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Abstract

Performance in the lexical decision task is highly dependent on decision criteria. These criteria can be influenced by
speed versus accuracy instructions and word/nonword proportions. Experiment 1 showed that error responses speed up
relative to correct responses under instructions to respond quickly. Experiment 2 showed that responses to less probable
stimuli are slower and less accurate than responses to more probable stimuli. The data from both experiments support
the diffusion model for lexical decision [Ratcliff, R., Gomez, P., & McKoon, G. (2004a). A diffusion model account of
the lexical decision task. Psychological Review, 111, 159–182]. At the same time, the data provide evidence against the
popular deadline model for lexical decision. The deadline model assumes that ‘‘nonword’’ responses are given only after
the ‘‘word’’ response has timed out—consequently, the deadline model cannot account for the data from experimental
conditions in which ‘‘nonword’’ responses are systematically faster than ‘‘word’’ responses.
� 2007 Elsevier Inc. All rights reserved.
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Over the last 20 years, the study of visual word recog-
nition has made extensive use of the lexical decision task.
This task requires participants to classify letter strings
either as words or as nonwords (e.g., JOM), usually
under the instruction to do so ‘‘as fast as possible without
making errors’’. The lexical decision task is often used to
measure the ease with which words are activated or
retrieved from lexical memory. However, the lexical deci-
sion task is not a pure measure of the ease with which lex-
ical information becomes available, as a wide variety of
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decisional and strategic factors have been shown to exert
a powerful effect on task performance (e.g., Balota &
Chumbley, 1984). For instance, classification perfor-
mance is affected by the instruction to respond either
accurately or fast (e.g., Grainger & Jacobs, 1996, p.
519). Also, the time it takes a participant to respond
‘‘word’’ to a stimulus letter string depends heavily on list
composition, that is, on lexical characteristics of the
experimental stimuli other than the presented letter
string (e.g., Brown & Steyvers, 2005; Glanzer & Ehrenr-
eich, 1979; Grainger & Jacobs, 1996; Ratcliff, Gomez, &
McKoon, 2004a; Ratcliff, Van Zandt, & McKoon, 1999,
Experiment 2; Wagenmakers et al., 2004); for instance,
‘‘word’’ responses are generally slower and less accurate
when the accompanying nonword stimuli are very similar
ed.
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Fig. 1. The diffusion model and its parameters. See text for
details.
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to words than when they are not (Ratcliff et al., 2004a).
Despite the fact that performance in the lexical decision
task reflects the combined influence of the ease with
which lexical information is processed and the impact
of decision thresholds, the lexical decision task remains
one of the most often used tasks in the field of visual
word recognition.

In this article, we use a mathematical model to sepa-
rate the effects of lexical processing from the effects of
the way participants set decision thresholds. This is anal-
ogous to a signal detection analysis that allows one to
disentangle effects of stimulus discriminability (e.g., d 0)
from those of criterion placement (i.e., b). In the exper-
iments reported here we manipulate word frequency.
Ratcliff et al. (2004a) showed that word frequency selec-
tively affects the quality of information that is extracted
from the stimulus. In addition, in Experiment 1 we
instruct participants to respond either accurately or fast,
and in Experiment 2 we manipulate the proportion of
word stimuli. We anticipated these manipulations to
selectively affect decision thresholds.

The experimental manipulation of decision thresholds
provides strong constraints for quantitative models (e.g.,
Grainger & Jacobs, 1996, pp. 549–551), and here we com-
pare performance of two different quantitative models.
The first model is the diffusion model, a sequential sam-
pling model that has recently been used to account for
performance in the lexical decision task (Ratcliff et al.,
2004a). In the diffusion model, a response is initiated
when the accumulated lexical evidence in favor of that
response reaches a pre-set decision threshold. The model
produces fits to response accuracy and to the response
time (RT) distributions of correct and error responses.
At the same time, the diffusion model identifies and esti-
mates components of processing such as the duration of
non-decision processes, the decision criteria, and the
quality of information extracted from the stimulus.

The second model under consideration is the deadline
model. In the deadline model, a ‘‘nonword’’ response is
given when the lexical system times out on the ‘‘word’’
response. Two popular instantiations of the deadline
model are the dual route cascaded model (i.e., DRC;
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001)
and the multiple read-out model (i.e., MROM; Grainger
& Jacobs, 1996). These models do not differ in their
assumptions regarding the lexical decision mechanism
and hence we will use the generic label ‘‘deadline model’’
to encompass both MROM and DRC.

The diffusion model offers an account of the lexical
decision task that is fundamentally different from the
one provided by the deadline model. In the diffusion
model, ‘‘nonword’’ responses are mediated by the same
decision mechanism that leads to ‘‘word’’ responses.
Response criteria remain fixed during stimulus process-
ing, and it is possible to obtain independent estimates of
the ease of lexical processing and the setting of decision
thresholds. In contrast, the deadline model bases its non-
word decision on a temporal deadline mechanism. Both
the deadline mechanism and the decision threshold for
words may change as lexical information accumulates.

We will show that the data from Experiments 1 and 2
are consistent with the diffusion model, but are inconsis-
tent with the deadline model. When the deadline model
is constrained to provide reasonable estimates for
response accuracy, it incorrectly predicts that ‘‘word’’
responses are faster than ‘‘nonword’’ responses, regard-
less of the experimental manipulation of response crite-
ria, and regardless of whether the presented letter string
is a word or a nonword. Furthermore, the deadline
model is unable to account for the ubiquitous right-skew
of the RT distributions.
The diffusion model for lexical decision

The diffusion model is a sequential sampling model for
two-choice RT tasks, and it has been successfully applied
to a number of paradigms such as short- and long-term
recognition memory, same/different letter string match-
ing, numerosity judgments, visual-scanning, brightness
discrimination, color discrimination, and letter discrimi-
nation (e.g., Ratcliff, 1978, 1981, 2002; Ratcliff & Rouder,
2000; Ratcliff et al., 1999; Voss, Rothermund, & Voss,
2004). In the diffusion model, binary decisions are the
result of the accumulation of noisy information over time
toward decision boundaries, as in Fig. 1, where the
boundaries are a and 0 and the starting point is z.

The mean rate of approach to a boundary is the drift
rate m (‘‘vee’’), and the variation of sample paths around
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this mean, called ‘‘within-trial’’ variability, is described by
the diffusion coefficient s2. This variability allows pro-
cesses with the same drift rate to reach the same boundary
at different times; it also allows processes to reach the
wrong boundary by mistake, yielding error responses
(the two undulating lines in Fig. 1, panel B). A criterion
is placed on the distribution of drift rate values such that
word stimuli and nonword stimuli generally have positive
and negative drift rates, respectively (for a discussion of
the drift rate criterion see Ratcliff, 1978, 1985; Ratcliff
et al., 1999). Drift rate is also a function of the quality
of the information extracted from the stimulus: when
stimuli are relatively difficult to classify, as is the case
for low frequency words or nonwords that are ortho-
graphically very similar to words, the absolute value of
drift rate is relatively low. When stimuli are relatively easy
to classify, as is the case for high frequency words or non-
words that are orthographically dissimilar to words, the
absolute value of drift rate is relatively high.

Speed–accuracy tradeoffs occur when the boundaries
are moved farther apart to produce slower and more
accurate responses or closer together to produce faster
and less accurate responses. Besides within-trial variabil-
ity in drift rate, the model assumes across-trial variability
in drift rate and across-trial variability in starting point.
Drift rates vary across trials to reflect variability across
nominally equivalent items (e.g., high frequency words).

In the diffusion model, components of processing
other than the decision process, (e.g., encoding and
response execution) are summarized into one parameter,
Ter, which represents the mean duration of these non-
decision processes. Like the other parameters just men-
tioned, the duration of the non-decision processes is
assumed to vary across trials. In Fig. 1, panel A, the
total RT generated by the model is a sum of the non-
decision time x and the decision time y.

To summarize, the parameters of the diffusion model
are: mean drift rate m; within-trial variability in drift rate,
s2 (s is a scaling parameter which is set to 0.1 in all fits);
across-trial variability in drift rate, which is assumed to
have a normal distribution with standard deviation g;
boundary separation a; mean starting point z; across-
trial variability in z, which is assumed to be uniformly
distributed with range sz; the mean time for non-decision
RT components Ter; and the across-trial variability in
Ter, which is assumed to be uniformly distributed with
range st (for more details see e.g., Ratcliff, 1978, 2002;
Ratcliff et al., 2004a; Ratcliff, Thapar, Gomez, & McK-
oon, 2004b; Ratcliff & Tuerlinckx, 2002).
Predictions of the diffusion model

The diffusion model makes several qualitative predic-
tions, that is, predictions that hold regardless of the par-
ticular values for the parameters (cf. Ratcliff, 2002). For
instance, it follows from the geometry of the model that
it can only predict right-skewed RT distributions, for
both ‘‘word’’ responses and ‘‘nonword’’ responses, and
for both correct responses and for error responses. The
right-skew occurs because differences in high values of
average drift on a trial produce small changes in RT
while the same size differences in low values of drift rate
produce large changes in RTs (cf. Ratcliff & Rouder,
1998, p. 348). The diagonal lines in Fig. 1, panel B that
begin at the starting point and terminate at the top
boundary illustrate this principle. The same size vertical
difference between pairs of these lines leads to small dif-
ferences for the shortest RTs and larger differences for
the longer RTs.

