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Suppose your house is on fire, and you only have time
to rescue a single item from the blazing inferno. What
item would you choose to save? A Dutch mathematics
professor—happily married, with children—instantly re-
plied: ‘‘I would rescue the Gardiner book!’’. This anecdote
illustrates at least two points. The first point is that the book
by Crispin Gardiner (2004), ‘‘Handbook of Stochastic
Methods’’ is a classic text on stochastic differential equations
(SDEs). The second point is that the mathematics professor
was probably unaware that the out-of-print 1985 edition has
been followed up by a 1997 edition, and, most recently, a
2004 edition.

Gardiner’s Handbook is dedicated to mathematical
models for time varying systems that involve stochastic
components. Although the book is geared towards
applications in physics and chemistry, the book has
become well known in fields such as mathematical finance.
Stochastic processes have a long history in physics,
chemistry and biology, where dynamical systems often
involve stochastic components. In cognitive psychology,
dynamic stochastic processes have found application in the
modeling of simple decision processes (Ratcliff, 1978;
Smith & Ratcliff, 2004), decision field theory (Busemeyer
& Townsend, 1992), and the multi-attribute dynamic
p.2005.12.004
decision model (Diederich, 1997). Smith (2000) provides
an extensive introduction into the subject.
The book provides a detailed and systematic development

of techniques of mathematical analysis of stochastic
processes, bringing together a wide range of exact,
approximate, and numerical methods for solving SDEs.
Compared to other volumes on stochastic processes and
SDEs (e.g. Arnold, 2003; Doob, 1953; Feller, 1971;
Klebaner, 1998; Øksendal, 2000), the book is written in a
informal, narrative and nonmathematical style. Neverthe-
less, the book is not written for the mathematically timid.
The first five chapters are certainly accessible for

advanced undergraduates of physics and mathematics.
These chapters should be equally suitable for graduate
students in biology, econometrics and mathematical
psychology, with a similar level of mathematical back-
ground. An especially useful characteristic of the book is
that the material is presented in chunks that can to some
extent be studied independently—in contrast to most other
books that we know of, a full read of the chapters
preceding the chapter of interest is not necessary. One can
even study an individual section without the need to study
the preceding chapters, although a basic grasp of the
material presented in the first four chapters certainly helps.
A further characteristic of the book that is worth
mentioning is the attention devoted to stochastic nonlinear
dynamics, including bistability and multistability: Chapter
9 is entirely devoted to this topic.
The book is organized as follows: the first four chapters

develop key concepts in stochastic processes and outline
two different approaches to their analysis. Key concepts
include Brownian motion and birth–death processes, the
diffusion equation, Langevin’s equation, the Markov
assumption, the Chapman–Kolmogorov equation, the
differential form of the Chapman–Kolmogorov equation
which gives rise to both the Master equation and the
Fokker–Planck equations, and the Itô notion of a SDE and
associated calculus. The subsequent chapters deal with
techniques for solving Fokker–Planck equations (Chapters
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5 and 6) and the Master equation (Chapters 7 and 8),
techniques for the analysis of bistable and metastable
systems (Chapter 9), and techniques for simulation—or
numerical solution—of SDEs (Chapter 10).

Before giving a more in depth overview of the subjects
treated in the book, we briefly discuss the concept of a
random dynamical system.

1. Random dynamical systems

The concept of a dynamical system whose evolution
involves random sample paths originated in biology: The
eminent British biologist Robert Brown is usually credited
for being the first to describe the typical motion of particles
immersed in a solution observed under a microscope—a
motion that now carries his name.1 Brown had observed
the typical motion of pollen, and excluded the presence of
life as an explanation for such motion by replicating the
result with anorganic particles. Exactly 100 years ago,
Albert Einstein was the first to give a physical derivation of
an exact mathematical description of Brownian motion.
However, the mathematical ideas involved were conceived
earlier by Bachelier (1900; cited in Courtault et al., 2000) in
his analysis of speculation-based trade. Inspired by the
molecular-kinetic theory of heat, Einstein figured that the
motion of Brown’s pollen was due to the random impacts
of the molecules of the solution. Taken together, these very
many random impacts would displace the particle by a
random distance. In his derivation, Einstein assumed the
existence of a continuous differentiable distribution law
that governed these random displacements. He then
reasoned about the number of particles f ðx; tþ tÞ that
would exist at time tþ t at a certain location x given the
distribution of particles across space at time t. Through
approximations, Einstein was able to deduce that the
change in the number of particles over time was governed
by the equation

qf

qt
¼ D

q2f
qx2

. (1)

This equation is independent of the particular distribution
law that governs the random displacements. Only the
variance of the displacements shows up in the constant D.
This equation is the well-known diffusion equation,, and has
the solution

f ðx; tÞ ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð2DtÞ
p e�x2=4Dt.

