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This appendix provides a definition of a stopping rule, and then shows why a “nonin-
formative” stopping rule is irrelevant for Bayesian statistical inference. Finally, it is shown
why a Bayesian cannot be mislead by optional stopping. The following discussion relies
extensively on Berger and Wolpert (1988), Bernardo and Smith (1994) and Raiffa and
Schlaifer (1961), and the reader is referred to these monographs for further details.

Consider an experiment in which data are sampled sequentially, and data xn =
(x1, x2, ..., xn) have been observed. With probability τn(xn), sampling stops. With the
complementary probability 1 − τn(xn), sampling continues and one collects the additional
observation xn+1. A stopping rule τ is proper if the experiment is guaranteed to stop at
some finite n. When τn(xn) ∈ {0, 1}, so that for any given data xn there is no uncertainty
whether to stop or to continue, the stopping rule is deterministic. Otherwise, the stopping
rule is said to be randomized. When the stopping rule does not depend on the parameters
of the model, and when the stopping rule is furthermore a priori independent of the para-
meters of the model, the stopping rule is said to be noninformative (for examples see Raiffa
& Schlaifer, 1961).

Every experiment can be characterized by the generated data xn and the stopping
process τ that resulted in a sample size of n observations. Hence, the likelihood function is
generally given by Pr(n, xn|τ , θ), where θ denotes the parameters of a given model. Almost
always, the above likelihood is simplified to Pr(xn|θ), de facto assuming that the number
of observations was fixed in advance. This simplification is also appropriate for experiments
that use all kinds of different stopping rules, as long as they are noninformative.

Example 1 Irrelevance of Biased Stopping for Bayesian Inference (cf. Bernardo
& Smith, 1994, pp. 251–255). Consider a sequence of independent questions. Each
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observation xi equals 1 (i.e., a correct answer) with probability θ, and 0 (i.e., an incorrect
answer) otherwise. Define a deterministic stopping rule as follows: when the first question
is answered correctly, the experiment stops (i.e., τ1(1) = 1). When the first question is
answered incorrectly, a second question is asked (i.e., τ1(0) = 0), after which the experiment
stops (i.e., τ2(x1, x2) = 1).

One may intuit that this sampling scheme causes the estimate of θ to be higher than it
would have been in case the number of observations was fixed in advance. A more detailed
analysis shows that this intuition is false. First, suppose the first question is answered
correctly (i.e., x1 = 1). The probability of this happening is

Pr(n = 1, x1 = 1|τ , θ) = Pr(x1 = 1|n = 1, τ , θ)Pr(n = 1|τ , θ)
= 1× Pr(n = 1|τ , θ) = Pr(x1 = 1|θ). (1)

When the first question is answered incorrectly (i.e., x1 = 0), another question is
asked, the outcome of which is denoted by x. The probability of observing x1 = 0 followed
by x2 = x is given by

Pr(n = 2, x1 = 0, x2 = x|τ , θ)
= Pr(x1 = 0, x2 = x|n = 2, τ , θ)Pr(n = 2|τ , θ)
= Pr(x1 = 0|n = 2, τ , θ)Pr(x2 = x|x1 = 0, n = 2, τ , θ)Pr(n = 2|τ , θ)
= 1× Pr(x2 = x|x1 = 0, θ)Pr(x1 = 0|θ)
= Pr(x2 = x, x1 = 0|θ). (2)

Hence, for all data that can be observed in this experiment, Pr(n, xn|τ , θ) = Pr(xn|θ),
which means that the stopping rule does not affect our inference about θ.

More generally, for noninformative stopping rules the probability of observing xn and
terminating the sampling process is given by

Pr(xn, n|τ , θ) = Pr(xn|τ , θ)Pr(n|xn, τ , θ)
= Pr(xn|θ)Pr(n|xn, τ ). (3)

In this derivation, Pr(xn|τ , θ) = Pr(xn|θ) because the specific values for the observed data
xn do not depend on the stopping rule τ . Also, from the definition for noninformative
stopping rules, it follows that Pr(n|xn, τ , θ) = Pr(n|xn, τ ). Equation 3 shows that a
noninformative stopping rule does not affect the kernel of the likelihood function (i.e., the
part that contains the parameters θ) but only affects the residue of the likelihood function.
A comparison of the likelihood functions for the binomial and negative binomial sampling
schemes confirms this fact. Because frequentist inference for θ partly depends on data that
could have been observed but were not, it partly relies on the residue of the likelihood
function. In contrast, Bayesian inference for θ only relies on the kernel of the likelihood
function, as it only considers the data that were actually observed.



STOPPING RULES AND BAYESIAN INFERENCE 3

For noninformative stopping rules, θ and τ are independent a priori, that is,
Pr(τ ,θ) = Pr(τ )Pr(θ). It then follows that

Pr(τ , θ|xn, n) =
Pr(xn, n|τ ,θ)Pr(τ , θ)

Pr(xn, n)
∝ Pr(xn, n|τ , θ)Pr(τ ,θ)
∝ Pr(xn|θ)Pr(θ)Pr(n|xn, τ )Pr(τ ). (4)

After integrating out τ one obtains Pr(θ|xn) ∝ Pr(xn|θ)Pr(θ). Thus, the posterior distri-
bution for θ is not affected by uninformative stopping rules τ (Raiffa & Schlaifer, 1961).