A second prediction is that both correct and incorrect
responses speed up when stimuli are easier to classify
(i.e., when the absolute value of drift rate increases).
That is, the diffusion model predicts that errors to rela-
tively easy stimuli such as high frequency words are fas-
ter than errors to relatively difficult stimuli such as low
frequency words. To appreciate the generality of this
prediction, note that when the starting point z is equidis-
tant from the two response boundaries and when there is
no across-trial variability in drift rate and starting point,
the model predicts that RT distributions for correct and
error responses are identical (e.g., Laming, 1973, p. 192,
footnote 7). In practical applications, the diffusion
model comes with across-trial variability in both drift
rate and starting point, and consequently the model no
longer predicts that the RT distributions for correct
and error responses are exactly identical. Nevertheless,
the model still predicts that when drift rate increases
(i.e., task difficulty decreases), both correct responses
and error responses will speed up.

As mentioned above, the across-trial variability in
drift rate (Ratcliff, 1978) and starting point allow the dif-
fusion model to account for errors that are either faster
or slower than correct responses. When across-trial var-
iability in drift rate is sufficiently large, error responses
are slower than correct responses (for details see Ratcliff
et al., 1999, 2004a; Ratcliff & Rouder, 1998, Fig. 2). In
contrast, sufficiently large across-trial variability in start-
ing point causes error responses to be faster than correct
responses: processes starting near the error boundary hit
it with shorter RTs and greater probability than pro-
cesses starting near the correct boundary, and their
weighted sum gives faster errors than correct responses
(Laming, 1968).

In a particular experimental situation, whether error
responses are faster or slower than correct responses, or
whether their relative speed varies across conditions of
the experiment, depends on the relative amounts of
across-trial variability in drift rate and starting point
(and how large they are relative to the magnitude of
the separation between boundaries and the magnitudes
of the drift rates). Consider the situation in which
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participants lower their response thresholds in order to
follow instructions to respond faster. The diffusion
model predicts that both correct responses and error
responses will speed up, but that the increase in speed
is larger for error responses. The explanation is that
under speed stress, boundary separation is relatively
small, and this increases the impact of variability in
starting point and decreases the impact of variability
in drift rate.

The above prediction is consistent with results from
lexical decision experiments reported in Ratcliff et al.
(2004a), who showed that fast participants (i.e., subjects
with relatively low response thresholds) have fast errors
and slow participants (i.e., subjects with relatively high
response thresholds) have slow errors. Experiment 1
tests this prediction more directly using a within-subjects
design in which response thresholds are manipulated
through instructions and feedback.
The deadline model for lexical decision

Two widely cited computational models of lexical
decision performance are the multiple read-out model
(MROM; Grainger & Jacobs, 1996) and the dual route
cascaded model (DRC; Coltheart et al., 2001). MROM
and DRC use the same mechanism for lexical decision;
in particular, both models assume that ‘‘nonword’’
responses are given when a temporal deadline is exceeded
(cf. Swensson, 1972; Yellott, 1971). The temporal dead-
line mechanism marks a major conceptual divide
between MROM and DRC on the one hand and the dif-
fusion model on the other.

In deadline models for lexical decision such as MROM
and DRC, activation from sub-lexical units such as fea-
tures (i.e., parts of letters) is transmitted to letters, and
subsequently to whole word representations. The flow
of activation between features, letters, and word units is
governed by a local connectionist model widely known
as the interactive activation model (McClelland & Rumel-
hart, 1981; Rumelhart & McClelland, 1982).

In the deadline model, it is assumed that during pro-
cessing of a presented letter string, the system has access
to and keeps track of three quantities: (1) the level of
activation corresponding to each word representation;
(2) the overall level of activation in the mental lexicon,
summed over all word representations; and (3) the time
since stimulus onset. Consequently, the deadline model
posits three response criteria, all of which fluctuate from
trial-to-trial according to a normal distribution. First, a
‘‘word’’ response is given when any of the representa-
tions for individual words reaches a threshold level of
activation (cf. Morton, 1969). This threshold is termed
the M-criterion and is the same for all word representa-
tions. The setting of the M-criterion is not under the sys-
tem’s control. Second, a ‘‘word’’ response is given when
the total amount of activation in the lexicon reaches a
threshold, and this threshold is termed the R-criterion.
In contrast to the M-criterion, the R-criterion is under
the system’s control. For instance, under instructions
that stress speed over accuracy, the system lowers the
R-criterion, allowing fast ‘‘word’’ responses to be made
at the cost of increased erroneous classifications of non-
word stimuli. Third, a ‘‘nonword’’ response is given
when neither the M-criterion nor the R-criterion has
been reached before a certain time criterion T. That is,
a ‘‘nonword’’ response is based on the absence of evi-
dence for a ‘‘word’’ response—after a certain amount
of processing has been completed without detecting a
word, the system times out and decides that the stimulus
letter string is a nonword. Like the R-criterion, the T-cri-
terion is not fixed and so can be lowered when response
speed is stressed (cf. Swensson, 1972, p. 30), allowing
fast ‘‘nonword’’ responses at the cost of more errors
on word stimuli.

The main problem for the deadline model as formu-
lated above is that it predicts that when participants cor-
rectly respond ‘‘nonword’’ at the same preset temporal
deadline, all types of nonwords should have the same
correct RTs. However, experiments have shown that
nonwords that are orthographically very similar to
words are correctly responded to slower than nonwords
that are not very similar to words (e.g., Coltheart, Dav-
elaar, Jonasson, & Besner, 1977). For example, correct
responses to nonword letter strings such as DRAPA
are slower than correct responses to nonword letter
strings such as PDRAA. In order for the deadline model
to account for this effect of nonword-to-word similarity,
an adjustment is required. The remedy is to assume that
the T-criterion is amendable to change during processing
of the stimulus (Coltheart et al., 1977). Specifically,
when early in processing considerable support is
detected for the stimulus being a word, as would be
the case for word-like nonwords, the system reacts by
lowering the R-criterion and increasing the T-criterion,
effectively facilitating ‘‘word’’ responses and inhibiting
‘‘nonword’’ responses. Thus, the T-criterion is increased
for word-like nonwords, slowing down the correct ‘‘non-
word’’ response.

At first consideration, the deadline model appears to
make several qualitative predictions, for example, that
‘‘nonword’’ responses to high frequency words are
slower than ‘‘nonword’’ responses to low frequency
words (e.g., Ratcliff et al., 2004a, p. 178). However,
because the deadline model is complex (in the same
way as the diffusion model), intuitions are often incor-
rect and therefore we studied the behavior of the dead-
line model by Monte Carlo simulations. An additional
advantage of this procedure is that it allows the deadline
model to be tested against the complete set of observed
phenomena simultaneously: the relative speeds of cor-
rect and error responses, the shapes of RT distributions,
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response accuracy, and the effects of experimental
manipulations.

In sum, the deadline model provides an account of
performance in the lexical decision task that is different
from the one provided by the diffusion model. In the
deadline model, ‘‘nonword’’ responses originate when
the system times out on the ‘‘word’’ response. Response
criteria can change during stimulus processing, and lex-
ical information may interact with response criteria. In
the diffusion model, no fundamental distinction between
‘‘word’’ and ‘‘nonword’’ responses exists. Response cri-
teria remain fixed during stimulus processing, and it is
possible to obtain independent estimates of the rate of
extraction of lexical information and the placement of
response criteria. It is of course possible that the dead-
line model’s more flexible and complex account of lexi-
cal processing is warranted by the data. To address
this issue, we will fit both the diffusion model and the
deadline model to the data from two experiments.
Experiment 1: Speed versus accuracy instructions

When the diffusion model was first applied to lexical
decision (Ratcliff et al., 2004a), the focus was on exper-
imental manipulations that affect the quality of lexical
information. These experimental manipulations
included word frequency and the use of pseudowords
such as DRAPA versus random letter strings such as
KDFEU. In contrast, Experiments 1 and 2 reported
here focus on experimental manipulations that are
thought to affect response criteria but not the quality
of lexical information.

In Experiment 1, subjects were instructed either to
respond as quickly as possible or to respond as accu-
rately as possible. Speed versus accuracy instructions
alternated across blocks of trials. In addition, word fre-
quency was varied from high to low to very low (mean
frequency values of 323.37, 4.41, and 0.38 per million;
Kucera & Francis, 1967).

The goal for the diffusion model was to account for all
aspects of the data for each condition of the experiment,
and this includes both response probability and the RT
distributions for correct and error responses. In the diffu-
sion model, the effects of varying levels of stimulus diffi-
culty are explained by changes only in drift rate, not any
other components of the model. Ratcliff et al. (2004a)
demonstrated that, with this assumption, the empirical
effects of word frequency and words versus nonwords
are well-described by the model. We expected to replicate
this finding in this experiment. Hence, among the high,
low, and very low frequency word conditions and the
nonword condition, only drift rate was free to vary. As
mentioned earlier, the diffusion model can account for
the speed–accuracy tradeoff with changes solely in
response criteria. Therefore, between the speed and accu-
racy conditions, only the distance between the nonword
boundary and the starting point and the distance
between the starting point and the word boundary were
free to vary. All other parameters of the model were held
constant across all the experimental conditions.

