participant, 
few participants, and large intraparticipant variability, one 
can only hope to detect very large experimental effects; this 
is as true for robust-EZ as for any other statistical model.

EZ extension 2: Estimation of response bias. Gras­
man, Wagenmakers, and van der Maas (in press) recently 
proposed an extension of the EZ model that allows the start­
ing point to vary freely and parameters to be constrained 
across conditions.4 The key equation of the extended 
model gives the variance of the decision time distribution 
for a diffusion process with a priori bias, conditional on the 
response boundary that was reached first. A software pro­
gram that implements this EZ extension is freely available 
online at the Web address provided in note 4.

The extension to starting point estimation was made 
possible by the fact that in a speeded two-choice task, 
there are two stimulus categories that may have different 
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Figure 3. Average parameter estimation of the robust-EZ procedure for 30 participants in a single 
condition, as a function of the total number of trials. In the panels for drift rate, boundary separa‑
tion, and nondecision time, the two horizontal dashed lines indicate the upper and lower bounds for 
the uniform distribution that describes between-participant variability. In the panel for the propor‑
tion of contaminants, the horizontal dotted line indicates the true parameter value. Each box plot 
is based on 1,000 replications.
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NOTES

1. The complete version is a mixture of a diffusion model component 
and a component intended to capture response contaminants.

many situations remain in which the EZ diffusion model 
and its extensions might be useful. For instance, DMAT 
ignores conditions with fewer than 11 errors; both DMAT 
and fast-dm require more effort on the part of the user 
than does EZ, both in terms of learning to operate the pro­
gram and learning to interpret the results statistically; and 
DMAT and fast-dm can be slow to fit many conditions, 
whereas EZ estimates are instantaneous. In our own work, 
we have used EZ estimates to provide online feedback 
with respect to drift rate and boundary separation, as well 
as to provide immediate estimates of nondecision time to 
better adjust speed–accuracy requirements in a compari­
son of young and old adults. In addition, EZ estimates can 
be useful as a preliminary check to see whether the data 
are interesting enough to model in a more detailed fash­
ion. For instance, an EZ analysis of data from an fMRI 
experiment (Forstmann et al., in press) showed that a ma­
nipulation of speed–accuracy instructions was associated 
with changes in boundary separation. Moreover, the EZ 
analysis showed that people who had a relatively large 
decrease in boundary separation under speed stress also 
had a relatively large increase in activation of the anterior 
striatum and the pre-supplementary motor area, a result 
that is in line with neurocomputational models (e.g., Lo & 
Wang, 2006). A more detailed analysis with the linear bal­
listic accumulator model (Brown & Heathcote, in press) 
was consistent with these initial EZ findings.

Conclusions
The simulations reported by Ratcliff (2008) demon­

strate that when the simplifying conditions of the EZ 
model are violated, it is overly sensitive to the presence 
of contaminants, is biased in the face of misspecification, 
and is less efficient then the chi-square method (Ratcliff 
& Tuerlinckx, 2002). We agree with Ratcliff (2008) that 
the sensitivity to contaminants is a potential pitfall, and 
we have introduced the robust-EZ method to address the 
issue. Misspecification and lower efficiency in estimation 
are unavoidable consequences of simplicity; nevertheless, 
we have recently developed an extension of the EZ model 
that allows starting point to vary freely between condi­
tions (Grasman et al., in press).

We believe that experimental psychology can greatly 
profit from widespread adoption of the diffusion model as 
an analytical tool. For this to happen, the existence of user-
friendly fitting routines is absolutely essential. We see the 
development of methods such as the EZ-diffusion model 
as a valuable first step toward making the diffusion more 
accessible to a broader audience of researchers. From this 
perspective, the EZ model accomplishes its goals.
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APPENDIX 
The Robust-EZ Model

Robust-EZ fits to data a mixture model of two components: a uniform distribution of response contaminants, 
ranging from the fastest to the slowest RT, and an ex-Gaussian distribution that represents the process of inter­
est. The ex-Gaussian distribution is the additive combination of an exponential distribution with rate 1/τ and a 
Gaussian or normal distribution with mean m and standard deviation σ.

As starting values for the parameter optimization routine, robust-EZ uses the method-of-moment estimators 
for the ex-Gaussian—that is,

	 m 5 M1 2 t,	 (A1)

	 σ τ= −M2
2 , 	 (A2)

and

	
τ = ( )1

2 3

1
3

M ,
	

(A3)

in which M1, M2, and M3 denote mean, variance, and skew, respectively (Heathcote, 1996).
Based on disfit routines developed by Dolan, van der Maas, and Molenaar (2002), robust-EZ was imple­

mented in the R environmentA1 to fit the uniform/ex-Gaussian mixture with the method of maximum likelihood, 
using Equations A1–A3 for starting values and a quasi-Newton method for optimization.

After completing the optimization process, robust-EZ uses the maximum likelihood estimates m̂, σ̂, and ˆτ 
to calculate the estimated mean and variance of the component process of interest, as MRTEG 5 m̂ 1  ˆτ and 
VRTEG 5 σ̂2 1 τ̂2. Finally, robust-EZ uses MRTEG, VRTEG, and Pc to determine drift rate, boundary separation, 
and nondecision time, as per Equations 5–9 in Wagenmakers et al. (2007).

Clearly, this procedure is more involved than the original EZ-diffusion model. However, we have implemented 
robust-EZ in such a way that the model complexity is hidden from the user. The process works as follows. First, 
the user constructs a file that, on the first line, lists the number of trials from a specific experimental condition 
(e.g., 200). Each of the lines below contains a single RT (in seconds) for correct responses only.

In order to illustrate the process, we have constructed the file ExampleDataREZ.txt, which is based on 200 
observations from an EZ-diffusion process with drift rate v 5 0.2, boundary separation a 5 0.12, and nondeci­
sion time Ter 5 0.300. These are the first five lines of ExampleDataREZ.txt:

200
0.56345
0.53415
0.39205
0.64095

Once the user has formatted the data in this way, the only thing left to do is to type, on the R command line, 
the RobustEZ.from.File function calling the file with the data:

. RobustEZ.from.File(“ExampleDataREZ.txt”)

The final line of the output then contains four numbers:

[1]	 0.2139106	 0.1174465	 0.3028974	 0.9685783

These four numbers (left to right) are the robust-EZ estimates for drift rate, boundary separation, nondecision 
time, and mixture proportion. Here, the data were generated without contaminants, so the true value of the mixture 
proportion is 1. The files that come with the robust-EZ software are available on the first author’s Web page.

NOTE

A1. R (R Development Core Team, 2004) is a platform-independent software package for statistical computing, and it can 
be downloaded free from www.r-project.org.

(Manuscript received April 29, 2008; 
revision accepted for publication August 1, 2008.)

2. This particular rule of thumb is made explicit in the current im­
plementation of the DMAT software program, discussed later, which 
ignores error RTs when they are fewer than 11 in number. Ratcliff and 
Tuerlinckx (2002) mention 5 as an absolute minimum number of error 
RTs required to fit the model at all.

3. The Web site users.fmg.uva.nl/ewagenmakers/papers.html lists EZ 
implementations in Excel, R, and JavaScript.

4. The manuscript (currently accepted pending minor revisions for the 
Journal of Mathematical Psychology), R code, and JavaScript code are 
available at purl.oclc.org/net/rgrasman/ez2.

5. DMAT is freely available online at ppw.kuleuven.be/okp/
dmatoolbox.

6. Fast-dm is freely available online at www.psychologie.uni-freiburg 
.de/Members/voss/fast-dm.


