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This appendix discusses the issue of priors in some more detail (cf. Lindley, 2004).
Basically, priors can be determined by two different methods. The first method is known as
“subjective”, and it is the one that has the fewest computational and philosophical problems.
A “subjective Bayesian” argues that all inference is necessarily relative to a particular state
of knowledge. This state of knowledge differs from one individual to the next. The claim
is that objective knowledge of the physical world is an unattainable, quixotic ideal. In this
sense then, “probability does not exist” (de Finetti, 1974). For a subjective Bayesian, the
prior simply quantifies her personal degree of belief that is to be adjusted by the data.

In an article entitled “Why isn’t everyone a Bayesian?”, Efron argued that one of
the major drawbacks of the subjective Bayesian paradigm is the fact that it does not lend
itself well for scientific communication: “Strict objectivity is one of the crucial factors
separating scientific thinking from wishful thinking.” (Efron, 1986, p. 3). I suspect that
many experimental psychologists would agree with Efron. It may appear that by opening
a Pandora’s box of subjective priors, one can pick and choose the prior that allows one to
bias the process of scientific inference at will.

Several arguments can be brought to bear against Efron’s claim, however. First, it
is not clear what it means to be “objective”. As pointed out by Berger (1985, p. 125),
“(...) when different reasonable priors yield substantially different answers, can it be right
to state that there is a single answer? Would it not be better to admit that there is
scientific uncertainty, with the conclusion depending on prior beliefs?”. Second, the fact
that a procedure is “objective” provides no guarantee that the procedure is rational or
coherent. Third, this article contains many well–known examples that demonstrate the
frequentist procedures are also subjective (cf. Berger & Berry, 1988). Frequentist procedures
depend on hypothetical actions for imaginary events. This hardly provides much support
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for the statement that “The high ground of scientific objectivity has been seized by the
frequentists.” (Efron, 1986, p. 4). In fact, a Bayesian might argue that the subjectivity in
the Bayesian analysis is in the prior, which is completely specified and available for scientific
scrutiny. In contrast, the subjectivity in the frequentist paradigm is hidden, as it pertains
to what the researcher was thinking as she collected the data. It would therefore be more
accurate to state that “In some fields, researchers mistakenly believe that the high ground
of scientific objectivity has been seized by the frequentists.”.

The second method to specify priors is by means of an “objective” Bayesian analysis
(Kass & Wasserman, 1996). What this means is that priors are specified according to certain
predetermined rules. For instance, one may use the unit information prior (i.e., a prior that
carries as much information as a single observation, Kass & Wasserman, 1995), a prior
that is invariant under transformations (Jeffreys, 1961) or a prior that maximizes entropy
(Jaynes, 1968). Objective priors are generally vague or uninformative, that is, thinly spread
out over the range for which they are defined. Often, an objective prior is chosen so as to
reflect a state of ignorance. This is very different from the subjective Bayesian approach,
in which priors are chosen so as to reflect personal degree of belief.

The objective Bayesian approach has several advantages over the subjective approach.
First of all, most researchers will find it appealing that statistical inference is independent
of the person who performs the analysis. Of course, as with frequentist procedures, this
objectivity is only partial, as different researchers might use different models to analyze the
same data. For instance, researcher A might use hierarchical linear regression, researcher B
might use a regular analysis of variance after transforming the data to achieve normality,
researcher C might first remove outliers from the data, etc. As argued by Box “(...) it is
impossible logically to distinguish between model assumptions and the prior distribution
of the parameters.” (Box, 1980, p. 384). Thus, I take objectivity to mean that given the
same data and the same assumptions regarding the model, different researchers will arrive
at the same conclusions. The second advantage of the objective approach is that in models
with very many parameters, it foregoes the need to consider one’s personal beliefs for every
single parameter.