With the boundaries of the decision process closer
together with speed instructions, responses should be
faster and less accurate. Also, with the boundaries closer
together, the amount of variability in the starting point
is a larger proportion of the distance between the bound-
aries, and thus it has a larger effect compared to across-
trial variability in drift rate than it would with the
boundaries farther apart. Consequently, the diffusion
model predicts that by moving from accuracy to speed
instructions, error responses should speed up relative
to correct responses.

In the deadline model, speed instructions decrease
both the R-criterion and the T-criterion. Word fre-
quency affects the resting level of activation, such that
high frequency words start out closer to the M-criterion
(e.g., Grainger & Jacobs, 1996, p. 541). The simulations
presented below show how these assumptions affect the
predictions of the deadline model.

Method

Participants

Fifteen undergraduate students of Northwestern
University participated for course credit in this single-
session experiment. All participants were native speakers
of English.

Stimulus materials

The stimuli were taken from Ratcliff et al. (2004a).
The word stimuli consisted of 814 high frequency words
with frequencies ranging from 78 to 10,600 occurrences
per million (mean = 323.37, SD = 641.42, Kucera &
Francis, 1967), 858 low frequency words with frequen-
cies of 4 and 5 occurrences per million (mean = 4.41,
SD = .49), and 741 very low frequency words with fre-
quencies of 1 or 0 occurrences per million (mean = 0.38,
SD = .59). All the very low frequency words occurred in
the Webster’s Ninth Collegiate Dictionary (1990), and
they were screened by three Northwestern undergradu-
ate students—any words any one of the three students
did not know were eliminated. For each word, a non-
word was created by randomly replacing all vowels by
other vowels (except for ‘‘u’’ after ‘‘q’’), resulting in a
total of 2413 nonwords.

Design

The experiment consisted of a sequence of 22 blocks.
Speed versus accuracy instruction was manipulated
between blocks such that blocks in which speeded per-
formance was stressed alternated with blocks in which
accurate performance was stressed. The first two blocks



Table 1
Percentage errors, median correct RT (in ms), and median error
RT for high frequency (HF) words, low frequency (LF) words,
very low frequency (VLF) words, and nonwords (NW) as a
function of speed versus accuracy instructions, as observed in
the data from Experiment 1 and as obtained from the diffusion
model

Stimulus Observed data Diffusion model

Accuracy Speed Accuracy Speed

HF
% Errors 1.9 (.004) 7.4 (.011) 0.5 6.5
Correct RT 564 (16) 471 (8) 569 489
Error RT 563 (40) 441 (10) 612 468

LF
% Errors 6.0 (.010) 17.2 (.020) 5.0 16.4
Correct RT 636 (18) 510 (7) 639 508
Error RT 653 (48) 480 (11) 734 491

VLF
% Errors 14.7 (.014) 29.1 (.023) 13.6 26.0
Correct RT 674 (18) 525 (8) 695 518
Error RT 760 (51) 498 (13) 789 504

NW
% Errors 4.3 (.008) 11.4 (.015) 5.5 14.3
Correct RT 655 (19) 508 (9) 642 501
Error RT 718 (41) 488 (10) 748 504

Standard errors are given in parentheses.
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(the first block stressing accuracy, the second block
stressing speed) were for practice. Word frequency was
manipulated within the 20 experimental blocks such that
each block contained an equal proportion of high fre-
quency, low frequency, and very low frequency items,
and an equal proportion of nonword items derived from
high frequency, low frequency, and very low frequency
words. Each block contained an equal number of word
and nonword stimuli. The two practice blocks each con-
tained 15 stimuli, and the 20 experimental blocks each
contained 96 stimuli. Thus, participants were tested on
a total of 1950 letter strings. The stimuli were randomly
selected without replacement, and no participant was
presented with both a word and the nonword derived
from it. The stimuli were presented in random order.

Procedure

Stimuli were presented on a PC screen with responses
collected from the keyboard. Stimulus presentation and
response recording were controlled by a real-time com-
puter system.

Participants received verbal instructions explaining
the lexical decision task, the speed–accuracy require-
ments, and the alternation of speed and accuracy blocks.
Participants were instructed to press the ‘/’ key with
their right index finger when they believed the presented
letter string to be an English word and to press the ‘z’
key with their left index finger when they did not believe
the presented letter string to be an English word. In the
accuracy blocks, each of which was preceded by the mes-
sage ‘‘Try to respond accurately’’, the feedback message
‘‘ERROR’’ was presented for 800 ms after every errone-
ous response. In the speed blocks, each of which was
preceded by the message ‘‘Try to respond fast’’, the feed-
back message ‘‘TOO SLOW’’ was presented for 800 ms
after every trial for which the response latency exceeded
750 ms. In both the accuracy blocks and the speed
blocks, anticipatory responding was discouraged by
the 800 ms presentation of the feedback message
‘‘TOO FAST’’ after every trial for which the response
latency was shorter than 200 ms. The response–stimulus
interval was 150 ms.

The experimenter supervised performance during the
first two practice blocks. After each experimental block,
the participant had a self-paced break.

Results

Table 1 lists the main empirical results. Approxi-
mately 2% of all trials were excluded from the analyses,
either because the participant pressed an invalid key
(i.e., any other key than ‘/’ or ‘z’) or because the
response was diagnosed as an outlier (i.e., responses
shorter than 300 ms or longer than 2500 ms). The results
for words and nonwords were analyzed separately, as
were the results for correct RT, error RT, and response
accuracy. For word stimuli, the analysis of variance
(ANOVA) included speed versus accuracy instruction
and word frequency as within-subjects variables in a
repeated measures design. In order to make the statisti-
cal analysis consistent with the fits of the diffusion
model, which are based on quantiles, our statistical anal-
yses are based on the .5 quantile of the RT distribution
(i.e., median RT).

For word and nonword stimuli, instructions to focus
on speed decreased accuracy and decreased RT, for cor-
rect and error responses. Also, as word frequency
decreased, both correct and error responses slowed
and accuracy decreased. Instructions to respond quickly
decreased RT for error responses more than they
decreased RT for correct responses. Further, error
RTs for easy stimuli were shorter than error RTs for dif-
ficult stimuli. The next four paragraphs provide more
detailed statistical analyses.

For word stimuli, instructions to respond fast
reduced median correct RT, F(1,14) = 95.21, MSE =
3567, p < .001, and decreased accuracy, F(1,14) =
85.30, MSE = 0.003, p < .001. The effect of word fre-
quency was significant both for median correct RT,
F(2,28) = 224.91, MSE = 231, p < .001, and for accu-
racy, F(2,28) = 116.86, MSE = 0.002, p < .001. The lin-
ear contrast confirmed that an increase in word
frequency is accompanied by a decrease in median RT,
F(1,14) = 383.46, MSE = 260, p < .001, and an increase
in accuracy, F(1,14) = 138.00, MSE = 0.005, p < .001.



Table 2
Best-fitting parameter values for the diffusion model for the
data from Experiment 1

Parameters Accuracy instruction Speed instruction

a 0.159 0.084
z 0.079 0.040
Ter 0.408 -
sz 0.048 -
st 0.144 -
m(HF) 0.452 -
m(LF) 0.275 -
m(VLF) 0.180 -
m(NW) �0.264 -
g 0.116 -

Note. HF, high frequency word; LF, low frequency word; VLF
very low frequency word; and NW, nonword. A hyphen indi
cates that the parameter value was constrained to be identical to
the one in the adjacent column. See text for details.
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Instructions to respond fast likewise caused a
decrease in median RT for incorrect responses to word
stimuli (i.e., the median error RTs), F(1,10) = 24.87,
MSE = 20,541, p < .01. Word frequency also affected
median error RTs, F(2,20) = 13.41, MSE = 7849,
p < .001, and the linear contrast confirmed that an
increase in word frequency is associated with a decrease
in median error RT, F(1,10) = 21.58, MSE = 9640,
p < .01.

Table 1 shows that speed versus accuracy instructions
affected the relative speed of errors. Compared to med-
ian RT for correct responses, median RT for error
responses was relatively long when subjects were told
to respond accurately, and it was relatively short when
subjects were told to respond quickly. However, four
subjects did not make any errors for high frequency
words, and because these participants were excluded
from the ANOVA, the overall analysis including high
frequency, low frequency, and very low frequency words
just failed to reach significance at the .05 level,
F(1,10) = 4.76, MSE = 9111, p = .054. When high fre-
quency words were left out of the analysis, the effect of
speed instructions on the relative speed of errors did
reach the .05 level, F(1,14) = 6.90, MSE = 13,845,
p < .05, as was the case when the analysis was performed
over all four stimulus types (i.e., high frequency words,
low frequency words, very low frequency words, and
nonwords), F(1,10) = 8.17, MSE = 11,523, p < .05.

For nonword stimuli, the ANOVA included speed
versus accuracy instruction as a within-subjects variable
in a repeated measures design. Instructions stressing
speed lowered accuracy, F(1,14) = 24.04, MSE = 0.002,
p < .001, and caused a decrease in both median correct
RT and median error RT [F(1,14) = 126.49, MSE =
1290, p < .001 and F(1,14) = 36.17, MSE = 10,974,
p < .001, respectively]. Further, speed versus accuracy
instructions affected the relative speed of errors,
F(1,14) = 6.84, MSE = 7474, p < .05, as median error
RT for nonwords was relatively slow (compared to med-
ian correct RT for nonwords) when accuracy was
stressed, and relatively fast when speed was stressed (cf.
Table 1).