One should recognize the scope of this result: although the
exact path of a single particle is still unknown (one should
not expect it to be known so long as the random impacts
are unknown), the entire distribution of the particles across
space is known for all times t! In essence, the program for
1In fact, the Dutch-born British physiologist Jan IngenHousz observed

and described Brownian motion some 37 years earlier, in 1785.
dealing with stochastic dynamical systems as instigated by
Einstein, was to find differential equations such as (1), that
govern the probability density functions and then use
conventional techniques to solve these equations. Eq. (1) is
an example of a Fokker–Planck equation—a class of
equations that play a central role in this program.
An entirely different line of attack of Brownian motion

was proposed by Langevin, some time after Einstein’s
solution. Langevin reasoned that the movements of a
particle immersed in a fluid would be governed by
Newton’s second law

F ¼ m
d2x

dt2
,

and that the force F on the particle consisted of the sum of
two parts: the first part is Stokes drag force �6pma~v, where
m is the viscosity of the fluid, a is the diameter of the
particle (modeled as a sphere) and ~v is the velocity of the
particle, and the second part is a random impact Z on the
particle, which represents the aggregate of a great many
smaller impacts. The particle’s movements would therefore
be governed by the equation

m
d2x

dt2
¼ �6pmavþ Z, (2)

where v ¼ k~vk is the speed. Because Z is unknown, this
equation cannot be solved for x. However, an equation for
its statistical characterization can be derived if the equation
is multiplied by x and rewritten as follows:

m

2

d2x

dt2
þ 3pma

dðx2Þ

dt
¼ mv2 þ Zx.

Langevin argued that the expected value of the second term
vanishes because the rapidly fluctuating random displace-
ments Z are independent of x. Therefore, if we take
expectations on both sides, and use the Equipartition
Theorem, (Gershenfeld, 1999) which says that the average
of mv2=2 equals kT=2, where k is Boltzmann’s constant
and T is the absolute temperature, we find the equation for
the variance of x

d2s2

dt2
þ

3pma

m

ds2

dt
¼ 2kT=m.

The solution of this equation is given by
s2ðtÞ ¼ A expð�6pmat=mÞ þ ½kT=3pma�t, where A is an
arbitrary constant. Langevin determined that the first term
rapidly decreases to zero within a minute time interval, and
so, for any practical purpose, the variance of the particle’s
path amounts to

s2ðtÞ ¼ ½kT=3pma�t.

This agrees with Einstein’s result if we set D ¼ ½kT=3pma�.
But its derivation was, at least according to Langevin,
‘‘infinitely more simple.’’ Indeed the method of Langevin
is much more direct than the method of Einstein, but
its mathematical foundation turned out to be much
more delicate than Langevin anticipated. A key step in
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Fig. 1. Example of general stochastic process described by both a

Fokker–Planck part (drift and diffusion) and a Master equation part

(jumps).
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Langevin’s derivation is the assumption that the random
displacements Z and x are independent. This is also a key
step in Einstein’s derivation, but in the form of Langevin it
was not until Itô developed his stochastic calculus (Itô,
1944) that this step was made precise. The program of
handling stochastic processes using Langevin’s approach is
to consider equations such as (2), and to derive the
characteristics of processes governed by it directly from the
equation.

2. Systematic treatment of stochastic processes

A systematic approach to the analysis of stochastic
processes along Einstein’s reasoning can be developed from
the Chapman–Kolmogorov equation. The development of a
systematic approach along Langevin’s reasoning requires
the introduction of a notion of stochastic integral. We now
discuss these approaches in turn.