From a pragmatic perspective, the discussion of priors would be moot if it could be
shown – either in general or in specific problems – that the specific shape of the prior did not
greatly affect inference (cf. Dickey, 1973). Consider Bayesian inference for the mean µ of a
normal distribution. For parameter estimation, one can specify a prior Pr(µ) that is very
uninformative (e.g., spread out across the entire real line). The data will quickly overwhelm
the prior, and hence parameter estimation is relatively robust to the specific choice of prior.
In contrast, the Bayes factor for a two–sided hypothesis test is sensitive to the shape of the
prior (Lindley, 1957; Shafer, 1982). This is not surprising – if we increase the interval along
which µ is allowed to vary according to H1, we effectively increase the complexity of H1.
The inclusion of unlikely values for µ decreases the average likelihood for the observed data.
For a subjective Bayesian, this is not really an issue, as Pr(µ) reflects her prior belief. For an
objective Bayesian, hypothesis testing constitutes a bigger challenge: On the one hand, the
prior needs to be vague, as it reflects a state of ignorance. On the other hand, a prior that is
too vague can increase the complexity of H1 to such an extent that H1 will always have low
posterior probability, regardless of the observed data. Several objective Bayesian procedures
have been developed that try to address this dilemma, examples including the local Bayes
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factor (Smith & Spiegelhalter, 1980), the intrinsic Bayes factor (Berger & Pericchi, 1996),
the partial Bayes factor (O’Hagan, 1997) and the fractional Bayes factor (O’Hagan, 1997)
(for a summary see Gill, 2002, Chapter 7).

It is important to realize that to many Bayesians the presence of the prior is actually
an asset rather than a nuisance. First of all, the prior ensures that different sources of
information are appropriately combined, such as when the posterior after observation of a
batch of data D1 becomes the prior for the observation of a new batch of data D2. If the
data are conditionally independent, the Bayesian analysis will arrive at the same conclusion
regardless of the temporal order or data (i.e., D1 first and D2 second or vice versa) and
regardless of whether the data arrived one–by–one, in batches, or all at once. Mathematical
derivation shows that in order to avoid making irrational and inconsistent decisions, the
quantification of uncertainty needs to obey the rules of probability theory – this includes
Bayes rule, which in turn includes the priors (for details see Bernardo & Smith, 1994; Cox,
1946; D’Agostini, 1999; Fishburn, 1986; Jaynes, 2003; Jeffreys, 1961; Lindley, 1982, 2004;
for a discussion see Colyvan, 2004; Van Horn, 2003). In Bayesian statistics, irrational
behavior goes under the name of incoherence. In the context of betting, de Finetti showed
that incoherence makes someone a sure loser (de Finetti, 1974; see also Smith, 1961, and
Cornfield, 1969).1

A second advantage of the prior is that it can prevent one from making extreme and
implausible inferences; the prior may “shrink” the extreme estimates toward more plausible
values. To illustrate, Rouder, Lu, Speckman, Sun, and Jiang (2005) discuss a baseball game
in which the struggling Kansas City Royals lead the favorite Boston Red Sox by 5–0 after
one inning. Based on a maximum likelihood approach, the expected final score after this
one inning is 5 × 9 innings = 45 − 0 in favor of the Kansas City Royals. To anyone with
even the slightest knowledge of the game, this score is wildly implausible. Other examples
of why priors can be helpful for inference are given by Box and Tiao (1973, pp. 19–20) and
Lindley and Phillips (1976).

A third advantage of specifying priors is that it allows one to focus on parameters of
interest by eliminating so–called nuisance parameters through the law of total probability.
Let θ be a parameter of interest, and let γ be a nuisance parameter. To obtain the posterior
distribution of θ, we simply integrate the joint posterior Pr(θ, γ|D) over all values of γ,
that is, Pr(θ|D) =

∫
Γ Pr(θ, γ|D)dγ =

∫
Γ Pr(θ|γ, D)Pr(γ)dγ. This method is very general

and can often be tremendously useful.
These considerations suggest that one might turn the problem on its head: What does

one make of inferential procedures that are incapable of taking prior knowledge into account?
Such procedures will be surely be incoherent (Lindley, 1977), may waste useful information,
and may lead to implausible estimates. In this context, Lindley notes that “The statistician
who reports a confidence interval of (−0.5, 2.3) for a parameter is ridiculous in the opinion
of an investigator who knows the parameter is positive.” (Lindley, 2004, p. 85). A Bayesian
could easily incorporate this knowledge through the prior, by assigning probability mass to
positive values only. Jaynes (2003, p. 373) states the case for the prior even more strongly:
“If one fails to specify the prior information, a problem of inference is just as ill–posed as

1Unfortunately, a discussion of de Finetti’s definition of probability as fair betting odds would take us
too far afield. The interested reader is referred to numerous internet resources for more information (e.g.,
http://en.wikipedia.org/wiki/Bruno de Finetti).
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if one had failed to specify the data.”.
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