Diffusion model analysis

The results from Experiment 1 are qualitatively in
good agreement with the predictions of the diffusion
model discussed earlier. Specifically, the data show that
the relative speed of error RTs increased when speed was
stressed. In order to test whether the diffusion model
also provides a good quantitative account of the present
data, the model was fit to response proportions and to
RT distributions for correct responses and error
responses, for each experimental condition. Specifically,
the model was fit to the .1, .3, .5, .7, and .9 quantiles of
the group RT distributions. The group RT distributions
were obtained by averaging the quantiles from the indi-
vidual participants’ RT distributions. The diffusion
model can be fit using several methods (cf. Ratcliff &
Tuerlinckx, 2002)—here we used the v2 method because
it provides the best balance between robustness and the
ability to recover parameter values (for details see Rat-
cliff & Tuerlinckx, 2002).

Table 1 shows a comparison between the data in the
16 conditions and the results from the model for error
rates and the .5 quantiles (i.e., the medians), confirming
that the model can account for the observed results.
Note that the diffusion model appears to be in closer
correspondence to the data for correct responses than
for error responses. This is due to the fact that error
latencies are based on relatively few observations, and
consequently receive relatively little weight in the v2 fit-
ting procedure. Examination of the standard errors (see
the numbers in parentheses in Table 1) confirms that the
latencies for error responses are estimated less precisely
than the latencies for correct responses.

Table 2 gives the best-fitting parameter values of the
diffusion model for each condition. Recall that the only
parameter free to vary among the word and nonword
conditions was drift rate m: drift rate was larger for
higher frequency words than for lower frequency words
and drift rate was negative for nonwords. The only
parameters free to vary between the speed conditions
and the accuracy conditions were boundary separation
a and starting point z. The effects of the a and z values
interact with the effects of across-trial variabilities in
starting point and drift rate. With the boundaries rela-
tively close together (that is, with speed instructions),
the amount of variability in the starting point is propor-
tionally large relative to boundary separation and so
error responses tend to be faster than correct responses.
With the boundaries farther apart, variability in the
starting point is proportionally smaller and so the effect
,
-
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of across-trial variability in drift rates dominates, with
the consequence that error responses tend to be slower
than correct responses.

Fig. 2, top-left panel, plots the RT distributions for
correct responses under accuracy instructions. For each
stimulus type (i.e., high frequency words, low frequency
words, very low frequency words, and nonwords), the x-
axis shows the probability of a correct response. The five
vertical Xs correspond to the observed RT quantiles.
The separation between the Xs at the top (i.e., the .7
and .9 quantiles) is much larger than the separation
between the dots at the bottom (i.e., the .1 and .3 quan-
Fig. 2. Empirical (Xs) and predicted (+s) .1, .3, .5, .7, and .9 quant
variability from bootstrap simulations from the data. HF, high frequ
word; and NW, nonword. The x-axis shows response accuracy. Top-l
panel: incorrect responses in the accuracy condition; bottom-left pane
incorrect responses in the speed condition.
tiles), showing the general finding that RT distributions
are skewed to the right. The grey dots scattered around
the Xs indicate the variability in the data, as obtained by
a bootstrap procedure (Efron & Tibshirani, 1993) in
which sampling with replacement was performed simul-
taneously on the level of participants and on the level of
trials (for details see Ratcliff et al., 2004a). The five ver-
tical +s indicate the quantile RT predictions of the dif-
fusion model. The dispersion along the y-axis and the
x-axis corresponds to variability in the RT quantiles
and variability in the response probabilities, respectively
(see also Ratcliff, Thapar, & McKoon, 2006, p. 357).
iles for RT distributions in Experiment 1. The grey dots show
ency word; LF, low frequency word; VLF, very low frequency
eft panel: correct responses in the accuracy condition; top-right
l: correct responses in the speed condition; bottom-right panel:



1 We used the interactive activation model as programmed by
Walter van Heuven. This program is publicly available at
http://www.psychology.nottingham.ac.uk/staff/wvh/jiam/.
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Fig. 2, top-right panel, plots the RT distributions for
incorrect responses under accuracy instructions. Fig. 2,
bottom-left and bottom-right panels, shows the RT distri-
butions for correct and error responses, respectively,
under speed instructions. The relatively good agreement
between the data and the model further demonstrates that
the models qualitative predictions are supported by a
detailed and accurate quantitative account. The model’s
predictions generally fall within the range of variability
of the data indicated by the grey dots. The fit is particu-
larly good when instructions stress speed (bottom panels).
When instructions stress accuracy, the top panels of Fig. 2
show that the model fits the higher quantiles worse than it
does the lower quantiles. However, these high quantiles
are also the most variable, especially for error responses.

By comparing the distributions of the correct
responses in the top-left panel of Fig. 2 to the distribu-
tions of error responses in the top-right panel, it is
immediately apparent that errors are slower than correct
responses when instructions stress accurate responding.
By comparing the bottom two panels it is also obvious
that the differences between correct and error RT distri-
butions are attenuated when instructions stress speed,
and, in fact, that error RTs are slightly faster than cor-
rect RTs. Fig. 2 also shows that the distributions for
‘‘nonword’’ responses, whether correct or in error, are
skewed to the right, much like the distributions of
responses to low frequency and very low frequency
words (cf. Ratcliff, 2002).

Deadline model analysis

To study the behavior of the deadline model, we
repeatedly presented the model with a subset of the
words and nonwords from Experiment 1. For each stim-
ulus presentation, we monitored the number of cycles
before a decision threshold was reached, and the identity
of that threshold (i.e., the M-criterion and the R-crite-
rion for a ‘‘word’’ response, and the T-criterion for a
‘‘nonword’’ response). The details of the simulation
are presented below.

Note that, as mentioned earlier, the interactive activa-
tion model (McClelland & Rumelhart, 1981; Rumelhart
& McClelland, 1982) prescribes the changes in activation
of sub-lexical and lexical units from the time since stim-
ulus onset. The three thresholds of the deadline model
effectively monitor the output of the interactive activa-
tion model and allow the system to stop processing infor-
mation and give a response. This means that the set of
parameters for the deadline model comprises both the
parameters of the interactive activation model and the
parameters of the deadline decision structure.

Materials and procedure

All letter strings presented to the model were four let-
ter words and nonwords that were used in Experiment 1
and that did not include the letters X, Q, or Z. The con-
straints of string length (i.e., only four-letter strings) and
letter identity (i.e., no X, Q, or Z) were imposed by the
version of the interactive activation model that was
used.1 Consequently, the set of letter strings presented
to the deadline model consisted of (a) 114 high fre-
quency words with frequencies higher than 100 per mil-
lion (mean = 594, SD = 1090); (b) 97 low frequency
words with frequencies between 4 and 5 per million
(mean = 4.5, SD = .5); and (c) 98 nonwords. In order
to obtain a reliable indication of the model’s predictions
and reduce the impact of noise in the simulations, 10,000
items were randomly selected with replacement from
each of the three stimulus categories. The 30,000 items
were then presented to the model one by one.

Parameters

The parameters of the interactive activation model
were set at their default values (Grainger & Jacobs,
1996; McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982). Feature-to-letter excitation was set
to .005, and feature-to-letter inhibition was equal to
.15. Letter-to-word excitation was .07, and letter-
to-word inhibition equaled .04. Finally, word-to-letter
feedback excitation was .3, and word-to-word lateral
inhibition was .21. The MROM implementation of the
interactive activation model does not have lateral inhibi-
tion between letter units.

The parameter values for the deadline decision crite-
ria are shown in Table 3. These parameter values are as
close as possible to the ones reported by Grainger and
Jacobs (1996), while maintaining a reasonable fit to
the observed levels of accuracy. We experimented with
a number of other criterion settings, but this only wors-
ened the overall performance of the model. To accom-
modate the effect of instructions stressing speed instead
of accuracy, the R-criterion was lowered from 1.5 to
0.7, and the T-criterion was lowered from 22 cycles to
18 cycles. In the deadline model, these criteria are the
only two that are allowed to vary with speed–accuracy
instructions. Note that the three decision criteria M, R,
and T all vary normally around a mean value. This
ensures that when the deadline model is presented with
the same letter string, it does not always output the exact
same response after exactly the same amount of process-
ing (cf. Jacobs & Grainger, 1992).

