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In a recent article, Killeen (2005a) proposed an alternative to

traditional null-hypothesis significance testing (NHST). This

alternative test is based on the statistic prep, which is the prob-

ability of replicating an effect. We share Killeen’s skepticism

with respect to null-hypothesis testing, and we sympathize with

the proposed conceptual shift toward issues such as replica-

bility. One of the problems associated with NHST is that p values

are prone to misinterpretation (cf. Nickerson, 2000, pp. 246–

263). Another problem with NHST is that it can provide highly

misleading evidence against the null hypothesis (Killeen,

2005a, p. 345): NHST can lead one to reject the null hypothesis

when there is really not enough evidence to do so.

Killeen’s prep statistic successfully addresses the problem of

misinterpretation, and this is a major contribution (cf. Cumming,

2005; Doros & Geier, 2005; Killeen, 2005b; Macdonald, 2005).

However, the prep statistic does not remedy the second, more

fundamental NHST problem mentioned by Killeen. Here we

perform the standard analysis to show that prep can provide mis-

leading evidence against the null hypothesis (cf. Berger & Sellke,

1987; Edwards, Lindman, & Savage, 1963). This analysis dem-

onstrates the discrepancy between Bayesian hypothesis testing

and prep, and highlights the necessity of considering the plausi-

bility of both the null hypothesis and the alternative hypothesis.

Consider an experiment in taste perception in which a

participant has to determine which of two beverage samples

contains sugar. After n trials, with s successes (i.e., correct

decisions) and f failures, we wish to choose between two hypoth-

eses: H0 (i.e., random guessing) and H1 (i.e., gustatory dis-

criminability). For inference, we use the binomial model, in

which the likelihood L(y) is proportional to ys
(1 � y)f, where

y denotes the probability of a correct decision on any one trial.

A Bayesian hypothesis test (Jeffreys, 1961) proceeds by

contrasting two quantities: the probability of the observed data

D given H0 (i.e., y ¼ 1
2
) and the probability of the observed data

D given H1 (i.e., y 6¼ 1
2
). The ratio B01 ¼ pðDjH0Þ=pðDjH1Þ is the

Bayes factor, and it quantifies the evidence that the data provide

for H0 vis-à-vis H1. Assuming equal prior plausibility for the

models, the posterior probability for H0 is given by B01=ð1þ B01Þ.
In the taste perception experiment, pðDjH0Þ ¼ 1

2

n
. The quantity

pðDjH1Þ is more difficult to calculate, because it depends on our

prior beliefs about y. Specifically, when prior knowledge of y is

given by a prior distribution p(y), one obtains pðDjH1Þ by inte-

grating L(y) over all possible values of y, weighted by the prior

distribution p(y): pðDjH1Þ ¼
R 1

0
LðyÞpðyÞdy. We consider two

classes of priors.

SCENARIO 1: THE CRYSTAL-BALL POINT PRIOR

To calculate the Bayes factor that maximally favors H1, we let

the data determine our prior beliefs about y. That is, pðDjH1Þ is

maximal when we choose a ‘‘crystal-ball point prior’’ that assigns

all prior probability to the single value of y under which the

observed data have maximum probability (Edwards et al., 1963).

This analysis favors H1 quite unfairly. In a theoretical analysis of

the taste perception experiment, we varied the number of obser-

vations n from 50 to 10,000 in increments of 50 and calculated for

each n the number of successes required to obtain a classical

p value that just reaches significance at the ubiquitous .05 level.

The lower set of functions in Figure 1a shows that the quantity

1 � prep is a constant .08, which indicates a .92 chance of

replicating the effect. In contrast, the minimum posterior

probability for H0 is a relatively constant .128. Hence, an

analysis that quite unfairly favors H1 still cannot make H1 more

than 6.8 times as likely as H0 when p 5 .05 and prep 5 .92. This

key result shows that both classical p values and prep can over-

estimate the evidence against H0. The posterior probability for

H0 increases further when we consider more realistic priors.
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SCENARIO 2: REALISTIC PRIORS

Figure 1b shows three beta priors that reflect different amounts

of prior substantive knowledge or personal belief about y. Such

prior belief about y may originate in part from knowledge about

the amount of sugar used, or from knowledge of previous out-

comes for similar experiments. The upper set of functions in

Figure 1a shows the corresponding posterior probabilities for H0

(cf. O’Hagan & Forster, 2004, p. 5). These functions show that

the posterior probability is sensitive to the prior distribution.

This is because the Bayes factor penalizes vague hypotheses that

could potentially explain a wide range of results. More important

here is that Figure 1a shows that the evidence for H0 increases

with n.1

In fact, for any prior p(y) that is continuous and strictly pos-

itive on yA[0, 1], the posterior probability of H0 converges to

1 as n increases in Figure 1a (Berger & Sellke, 1987). Thus,

regardless of the specific prior used, prep may indicate that the

effect is highly replicable, whereas the Bayesian hypothesis test

may strongly favor H0. This discrepancy occurs because the

Bayesian analysis explicitly takes the alternative hypothesis

into account.

Bayesian hypothesis tests are often criticized because of their

dependence on prior distributions. Yet in our example, no matter

what prior is used, the Bayesian test provides substantially less

evidence against H0 than either p values or prep. One may argue

about the pros and cons of priors, but one cannot argue with

numbers: Over the past 5 years, at least 30% of the articles in the

Journal of the American Statistical Association have concerned

Bayesian methods.2 It is our subjective belief that Bayesian

methods will prove useful not only for statisticians, but also for

psychologists.
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Fig. 1. Discrepancy between Bayesian hypothesis testing and null-hy-
pothesis significance testing (NHST) or prep. The graph in (a) shows four
Bayesian posterior probabilities, the classical p value, and 1 � prep as a
function of sample size. Note that the data are constructed to be just sig-
nificant at the .05 level (i.e., p 5 .05 and prep 5 .92). The upper set of
functions illustrates that for any realistic prior, the posterior probability
of the null hypothesis strongly depends on the number of observations. As
n goes to infinity, the probability of the null hypothesis goes to 1. This
conflicts dramatically with the conclusions from NHST (i.e., ‘‘p 5 .05,
reject the null hypothesis’’) and Killeen’s (2005a) prep (i.e., ‘‘prep 5 .92,
the effect is highly replicable’’), which are shown by the two lowest func-
tions. For most values of n, the fact that p equals .05 (i.e., prep 5 .92)
constitutes evidence in support of the null hypothesis, rather than evi-
dence against it. The graph in (b) shows the three realistic priors that were
used to compute the posterior probability of the null hypothesis in (a).

1We thank Peter Killeen for suggesting this analysis.
2To arrive at this percentage, we determined the proportion of articles with

‘‘Bayes’’ or ‘‘Bayesian’’ in the title or abstract.
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