2.1. The Chapman–Kolmogorov, Fokker–Planck and

Master equations

In general, a stochastic process X t can be described by all
joint probability densities of the form

pðxt1 ;xt2 ; . . . ;xtm
Þ � pðx1; t1; x2; t2; . . . ; xm; tmÞ,

for all possible choices of t1; t2; . . . ; tm, and m. Obviously,
this is a very general description and not much more can be
said. If one restricts attention to special classes of
processes, defined by specific forms of these joint densities,
more progress can be made. Any joint density
pðx1; t1; x2; t2; . . .Þ can be expressed in terms of conditional
densities as the product pðx1; t1jx2; t2; . . .Þ pðx2; t2; . . .Þ.
Assume that t14t24 � � � : One of the simplest forms for
the joint densities is the form that can be expressed in
conditional densities that are completely determined by the
most recent state of the process, i.e.,

pðx1; t1jx2; t2; . . .Þpðx2; t2; . . .Þ ¼ pðx1; t1jx2; t2Þpðx2; t2; . . .Þ,

for all possible choices of t1; t2; . . . : This is called the
Markov assumption, and a process satisfying the assump-
tion is called a Markov process. If this equation holds for a
process X t, the conditional probability density
pðx1; t1; x3; t3Þ can be written as follows:

pðx1; t1jx3; t3Þ

¼

Z
dx2 pðx1; t1jx2; t3Þpðx2; t2jx3; t3Þ, ð3Þ

which has the interpretation that the likelihood for the
process to go from x3 to x1 is the sum of the likelihoods of
all possible paths for X t to get there. Eq. (3) is called the
Chapman–Kolmogorov equation, and is fundamental to all
Markov processes. It is the starting point for a general
theory of stochastic processes in terms of the time
evolution of the probability density of X t in line with
Einstein’s description of Brownian motion. To this end, the
Chapman–Komogorov equation can be put into a differ-
ential form, provided certain regularity conditions are
met. The regularity conditions concern a probabilistic
conception of continuity of the sample path of X t,
which amount to continuity in an almost sure sense (i.e.,
allowing only discontinuities on a zero-measure set of time
points). The resulting differential Chapman–Kolmogorov
equation entails the sum of two parts: the Master equation

and the Fokker–Planck equation. The Master equation
describes jumps of the process—that is, it describes the
occurrence of discontinuities. The Fokker–Planck equa-
tion, which itself is composed of two parts, describes the
continuous part of the process—the first part of the
Fokker–Planck equation corresponds mathematically to a
drift process, the second to a diffusion process. Each of
these components may or may not be present in a
stochastic process. An example of a combination of these
processes is displayed in Fig. 1.

2.2. Langevin approach: stochastic differential equation

The conceptual simplicity of the approach of Langevin
to Brownian motion is complemented by the mathematical
complexity in that, while Brownian motion as described
by Einstein has sample paths that are continuous,
these sample paths are nowhere differentiable. Yet it
must be expected that the Langevin equation (2) is
integrable. That is, we must expect

R t ZðsÞ ds to exist.
Now, if

R t ZðsÞ ds is assumed to be a continuous function of
t, it must be a continuous Markov process and hence can
be described by a Fokker–Planck equation. However, it
turns out that the corresponding Fokker–Planck equation
is in fact Eq. (1), and hence, ‘‘

R t ZðsÞ ds’’ is a non-
differentiable Brownian motion. While, therefore, Lange-
vin’s equation (2) cannot be interpreted consistently as a
differential equation, a consistent interpretation of its
integral form

xðtÞ ¼

Z t

bxðsÞ dsþ

Z t

ZðsÞ ds
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can be given if the second integral is interpreted as a kind
of Stieltjes–Lebesgue integral. Here, we enter the realm of
stochastic integration: Let G be a suitably behaved function
of time, let the interval ½t0; t� be partitioned by the ordered
sequence t1; t2; . . . ; tn, and let t1; t2; . . . ; tn be intermediate
points such that ti�1ptipti for i ¼ 1; . . . ; n. Then the
stochastic integral

R t

t0
GðsÞ dBðsÞ is defined as the n!1

limit of the partial sums

Sn ¼
Xn

i¼1

GðtiÞ½BðtiÞ � Bðti�1Þ�,

where BðtÞ is a Brownian motion process. With this
definition, a SDE as envisioned in the Langevin equation
can be written as follows:

dxðtÞ ¼ a½xðtÞ; tÞ dtþ b½xðtÞ; t�BðtÞ, (4)

as long as we interpret this equation as the corresponding
integral equation xðtÞ ¼

R t

t0
a½xðsÞ; s� dsþ

R t

t0
b½xðsÞ; s� dBðsÞ,

where the latter term denotes the stochastic integral as
defined above. Many equations encountered in practical
physical modeling can be put into this form (possibly by
conversion to a multivariate SDE).