Parameters DR and DT quantify the size of the
within-trial adjustment for the R-criterion and the T-cri-
terion, respectively. Consider the summed amount of
activation across all the word units after seven cycles,
and denote this quantity r(7). When r(7) exceeds a

http://www.psychology.nottingham.ac.uk/staff/wvh/jiam/


Table 3
Parameter values for the multiple read-out model as applied to Experiments 1 and 2

M-criterion R-criterion T-criterion

Mean SD Mean SD DR LR Mean SD DT LT

Experiment 1
Accuracy .65 .04 1.5 .55 .15 .38 22 2 2 .22
Speed .65 .04 0.7 .55 .15 .38 18 2 2 .22

Experiment 2
75% Words .65 .04 0.7 .55 .15 .38 22 2 2 .22
75% NW .65 .04 1.5 .55 .15 .38 18 2 2 .22

Note. NW stands for ‘‘nonwords’’, SD indicates the standard deviation of a normal distribution, and DR and DT quantify the size of
the within-trial adjustment for the R-criterion and the T-criterion, respectively. The within-trial adjustments only occur when the
threshold levels of global activation (LR for the R-criterion and LT for the T-criterion) are exceeded. The bold numbers indicate values
that change as a function of the experimental conditions. See text for details.
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prespecified threshold level (i.e., LR), the mean value of
the R-criterion is lowered by a value of DR, in anticipa-
tion of the stimulus being a word. When r(7) exceeds a
possibly different prespecified threshold level (i.e., LT),
the mean value of the T-criterion is increased by a value
of DT, in anticipation of the stimulus not being a non-
word. This means that when global activation is rela-
tively high early in processing, the model anticipates
that the stimulus will be a word and adjusts its decision
criteria accordingly (cf. Grainger & Jacobs, 1996). In
sum, the decision structure of the deadline model is char-
acterized by ten parameters: the mean and standard
deviation of the three criteria (i.e., M, R, and T), the
within-trial adjustments DR and DT, and the corre-
sponding threshold levels for the summed activation
after seven cycles (i.e., LR and LT).

Simulation results

The simulation results for Experiment 1 are shown in
Table 4 and Fig. 3. The model predicts that ‘‘word’’
Table 4
Percentage errors, median correct RT, and median error RT (mean R
(LF) words, and nonwords (NW) as a function of speed instructions (
from the multiple read-out model

Stimulus Experiment 1

Accuracy Speed

HF
% Errors 1.6 9.4
Correct RT 16 [16.7] 16 [15.0]
Error RT 23 [23.0] 18 [18.3]

LF
% Errors 19.8 30.0
Correct RT 17 [17.5] 17 [16.1]
Error RT 23 [22.8] 18 [18.5]

NW
% Errors 4.5 6.7
Correct RT 23 [23.2] 19 [19.2]
Error RT 19 [19.5] 14 [13.7]

All RTs are in cycles.
responses are faster than ‘‘nonword’’ responses, for all
experimental conditions and regardless of whether the
response was correct or in error. Specifically, for both
high frequency and low frequency word stimuli the
deadline model generates correct RTs (i.e., ‘‘word’’
responses) that are shorter than error RTs (i.e., ‘‘non-
word’’ responses). This difference between correct RTs
and error RTs is attenuated—but not reversed—when
the emphasis is on speed rather than on accuracy. For
nonword stimuli, the deadline model generates correct
RTs (i.e., ‘‘nonword’’ responses) that are consistently
longer than error RTs (i.e., ‘‘word’’ responses), both
when instructions stress accuracy and when instructions
stress speed. This reveals a deficiency of the model, as
the data from Experiment 1 indicate that under instruc-
tions to respond accurately, correct ‘‘nonword’’
responses are in fact 63 ms faster than incorrect ‘‘word’’
responses. The reason that the deadline model incor-
rectly predicts correct ‘‘nonword’’ responses to be slower
than incorrect ‘‘word’’ responses is due to the mecha-
T is in brackets) for high frequency (HF) words, low frequency
Experiment 1) and list composition (Experiment 2), as obtained

Experiment 2

75% Words 75% Nonwords

1.0 12.4
16 [15.4] 16 [16.4]
23 [22.9] 18 [18.2]

18.4 33.1
17 [16.5] 17 [17.1]
23 [22.8] 18 [18.5]

9.4 2.1
23 [23.2] 19 [19.2]
16 [15.8] 17 [17.4]
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Fig. 3. MROM simulation results for Experiment 1. The distributions are density estimates based on discrete cycle times.
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nism responsible for the ‘‘nonword’’ response. In the
deadline model, the ‘‘nonword’’ response is a default
response, that is, a response that is only made when
the system has failed to detect sufficient evidence to sup-
port a ‘‘word’’ response. Such a temporal deadline
mechanism makes it very difficult for the deadline model
to generate ‘‘nonword’’ responses that are faster than
‘‘word’’ responses.

Fig. 3 also shows that the RT distributions are not
skewed to the right. Most distributions are approxi-
mately normal, and some are even skewed to the left.
This is in strong contradiction to the data from Experi-
ment 1; Fig. 2 shows that all 16 RT distributions are
clearly right-skewed. This can be seen most easily from
Fig. 2 by comparing the distance between the lower RT
quantiles to the distance between the upper quantiles.

Discussion

As expected, speed versus accuracy instructions had a
large impact on lexical decision performance. When
instructions stressed response speed instead of response
accuracy, error rate greatly increased, and median RT
greatly decreased (cf. Table 1). Fig. 2 shows that the
RT distributions also changed in shape: the characteris-
tic right-skew is much less pronounced under instruc-
tions that stress speed than it is under instructions that
stress accuracy (note the different scale on the y-axis
between the top two panels and the bottom two panels).
The diffusion model accounted for all of the effects of
speed versus accuracy instructions with just two param-
eters, boundary separation a and starting point z, free to
vary between the speed condition and the accuracy con-
dition. Of particular importance here is the fact that the
decrease in boundary separation due to speed instruc-
tions reduced error RTs to a greater extent than it
reduced correct RTs—a detailed and non-intuitive pre-
diction that was borne out by the data.

The present lexical decision experiment used a
within-subjects manipulation of speed versus accuracy
instructions. In the diffusion model, this manipulation
affects response conservativeness (i.e., boundary separa-
tion). Boundary separation indirectly affects the balance
between trial-to-trial variability in starting point and
trial-to-trial variability in drift rate: when boundary sep-
aration is relatively small, the impact of trial-to-trial var-
iability in starting point is relatively strong, and this
prominent role of starting point variability results in rel-
atively fast errors. Swensson (1972) and Ratcliff and
Rouder (1998, Experiment 1) also used this particular
experimental design to study the RT difference between
correct responses and error responses. Swensson used an
intricate pay-off system to influence the tradeoff between
speed and accuracy, whereas Ratcliff and Rouder used
instructions that stressed either accurate or speedy per-
formance. Both studies used a task that is different from
lexical decision (i.e., judging the brightness of pixel
arrays in the Ratcliff and Rouder study; judging the



2 Ratcliff (1985) and Ratcliff et al. (1999) found that changes
in the drift criterion are sometimes capable of producing effects
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slant of a rectangle in the Swensson study). The
observed patterns of results with respect to the impact
of instructions or pay-offs was consistent with the pat-
tern observed in Experiment 1 here: errors were faster
than correct responses in the speed conditions, and
errors were slower than correct responses in the accuracy
conditions.

Recently, several aging studies have also included a
speed–accuracy manipulation (i.e., Ratcliff, Thapar, &
McKoon, 2001; Ratcliff et al., 2004b; Thapar, Ratcliff,
& McKoon, 2003). These studies used tasks in which
error RTs were always longer than correct RTs; apart
from the errors being slower than correct responses,
the pattern of results was similar to the one reported
here.

In addition to a manipulation of speed versus accu-
racy instructions, Experiment 1 also featured a manipu-
lation of word frequency. The diffusion model accounted
for the effects of word frequency with just one parame-
ter, mean drift rate m, free to vary. The model predicts
that the effect of speed instructions is particularly pro-
nounced for words with low drift rates, that is, words
that have a relatively low frequency of occurrence.
Again, this prediction was confirmed by the data.

In contrast to the diffusion model, the deadline model
could not account for the data from Experiment 1. In
particular, the model consistently predicts that ‘‘word’’
responses should be faster than ‘‘nonword’’ responses.
Under instructions that stress accurate responding, this
prediction is correct for word stimuli, but it is incorrect
for nonword stimuli. It appears to be problematic for
any kind of temporal deadline model to handle situa-
tions in which responses that come about by exceeding
the temporal deadline (i.e., ‘‘nonword’’ responses) are
faster than responses that originate from processes that
operate prior to the temporal deadline (i.e., ‘‘word’’
responses).

In addition, Fig. 3 shows that the deadline model
does not produce RT distributions that are right-
skewed. In contrast, the diffusion model predicts that
all RT distributions, and particularly those distributions
for stimuli that are difficult to classify, should be skewed
to the right. The data from Experiment 1 support the
diffusion model, but not the deadline model: both the
distribution of correct responses to nonword stimuli
and the distributions of error responses to word stimuli
are markedly non-normal, having pronounced long tails.
similar to those caused by changes in the starting point of the
diffusion process. The drift criterion is the point on the drift
dimension chosen so that drift rate equals zero, analogous to
the zero point of strength in a signal detection analysis. Note,
however, that the two parameters can be differentiated, as a
change in starting point affects the leading edge more than the
drift rate criterion does. For the data presented here, the fits
show that the drift criterion is almost constant in fits where it is
allowed to vary so we do not consider it further (for similar
results, see Ratcliff & Smith, 2004, Experiment 3).
Experiment 2: Word/nonword proportion effects

From a diffusion model perspective, Experiment 1
influenced the distance between the starting point and
the decision boundaries via speed versus accuracy
instructions. In Experiment 2, this distance was influ-
enced by manipulating the proportions of word stimuli
versus nonword stimuli from 75% words to 75% non-
words. With a high proportion of words, the starting
point moves toward the word boundary and away from
the nonword boundary, and vice versa with a high pro-
portion of nonwords.2 Consequently, with 75% words,
correct responses to words and error responses to non-
words are speeded relative to 75% nonwords. With
75% nonwords, correct ‘‘nonword’’ responses and error
responses for words are speeded relative to 75% words.