It should be acknowledged that some Bayesian statisticians recommend that prior
distributions depend on the sampling scheme (e.g., Box & Tiao, 1973, p. 46; Bernardo
& Smith, 1994, p. 253). Obviously, this is under the assumption that the stopping rule
is uninformative with respect to the likelihood, but not with respect to the prior, so that
Pr(τ ,θ) 6= Pr(τ )Pr(θ). However, this implies that one’s knowledge, or ignorance, of a
quantity depends on the experiment being used to determine it (paraphrased from Lindley,
1972, p. 71). A discussion of this issue would take us too far afield.

Example 2 A Discussion on Optional Stopping (cf. Berger & Berry, 1988;
Berger & Wolpert, 1988; Bernardo & Smith, 1994; Edwards, Lindman, & Sav-
age, 1963; Jennison & Turnbull, 1990; Kadane, Schervish, & Seidenfeld, 1996a;
Royall, 1997). The above derivation shows that rational, coherent inference does not
depend on noninformative stopping rules. Frequentist procedures do depend on noninfor-
mative stopping rules, and quite critically so. In particular, when the stopping rule is
ignored, a researcher that continues to collect data until the frequentist p–value reaches
some desired level of significance is guaranteed to achieve her goal eventually.

An important issue, first raised by Armitage (1961) in the context of monitoring the
outcome of clinical trials, is whether or not the Bayesian analysis is similarly affected by the
mechanism of optional stopping.1 Suppose that a researcher obtains data through optional
stopping. Will the Bayesian statistician be fooled into always reporting evidence in favor
of the alternative hypothesis? The short answer is a resounding “no” (cf. Kadane et al.,
1996a; Kadane, Schervish, & Seidenfeld, 1996b; Kerridge, 1963; Royall, 2000).

A Bayesian analysis is misleading when it assigns a relatively low posterior probability
to a true hypothesis. It can be shown that there is a limit as to how often one may
encounter such misleading evidence. For instance, assume that H0 and H1 are equally
plausible a priori. Then, at the termination of sampling, the frequency with which the
posterior probability of the true hypothesis is less than or equal to x cannot exceed x/(1−x)
(Kerridge, 1963).

To illustrate, suppose H0 is true. The frequency with which H0 will produce a poste-
rior probability as least as low as 1/100 is no more than 1/99. Note that this bound on the
frequency of reporting misleading evidence is quite independent of the stopping rule that is
used. This is perhaps contrary to intuition, which may falsely suggest that if one monitors
the posterior probability of H0, and stops the experiment whenever Pr(H0|D) < .01, one

1For an application of Bayesian inference in clinical trials see Berry (1989), Carlin, Kadane, and Gelfand
(1998), and Kadane and Vlachos (2002).
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will eventually reach this goal. Instead, as pointed out by Edwards et al. (1963, p. 239):
“(...) if you set out to collect data until your posterior probability for a hypothesis which
unknown to you is true has been reduced to .01, then 99 times out of 100 you will never
make it, no matter how many data you, or your children after you, may collect (...)”.

In contrast to Bayesian hypothesis testing, Bayesian parameter estimation appears to
be more vulnerable to the effects of optional stopping. For instance, assume that data that
are normally distributed with known standard deviation, e.g., xn ∼ N(µ, 1). One might
continue to collect data until the sample mean is k standard deviations from zero, say k = 3.
In this case, the 95% Bayesian confidence interval does not contain zero. As the Bayesian
parameter estimation procedure ignores the stopping rule, this result is guaranteed to hold
for any experiment. Has the experimenter succeeded in misleading the Bayesian statistician
into believing that µ is not zero? Not really. If the value µ = 0 is special, one needs to assign
some probability mass to that value. This is exactly what happens in Bayesian hypothesis
testing. Cornfield (1966, p. 22) explains

“If one is seriously concerned about the probability that a stopping rule will
certainly result in the rejection of a true hypothesis, it must be because some
possibility of the truth of the hypothesis is being entertained. In that case it is
appropriate to assign a non–zero prior probability to the hypothesis. If this is
done, differing from the hypothesized value by k standard errors will not result
in the same posterior probability for the hypothesis for all values of n. In fact
for fixed k the posterior probability of the hypothesis monotonically approaches
unity as n increases, no matter how small the prior probability assigned, so
long as it is non–zero, and how large the k, so long as it is finite. Differing by
k standard errors does not therefore necessarily provide any evidence against
the hypothesis and disregarding the stopping rule does not lead to an absurd
conclusion. The Bayesian viewpoint thus indicates that the hypothesis is certain
to be erroneously rejected – not because the stopping rule was disregarded –
but because the hypothesis was assigned zero prior probability and that such
assignment is inconsistent with concern over the possibility that the hypothesis
will certainly be rejected when true.”

For an extended discussion, I refer the interested reader to Basu (1975), Berger and Berry
(1988), and Berger and Wolpert (1988, pp. 80–83).
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