The above definition of stochastic integral is ambiguous
with respect to the choice of the ti’s. Whereas in
conventional calculus it can be shown that the choice is
immaterial, and all possible choices yield the same result,
this is not so with stochastic integrals. Depending on the
choice of the ti’s one obtains different definitions of
stochastic integral, each with different values, and each
obeying a different set of calculus rules. The mathematically
most convenient choice—which leads to the concept of non-

anticipating functions and is adopted in the Itô calculus—is
the choice ti ¼ ti�1. Another choice is ti ¼ ðti�1 þ tiÞ=2, and
this is the choice that is adopted in the Stratonovich
interpretation of stochastic integral. The Stratonovich
interpretation is considered physically most satisfactory
(see the discussion by van Kampen, 1981a, 1981b, 2001).
Non-anticipating functions can be considered as a precise
specification of what Langevin indicated by the assumed
independence of x and Z on which his derivation relies—in
the Stratonovich choice these would in fact be correlated.

3. The Fokker–Planck equation

For the process described by the above differential
equation (4), the Itô calculus can be put to use to derive a
corresponding Fokker–Planck equation that describes the
time evolution of the conditional probabilities of the
process. It is given by

qtpðx; tjx0; t0Þ ¼ � qx½aðx; tÞpðx; tjx0; t0Þ�

þ 1
2
q2x½bðx; tÞ

2pðx; tjx0; t0Þ�. ð5Þ

This is a key result for diffusion processes, and it allows
one to switch back and forth between Einstein’s approach
and Langevin’s approach, thus making available the
analytic techniques developed in both worlds. Indeed,
some results for diffusion processes are obtained much
more directly from the Fokker–Planck equation than from
the corresponding SDE; as evidenced by Langevin’s
derivation of Einstein’s result, the reverse can also be true.
In sum, the central equations in the study of diffusion

processes are Eqs. (4) and (5), which serve as the starting
point for analysis of specific instances of these equations.
For jump processes or discrete-event processes, the Master
equation is the starting point.
With these equations in position, Gardiner’s book

continues in Chapter 5 with a treatment of systematic
methods for finding answers to questions such as ‘‘What is
the distribution of the process at time t (given an initial
condition)?’’, ‘‘How long, on average, does it take for a
process to leave a specific region—i.e., what is its mean exit
time?’’, ‘‘To what stationary distribution does the distribu-
tion evolve as t!1?’’, ‘‘What are the moments of the
process at any time?’’, and ‘‘What is the distribution of the
process’s exit times?’’.
In order to answer such questions it is necessary to

impose initial and/or boundary conditions. The first part of
Chapter 5 provides the nontrivial derivation of appropriate
boundary conditions. For most of the above questions
exact answers can be obtained for certain forms of the
Fokker–Planck equation of single variable processes. For
multi-variable processes the answers are less explicit and
certainly more complicated. For more general forms of
these equations that fall outside the scope of these
particular forms, exact answers cannot be given and one
has to resort to approximation methods.
Prominent systematic approximation methods are trea-

ted in Chapter 6. The two main classes of systematic
methods of approximation for the Fokker–Planck equa-
tion are small noise perturbations and adiabatic elimination.
Both yield asymptotic results in the large t limit.
Small noise expansions are perturbation expansions that

apply to situations in which the noise is very small—e.g.,
arising from thermal fluctuations. The method constructs
an infinite set of ordinary or SDEs that can be solved
sequentially, and whose solutions form a basis on which
the solution can be expanded. Usually, only the first two
equations are necessary. The book points out how such
perturbation expansions differ as they are derived for either
SDEs or for Fokker–Planck equations, discusses their vali-
dity, indicates when they go awry, and explains how they
can be used to predict moments of the processes they
describe.
A large section of Chapter 6 is devoted to adiabatic

elimination—a theory to whose systematic treatment the
book’s author has made a significant contribution in his
1984 paper (Gardiner, 1984). Adiabatic elimination refers
to the elimination of fast varying components of a process,
in a situation of coupled processes that each fluctuate on
very different time scales. The faster varying components
tend to contribute very little to the overall stochastic
behavior and are therefore eliminated completely. This is
exactly as in Langevin’s original reasoning, but put on a
more general and sound mathematical foundation.
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4. The master equation