As mentioned earlier, the diffusion model also pre-
dicts that the RT distributions for the relatively fast deci-
sions (i.e., correct responses to likely stimuli and
incorrect responses to unlikely stimuli) will show much
less spread than the RT distributions for the relatively
slow decisions (i.e., correct responses to unlikely stimuli
and incorrect responses to likely stimuli). In addition,
when the starting point z is moved toward the boundary
of the more likely response, the diffusion model predicts
that the RT distributions will shift, including the leading
edge of the distribution (Ratcliff & Smith, 2004, Experi-
ment 3); this occurs because a change in starting point
reduces the distance to the favored response boundary,
reducing the time needed to reach that boundary for both
fast and slow processes. The prediction of a shift in the
leading edge is important, as the leading edge is usually
relatively robust against experimental manipulations.

As in Experiment 1, the other model under consider-
ation is the deadline model. The effect of word/nonword
proportion can be accommodated in the deadline model
by adjusting the R-criterion and the T-criterion. Specif-
ically, with 75% words the model anticipates that the
stimulus will be a word, and does so by lowering the
R-criterion and heightening the T-criterion. Conversely,
with 75% nonwords the model anticipates that the stim-
ulus will be a nonword; this results in heightening the
R-criterion and lowering the T-criterion.

Based on the simulations from Experiment 1, it was
expected that the deadline model would not be able to
account for the fact that ‘‘nonword’’ responses can be
faster than ‘‘word’’ responses, and that the deadline
model would again fail to capture the right-skew that
is characteristic of RT distributions.



Table 5
Percentage errors, median correct RT (in ms), and median error
RT for high frequency (HF) words, low frequency (LF) words,
very low frequency (VLF) words, and nonwords (NW) as a
function of list composition, as observed in the data from
Experiment 2 and as obtained from the diffusion model

Stimulus Observed data Diffusion mode

75% W 75% NW 75% W 75% NW

HF
% Errors 1.0 (.002) 5.5 (.012) 0.2 5.2
Correct RT 492 (16) 564 (11) 510 573
Error RT 554 (61) 469 (18) 623 487

LF
% Errors 3.7 (.007) 19.0 (.029) 3.2 18.8
Correct RT 555 (19) 632 (14) 550 638
Error RT 743 (37) 538 (32) 739 526

VLF
% Errors 10.8 (.010) 29.0 (.028) 9.2 31.4
Correct RT 595 (21) 673 (17) 574 674
Error RT 739 (29) 536 (29) 778 548

NW
% Errors 13.7 (.017) 2.7 (.003) 16.0 4.0
Correct RT 669 (17) 548 (21) 671 532
Error RT 569 (34) 745 (35) 555 690

Standard errors are in parentheses.
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Method

Experiment 2 was methodologically similar to Exper-
iment 1. Blocks of trials with 75% words alternated with
blocks with 75% nonwords, and each block included
high, low, and very low frequency words.

Participants

Nineteen undergraduate students of Northwestern
University participated for course credit in this single-
session experiment. All participants were native speakers
of English.

Stimulus materials

The same pools of words and nonwords were used as
in Experiment 1.

Design

The experiment consisted of a sequence of 21 blocks.
List composition was manipulated between blocks such
that blocks containing 75% words alternated with blocks
containing 75% nonwords. The first block was for prac-
tice and contained 15 words and 15 nonwords. The first
experimental block contained 75% words. As in Experi-
ment 1, word frequency was manipulated within the 20
experimental blocks such that each block contained an
equal proportion of high frequency, low frequency,
and very low frequency items, and an equal proportion
of nonword items derived from a high frequency, low
frequency, or very low frequency word. The practice
block contained 30 stimuli, and each of the 20 experi-
mental blocks contained 96 stimuli.

Procedure

The 75% word blocks were preceded by the message
‘‘Mainly Words in this list’’, and the 75% nonword
blocks were preceded by the message ‘‘Mainly Non-
words in this list’’. The feedback message ‘‘ERROR’’
was presented for 800 ms after every erroneous response.
Because the instructions did not stress speed, anticipa-
tory responding was not discouraged via the feedback
message ‘‘TOO FAST’’ as it was in Experiment 1. The
experimenter supervised performance during the prac-
tice block.

Results

The main empirical results from Experiment 2 (i.e.,
the effects of list composition and word frequency) are
listed in Table 5. Approximately 1.5% of all trials were
excluded from the analysis, either because the partici-
pant made an invalid key press, or because the response
was diagnosed as an outlier (i.e., responses faster than
300 ms or slower than 2500 ms). The results for words
and nonwords were analyzed separately, as were the
results for correct RT, error RT, and accuracy. For
word stimuli, the ANOVA included list composition
and word frequency as within-subjects variables in a
repeated measures design.

‘‘Word’’ responses, whether correct or in error, were
faster in the 75% word condition than in the 75% non-
word condition. ‘‘Nonword’’ responses showed the
opposite pattern: whether correct or in error, ‘‘non-
word’’ responses were faster in the 75% nonword condi-
tion than in the 75% word condition. As in Experiment
1, both correct and error responses slowed as word fre-
quency decreased, and accuracy decreased. The next
three paragraphs provide more detailed statistical
analyses.

Accuracy was higher and correct responses to word
stimuli were faster in the 75% word condition as com-
pared to the 75% nonword condition, F(1,18) = 80.70,
MSE = 2022, p < .001 and F(1,18) = 44.92, MSE =
0.01, p < .001, respectively. Word frequency affected
both median correct RT, F(2,36) = 133.00, MSE = 816,
p < .001, and accuracy, F(2,36) = 91.82, MSE = 0.003,
p < .001. The linear contrasts confirmed that an increase
in word frequency was accompanied by a decrease in
median correct RT, F(1,18) = 157.00, MSE = 1356,
p < .001, and an increase in accuracy, F(1,18) = 132.61,
MSE = 0.004, p < .001.

Errors for word stimuli were faster in the 75% non-
word condition than in the 75% word condition,
F(1,11) = 19.95, MSE = 25,630, p < .01. Word fre-
quency affected median error RT, F(2,22) = 3.16,
MSE = 1711, p = .031, one-tailed. The linear contrast
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showed that median error RT increased as word fre-
quency decreased, F(1,11) = 4.61, MSE = 15,832,
p = .028, one-tailed. For words, list composition affected
the relative speed of errors, F(1,11) = 32.40,
MSE = 36,287, p < .001, as median error RT was rela-
tively slow in the 75% word condition, and relatively fast
in the 75% nonword condition.

For nonword stimuli, the ANOVA included list com-
position as a within-subjects variable in a repeated mea-
sures design. Compared to the 75% nonword condition,
nonword stimuli presented in the 75% word condition
were responded to less accurately, F(1,18) = 45.92,
MSE = 0.002, p < .001, more slowly when correct,
F(1,18) = 141.13, MSE = 987, p < .001, but faster when
in error, F(1,18) = 28.25, MSE = 10,340, p < .001. List
composition affected the difference between correct RT
and error RT, F(1,18) = 61.93, MSE = 13,478, p < .001,
such that errors were faster than correct responses in the
75% word condition, but slower than correct responses
in the 75% nonword condition.

In sum, the results of Experiment 2 are consistent
with the qualitative predictions from the diffusion
model. ‘‘Word’’ responses, whether correct or in error,
were faster in the 75% word condition than in the 75%
nonword condition. Similarly, ‘‘nonword’’ responses,
whether correct or in error, were faster in the 75% non-
word condition than in the 75% word condition.

Diffusion model analysis

The previous analyses demonstrated that results are
consistent with the diffusion model on a qualitative level.
To show that the diffusion model can also quantitatively
account for the observed results, the model was fit to the
data from Experiment 2 in the same fashion as for Exper-
iment 1 (i.e., group RT distributions were constructed
separately for correct responses and errors using quantile
averaging, and the v2 method was used to minimize the
discrepancy between the model and the data). Table 5
allows a quick comparison between the most important
aspects of the data and the fits of the model, whereas
Fig. 4 gives a complete summary of the fits of the diffu-
sion model to the data over all five RT quantiles.

Table 5 shows a comparison between the data in the
16 conditions and the results from the model for error
rates and the .5 quantiles (i.e., the medians), and this
confirms that the model can account for the observed
results. As in Experiment 1, the diffusion model appears
to be in closer correspondence to the data for correct
responses than for error responses, due to the fact that
the error latencies are much more variable than the
latencies for correct responses.

Fig. 4, top-left panel, plots the RT distributions for
correct responses in the 75% word condition. As in
Fig. 2, for each stimulus type (i.e., high frequency words,
low frequency words, very low frequency words, and
nonwords), the x-axis shows the probability of a correct
response. The five vertical Xs correspond to the observed
RT quantiles. The grey dots scattered around the Xs indi-
cate variability in the data. The five vertical +s corre-
spond to the predicted RT quantiles. Fig. 4, top-right
panel, plots the RT distributions for incorrect responses
in the 75% word condition. For the 75% nonword condi-
tion, Fig. 4, bottom-left panel, plots the RT distributions
for correct responses, and Fig. 4, bottom-right panel,
shows the RT distributions for incorrect responses.

Fig. 4 demonstrates that the diffusion model is able to
account for response probability and for the shape of RT
distributions for correct and error responses. The diffu-
sion model’s predictions are very close to the observed
data, and almost never fall outside of the variability in
the data that is indicated by the gray dots. By comparing
the left panels to the right panels, it is evident that the RT
distribution of correct responses for a particular type of
stimulus differs from its error RT counterpart. This dif-
ference is particularly pronounced in the leading edge
of the distribution, that is, in the .1 quantile.

Also note that within each of the four panels, the lead-
ing edge of the RT distribution associated with nonword
stimuli differs from that associated with word stimuli.
That is, the leading edge of the RT distribution for non-
word stimuli is either shorter than those for word stimuli
(i.e., top-right and bottom-left panels), or it is longer (i.e.,
top-left and bottom-right panels). According to the diffu-
sion model, in the 75% word condition the starting point
is close to the word boundary. Consequently, the earliest
‘‘word’’ responses will be relatively fast, and the earliest
‘‘nonword’’ responses will be relatively slow. Fig. 4
shows that this pattern holds irrespective of whether
the response was correct or in error. In the 75% nonword
condition, the starting point is close to the nonword
boundary, and the opposite pattern of results is obtained.
That is, the earliest ‘‘word’’ responses will be relatively
slow, and the earliest ‘‘nonword’’ responses will be rela-
tively fast, regardless of whether the response was correct
or incorrect (cf. Fig. 4, bottom two panels).

Table 6 provides the values for the parameter esti-
mates. The diffusion model captures the large perfor-
mance differences, 15% in response accuracy and 100–
200 ms in the median RTs, with only two parameters
free to vary. First, the starting point z was closer to
the boundary for the more frequently presented stimulus
type. Second, the boundary separation a increased by
10% when the stimuli consisted of 75% words. Also, as
in Experiment 1, varying only the mean drift rate param-
eter, m, accounted for all the effects of word frequency.

Deadline model analysis

The simulations of the deadline model parallel those
for Experiment 1. Word and nonword stimuli used in
the experiment were repeatedly presented to the deadline



Fig. 4. Empirical (Xs) and predicted (+s) .1, .3, .5, .7, and .9 quantiles for RT distributions in Experiment 2. The grey dots show
variability from bootstrap simulations from the data. HF, high frequency word; LF, low frequency word; VLF, very low frequency
word; and NW, nonword. The x-axis shows response accuracy. Top-left panel: correct responses in the 75% word condition; top-right
panel: incorrect responses in the 75% word condition; bottom-left panel: correct responses in the 75% nonword condition; bottom-right
panel: incorrect responses in the 75% nonword condition.
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model, and its performance was monitored in terms of
RT (i.e., number of cycles until a decision threshold is
reached) and response choice (i.e., ‘‘word’’ or ‘‘non-
word’’, depending on which decision threshold was
reached first).

Materials and procedure

The materials and procedure were identical to ones
used in the deadline model simulations that followed
Experiment 1.
Parameters

The parameter values for the interactive activation
model were left unchanged at their default values. The
parameter values for the decision criteria are shown in
Table 3. In Experiment 1, speed versus accuracy instruc-
tions affected the R-criterion and the T-criterion in the
same fashion, that is, both criteria were lowered under
instructions to respond quickly. In the simulation of
Experiment 2, the experimental manipulation of response
criteria affects the R-criterion and the T-criterion in



Table 6
Best-fitting parameter values for the diffusion model for the
data from Experiment 2

Parameters 75% Words 75% Nonwords

a 0.130 0.118
z 0.085 0.039
Ter 0.422 -
sz 0.041 -
st 0.151 -
m(HF) 0.476 -
m(LF) 0.260 -
m(VLF) 0.169 -
m(NW) �0.252 -
g 0.101 -

Note. HF, high frequency word; LF, low frequency word; VLF,
very low frequency word; and NW, nonword. A hyphen indi-
cates that the parameter value was constrained to be identical to
the one in the adjacent column. See text for details.
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opposite directions. That is, the R-criterion is lower in the
75% word condition than in the 75% nonword condition,
whereas the T-criterion is higher in the 75% word condi-
tion than it is in the 75% nonword condition. Again, the
parameter values were as close as possible to the ones
reported by Grainger and Jacobs (1996), while providing
a reasonable fit to the observed levels of accuracy.

Simulation results

The simulation results for Experiment 2 are shown in
Table 4 and Fig. 5. For both high frequency and low fre-
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Fig. 5. MROM simulation results for Experiment 2. The distrib
quency words, the deadline model generates incorrect
‘‘nonword’’ responses that are slower than correct
‘‘word’’ responses. This is inconsistent with the data:
in the 75% nonword condition, incorrect ‘‘nonword’’
responses are about 100 ms faster than correct ‘‘word’’
responses. For nonword stimuli, the deadline model pre-
dicts that incorrect ‘‘word’’ responses should be faster
than correct ‘‘nonword’’ responses. This prediction
holds true for the 75% word condition, but it fails for
the 75% nonword condition, in which errors are about
200 ms slower than correct responses. Thus, as in the
previous simulation, the deadline model has a major
problem accounting for ‘‘nonword’’ responses that are
faster than ‘‘word’’ responses.

In addition, the deadline model does not generate RT
distributions that have the correct shape. An examina-
tion of Fig. 4 shows that the data from all 16 conditions
are clearly skewed to the right, having a pronounced
right tail (i.e., in Fig. 4, the difference between the lower
RT quantiles is much smaller than the difference
between the upper RT quantiles). In contrast, Fig. 5
shows that the model predicts RT distributions to be
normal, or even skewed to the left.

Discussion

The present results show that participants adjust
their criterion settings to reflect the statistical regularities
in the lists of stimuli: responses to the less probable stim-
ency Words

20 25 30 35

ency Words

20 25 30 35

words

ime in Cycles
20 25 30 35

utions are density estimates based on discrete cycle times.



156 E.-J. Wagenmakers et al. / Journal of Memory and Language 58 (2008) 140–159
uli are slower and less accurate than responses to the
more probable stimuli. That is, with 75% words in a list,
median correct RT for word stimuli is shorter than med-
ian error RT for word stimuli. With 75% nonwords in a
list, median correct RT for word stimuli is longer than
median error RT for word stimuli. This pattern of
results reverses for nonword stimuli. The above effects
on RT are evident for the entire RT distribution, includ-
ing the leading edge. Response accuracy is also affected
by list composition: for word stimuli, error rate is lowest
for lists with 75% words, whereas for nonword stimuli,
error rate is lowest for lists with 75% nonwords.

Quantitative fits demonstrate that the diffusion
model can parsimoniously account for the effects of list
composition in lexical decision. By altering only those
parameters that are associated with criterion settings,
the diffusion model captures the effects of list composi-
tion on error rate and on the shape of the RT distribu-
tions for both correct and error responses. In particular,
the diffusion model correctly predicts a shift in the lead-
ing edge of the RT distributions as a function of the
experimental manipulation. By varying only the drift
rate parameter, the diffusion model also captures the
effects of word frequency: low frequency words are
responded to slower than high frequency words, and this
effect is particularly pronounced in the tails of the RT
distributions (i.e., the .9 quantile).

As in Experiment 1, the deadline model failed to
account for the data, even qualitatively. For levels of
response accuracy in the range of the empirical data,
the model does not produce ‘‘nonword’’ responses that
are faster than ‘‘word’’ responses. In the 75% nonword
condition, ‘‘nonword’’ responses are generally much fas-
ter than ‘‘word’’ responses, regardless of whether the
response is correct or in error. Also, as in Experiment
1, the observed RT distributions are markedly non-nor-
mal. Fig. 4 demonstrates that all RT distributions are
skewed to the right, having long tails. The deadline
model produces normal or left-skewed distributions.
General discussion

In Experiments 1 and 2, we manipulated response cri-
teria settings in lexical decision through speed–accuracy
instructions and through the proportions of words ver-
sus nonwords in the test lists. The question was whether
the diffusion and deadline models could account for the
experimental results.

The diffusion model makes several strong predictions
about the effects of manipulations that lead to changes
in criterion settings. Moving from accuracy to speed
instructions, error RTs should decrease relative to correct
RTs. When the proportions of words versus nonwords
are varied, responses to the less probable stimuli should
be slower and less accurate than responses to the more
probable stimuli. The RT distributions for the less prob-
able stimuli are predicted to both shift and spread relative
to the RT distributions for the more probable stimuli.

Experiment 1 confirmed these predictions for the
effects of speed versus accuracy instructions and Exper-
iment 2 confirmed them for the effects of proportion of
words versus nonwords. In both cases, the data were
modeled with only the starting point of the diffusion
process and the separation between the decision criteria
varying across conditions. These two parameters
accounted for changes in accuracy, the relative speeds
of correct and error responses, and the shapes of the
RT distributions, including the relative positions of the
leading edges of the RT distributions.

The deadline model also has two parameters to
account for the effects of the speed–accuracy and pro-
portion manipulations, namely the R-criterion and the
T-criterion. However, simulations revealed that when
the deadline model was constrained to maintain a rea-
sonable level of classification accuracy, the model was
unable to generate fast ‘‘nonword’’ responses. We
believe that the deadline model’s inability to generate
fast ‘‘nonword’’ responses is a result of a fundamental
feature of the model, namely that a ‘‘nonword’’ response
is engaged only after the system fails to find sufficient
evidence for a ‘‘word’’ response. This assertion implies
that minor modifications of the standard deadline model
will not allow it to generate fast ‘‘nonword’’ responses.