The prototypical example of a process described with
a Master equation is the population dynamics in a
predator–prey system. Except for specific situations
(e.g., the time homogenous Master equation) not many
systematic methods are available for the Master equation.
The fundamental result is that any diffusion process that
can be modeled by a Fokker–Planck equation can be
arbitrarily closely approximated by a process described by
a Master equation. For example, a diffusion process can be
arbitrarily closely mimicked by a random walk. In certain
cases, the opposite is true as well, and if so, a macroscopic
law of dynamics emerges from the detailed lower level
dynamics as the system size is increased. The circumstance
under which this can be achieved, and methods to do so,
are largely the subject of Chapter 7. In particular, the
chapter provides an elaborate treatment of the system size

expansion technique as well as the Poisson representation

technique for transforming Master equations into Fok-
ker–Planck equations. The Poisson representation techni-
que is an invention of the book’s author (Gardiner &
Chanwedi, 1977), who considers it to be his major
contribution to the analysis of stochastic dynamical
systems.

5. Simulation of SDEs

The book concludes with a chapter on numerical
solution of SDEs, or their stochastic simulation.
The intuitively most obvious method is Euler’s method
which is probably also the most widely used. This
method is discussed along with other algorithms that
show improved convergence (i.e., the simulated process
stays within a close neighborhood of the modeled process),
with the numerical stability of these algorithms (which
concerns the propagation of the errors made by the
algorithm with increasing time intervals for which the
equation is solved), and with consistency (i.e., the
simulated process converges to the modeled process as
the time step interval decreases to zero). Furthermore,
Chapter 10 provides algorithms for simulating multivariate
SDEs and discusses algorithms for Stochastic Partial
Differential Equations.

6. Conclusion

Gardiner’s Handbook of Stochastic Methods is a very
useful reference for anyone who wants to deepen their
understanding of stochastic processes, and wants to gain
confidence in applying the available techniques for
stochastic processes in cognitive modeling. Even though
the topics and examples are directed towards physics and
chemistry, and the treatment goes far beyond the level of
modeling detail currently achievable in cognitive psychol-
ogy, the book contains a wealth of information that could
be put to use directly by mathematical psychologists. Every
topic in the book is firmly grounded in both an advanced
mathematical treatment, as well as in clear intuitive
explanations and examples. The resulting informal style
of discourse and emphasis on intuition makes the book
ideal for self-study, and promotes a rapid advance in
mastering the subject.
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de la Spéculation’’. Mathematical Finance, 10(3), 341–353.

Diederich, A. (1997). Dynamic stochastic models for decision making

under time constraints. Journal of Mathematical Psychology, 41,

260–274.

Doob, J.L., 1953. Stochastic processes. Reprint 1990 Edition. Wiley

Classics Library. New York: Wiley-Interscience.

Feller, W., 1971. An introduction to probability theory and its applications

(Vol. II). New York: Wiley.

Gardiner, C. W. (1984). Adiabatic elimination in stochastic systems. I.

Formulation of methods and application to few-variable systems.

Physical Review A (General Physics), 29(5), 2814–2822.

Gardiner, C. W. (2004). Handbook of stochastic methods (3rd ed.). Berlin:

Springer.

Gardiner, C. W., & Chanwedi, S. (1977). The poisson representation. I. A

new technique for chemical master equations. Journal of Statistical

Physics (Historical Archive), 17(6), 429–468.

Gershenfeld, N. (1999). The nature of mathematical modeling. New York:

Cambridge University Press.

Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy

Tokyo, 40, 519–524.

Klebaner, F. C. (1998). Introduction to stochastic calculus with applications

(1st ed.). London: Imperial College Press.

Øksendal, B. (2000). Stochastic differential equations (2nd ed.). Berlin:

Springer.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,

85, 59–108.

Smith, P. L. (2000). Stochastic dynamic models of response time and

accuracy: A foundational primer. Journal of Mathematical Psychology,

44, 408–463.

Smith, P. L., & Ratcliff, R. (2004). The psychology and neurobiology of

simple decisions. Trends in Neurosciences, 27, 161–168.
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