Additional explorations of the deadline model

In order to explore the generality of our claim that
the deadline model cannot generate fast ‘‘nonword’’
responses while maintaining a reasonable level of
response accuracy, we conducted several additional sim-
ulation of the MROM. In most of our simulations, we
used the MROM parameters for Experiment 2 as the
point of departure (i.e., the bottom two rows of Table
3)—recall that in the 75% nonword condition of this
experiment, fast ‘‘nonword’’ responses were reliably
observed for all stimulus categories.

In one set of simulations, we allowed the M-criterion
to vary from one condition to the next. Recall that the
M-criterion represents the activation threshold for indi-
vidual word representations (cf. Morton, 1969); The
standard MROM model assumes that the mean of the
M-criterion is fixed and outside of the system’s control.
Recently, however, Perea, Carreiras, and Grainger
(2004, p. 1096) suggested that the M-criterion may be
‘‘strategically variable’’. It could be that the addition of
a strategically variable M-criterion allows the MROM
model to generate fast ‘‘nonword’’ responses. In the
75% nonword condition of Experiment 2, the M-crite-
rion was heightened to facilitate ‘‘nonword’’ responses.

In another set of simulations, we let the system mon-
itor the global level of lexical activation at different times
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after stimulus onset. Recall that in the standard version
of the MROM model, the system computes the summed
amount of activation across all the word units after
seven cycles (i.e., r(7)); this summed amount of activa-
tion may lead to within-trial changes in the R-criterion
and in the T-criterion. However, the number of cycles
after which the system computes the global amount of
lexical activation (i.e., the cycle check number C) is arbi-
trary—there is no a priori reason why the system should
not monitor global lexical activation earlier or later than
after seven cycles. Therefore, it is important to confirm
that MROM cannot generate fast ‘‘nonword’’ responses
when the level of global activation is assessed after dif-
ferent numbers of cycles.

Our simulations showed that neither of the above
MROM adjustments let the model produce fast ‘‘non-
word’’ responses. Specifically, in the 75% nonword con-
dition of Experiment 2, the most important effect of an
increase in the M-criterion was to bias the system to
respond ‘‘nonword’’, and this resulted primarily in more
errors to word stimuli. Nevertheless, the MROM contin-
ued to predict that incorrect ‘‘nonword’’ responses to
word stimuli were slower than correct ‘‘word’’
responses, contrary to what the data show. Changes in
cycle check time did not remedy this situation. These
simulations provide further support for our general
claim that the deadline model cannot generate fast
‘‘nonword’’ responses while keeping response accuracy
at an acceptable level.

The deficiencies of the deadline model are striking,
but they do not imply that the deadline model’s under-
lying representational assumptions are incorrect. The
model might well provide a better account of the data
if the temporal deadline mechanism was replaced by a
decision mechanism similar to that of the diffusion
model. This is an important point, as one of the greatest
attractions of the MROM deadline model is that it
allows the researcher to make predictions about the rel-
ative speeds of processing for specific words. The diffu-
sion model, in contrast, is not a model of lexical
representation. In the diffusion model, no mention is
made of how words are represented or organized in
memory (cf. De Moor, Verguts, & Brysbaert, 2005;
Joordens, Piercey, & Azarbehi, 2003; Ratcliff et al.,
2004a). Rather, the diffusion model describes the deci-
sion components of the lexical decision task. The possi-
bility of combining models of lexical representation with
the decisional machinery of the diffusion model was
briefly discussed in Ratcliff et al. (2004a), and here we
discuss this issue in more detail.

Neural networks and the diffusion model

Neural networks are among the most popular meth-
ods to represent the mental lexicon. A neural network
can represent words by single units (i.e., a local connec-
tionist model) or by patterns of activation across the net-
work units (i.e., a distributed connectionist model).
Regardless of the specific type of neural network used,
the single most problematical issue that these networks
face in the modeling of lexical decision is that nonwords,
by definition, have no lexical representation. This raises
the question as to how exactly evidence accumulates to
support a ‘‘nonword’’ response. In addition, perfor-
mance for word stimuli depends greatly on the extent
to which the nonwords are similar to words (e.g.,
Wagenmakers et al., 2004). That is, a word such as
TANGO is responded to faster and more accurately
when it is presented in a list with easy nonwords such
as MRLOP than when it is presented in a list with diffi-
cult nonwords such as DRAPA.

One method to address this phenomenon is to
assume a temporal deadline mechanism for the ‘‘non-
word’’ response; however, the present experiments and
modeling cast doubt on the validity of such a deadline
mechanism. A second method is to assume that the sys-
tem uses an estimate of the amount of lexical activation
that can be expected in case the stimulus is a nonword
(e.g., Joordens et al., 2003; Plaut, 1997). For instance,
if the system is forced to respond ‘‘word’’ or ‘‘nonword’’
after some fixed time t following stimulus onset, then the
lexical activation at time t could be compared to what is
expected in case the stimulus is a word and to what is
expected in case the stimulus is a nonword. The compli-
cation is that in the standard lexical decision task, the
participant accumulates information until he or she feels
confident enough to respond—how can a neural net-
work model simulate this standard lexical decision
paradigm?

One answer is to assume that the system has contin-
uous access to estimates for the amount of lexical acti-
vation in case the stimulus is a word or a nonword (e.g.,
Joordens et al., 2003). Consider a stimulus that gener-
ates a lexical activation value of 0.5 after time t. The
evidential impact of this value critically depends on t,
that is, on the amount of processing that the stimulus
has already undergone. If the value of 0.5 is reached
almost immediately after stimulus onset, this may pro-
vide substantial evidence for the hypothesis that the
stimulus is a word. If the value of 0.5 is reached only
after the stimulus has been thoroughly analyzed, this
may actually provide strong evidence against the
hypothesis that the stimulus is a word. Thus, it is not
enough that the system knows two distributions that
reflects the system’s expectation about the amount of
lexical activation for words and nonwords. Because
the total amount of lexical activation is time-dependent,
the system needs to know about how these two distribu-
tions increase and diverge over time and use this infor-
mation to continuously adjust its computations. This
places a heavy burden on the system’s computational
resources.
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Bayesian approaches and the diffusion model

Bayesian approaches for modeling lexical decision
(Norris, 2006; Wagenmakers et al., 2004) are similar to
the diffusion model in the sense that both approaches
depend on the sequential accumulation of noisy infor-
mation that acts as a measure of relative evidence. That
is, information that increases the likelihood that the
stimulus is a word will simultaneously decrease the like-
lihood that the stimulus is a nonword. Moreover, Bayes-
ian approaches are generally optimal (e.g., Geisler,
2003), and so is the diffusion model (i.e., the diffusion
model minimizes RT for a given level of accuracy;
Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Wald
& Wolfowitz, 1948).

In the REM-LD model (Wagenmakers et al., 2004),
the stimulus is represented as a vector of features. These
stimulus features are matched to the features from word
representations in lexical memory. As processing time
increases, more and more stimulus features become
available to the comparison process. The outcome of
the noisy comparison process is a number of matches
and mismatches. Based on the probability of a feature
match given that the stimulus is a word, and the proba-
bility of a feature match given that the stimulus is a non-
word, the system is able to calculate the overall odds
that the stimulus is a word. Note that nonwords are
not represented in memory, and processing time does
not need to be taken into account explicitly. The model
was applied to data from a signal-to-respond paradigm,
but the extension of the REM-LD model to a free-
response paradigm is relatively straightforward. The
resulting model would capture many of the same quali-
tative trends as captured by the diffusion model.

In the Bayesian Reader (Norris, 2006), the stimulus is
represented in a multi-dimensional perceptual space. As
in REM-LD, the Bayesian Reader calculates the odds
that a stimulus is a word versus a nonword. In order
to account for data from the lexical decision task, the
Bayesian Reader needs to have some knowledge about
nonwords. It is assumed that the system knows that
nonwords are relatively similar to existing words (i.e.,
nonwords generally differ from words in one letter only),
and so each nonwords is located relatively close to at
least one word in multi-dimensional perceptual space.
These nonword representations are ‘‘virtual’’, in that
they are merely postulated to quantify the system’s
expectancy for word-to-nonword similarity.

The Bayesian Reader was developed to demonstrate
how a rational analysis of task performance can parsi-
moniously account for a set of robust phenomena in
visual word recognition. The model has not yet been
fit to data with a high degree of accuracy. Given its con-
ceptual similarity to the diffusion model (i.e., optimal
decision making based on sequential sampling of noisy
information), we expect that the Bayesian Reader would
be able to capture many of the qualitative patterns of
results obtained in the current study.

To conclude, the ability of the diffusion model to
explain how and why behavior changes with manipula-
tions of speed–accuracy instructions and stimulus pro-
portions adds to the growing body of support for the
model, further attesting to its descriptive and explana-
tory power. The model is severely constrained: few
parameters are free to vary in fits of the model to data,
but the model still explains large differences in perfor-
mance across experimental conditions. Other models
for lexical decision have not been developed to a level
of detail that would allow quantitative comparisons to
the diffusion model. The model’s good performance with
the data presented in this article demonstrates that the
model can help to disentangle the effects of lexical pro-
cessing from other effects such as those of decision
thresholds.
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