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Recently, G. C. Van Orden, J. G. Holden, and M. T. Turvey (2003) proposed to abandon the conventional
framework of cognitive psychology in favor of the framework of nonlinear dynamical systems theory.
Van Orden et al. presented evidence that “purposive behavior originates in self-organized criticality” (p.
333). Here, the authors show that Van Orden et al.’s analyses do not test their hypotheses. Further, the
authors argue that a confirmation of Van Orden et al.’s hypotheses would not have constituted firm
evidence in support of their framework. Finally, the absence of a specific model for how self-organized
criticality produces the observed behavior makes it very difficult to derive testable predictions. The
authors conclude that the proposed paradigm shift is presently unwarranted.

In a provocative article, Van Orden, Holden, and Turvey (2003)
recommended the framework of nonlinear dynamical systems the-
ory as an attractive alternative to the current mainstream para-
digms in cognitive psychology. Van Orden et al. used time series
analysis to confirm their hypothesis that fluctuations in perfor-
mance over the course of an experiment display persistent serial
correlations or so-called 1/f“ noise. The presence of 1/f“ noise was
then taken as evidence for the important role of “self-organized
criticality” (Van Orden et al., p. 333) in human cognition. Van
Orden et al. went on to conclude that “intentional acts originate in
states of self-organized criticality” (p. 347) and further claimed
that “old science” (p. 347; i.e., the set of current paradigms in
cognitive psychology) is fundamentally flawed.

We believe that the evidence for questioning the conventional
paradigms of cognitive psychology is not as strong as claimed by
Van Orden et al. (2003). After all, psychologists practicing tradi-
tional cognitive psychology have not usually attempted to explain
serial correlations. In fact, the dominant approach to the study of
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human cognition typically ignores serial dependence, deems it
irrelevant, or treats it as a nuisance variable (e.g., Gilden, 2001;
Slifkin & Newell, 1998; cf. also Van Orden et al., 2003). When
new scientific evidence overthrows an existing dominant research
paradigm, a strict requirement should be that this new evidence is
sound (i.e., sufficiently replicated) and that the old research para-
digm fails to account for the new findings even after considerable
effort is expended to reconcile the problematic findings with
present theory. In addition, a new paradigm should only be ac-
cepted when it is shown to naturally account for existing findings
that were problematic for the old paradigm (in addition to provid-
ing an adequate account for many of the findings that the old
paradigm handled adequately). We show in this comment that
none of these three conditions have been met for the evidence
presented by Van Orden et al.

Although we find the application of self-organized criticality
(SOC) to human cognition conceptually intriguing and even inno-
vative and promising, it is important to objectively and critically
assess the contribution of the new paradigm. We offer two main
criticisms with respect to the research and theoretical claims ad-
vanced by Van Orden et al. (2003). Future research will have to
show whether these criticisms can be satisfactorily addressed.
First, Van Orden et al. avoided any effort to reconcile their
findings with “old science.” Instead, they dismiss traditional
“component-dominant” (p. 335) accounts for their data before the
fact. We believe this is a serious omission, and we demonstrate
that Van Orden et al. made this omission both at the level of
statistics and at the level of theory. If the new science of nonlinear
dynamical systems theory is truly superior to the current paradigm
of cognitive psychology, then its proponents should not shy away
from a head-on quantitative comparison. If, however, the new
paradigm turns out not to be superior, then there is little motivation
for abandoning the current framework, which has, after all, a
proven track record.



COMMENTS 109

Second, Van Orden et al. (2003) supported their hypothesis in
favor of nonlinear dynamical systems mostly with metaphors such
as heating oil in a pan or juggling soap. Although such metaphors
are persuasive in the context of the more general issues of inten-
tional control and provide useful everyday analogues to the com-
plex conceptual issues, it is not clear to us how a verbal description
about juggling soap can lead to the construction of an appropriate
quantitative model for human cognition. In an influential book on
SOC, Jensen (1998) stated that verbal descriptions and metaphors
of SOC in the absence of concrete models are “rather abstract,
heuristic wishful thinking” (p. 6). The principle of SOC should be
evaluated on a case-by-case basis, using clearly specified quanti-
tative models (cf. Gisiger, 2001). The need for specific models is
underscored by the fact that SOC is acutely sensitive to the details
of the dynamics of the system under study (e.g., Gisiger, 2001;
Jensen, 1998), as is illustrated later.

The outline of this comment is as follows. First, we clarify the
fundamental issues raised by Van Orden et al. (2003), and we
demonstrate that the reported analyses are not very informative
and do not test what the authors had set out to examine. We outline
how a diagnostic test can be conducted (cf. Beran, 1994; for an
application to psychology, see Wagenmakers, Farrell, & Ratcliff,
2004), and we then apply this test to the data of the two experi-
ments presented by Van Orden et al. The results of this test provide
weak support for Van Orden et al.’s assertion of 1/f* noise. Next,
we show that the finding of 1/f* noise does not constitute firm
evidence for SOC. We also briefly discuss and defend a simple
alternative explanation for 1/f“ noise from the field of economet-
rics (Granger, 1980), although other plausible alternative explana-
tions certainly exist. In addition, we argue that, contrary to the
claim by Van Orden et al., sequential sampling models can be
linked to specific biological processes, as illustrated by recent
findings in neuroscience. Finally, we argue that the proposed
concept of SOC can only be scientifically useful when it is em-
bedded in a specific model. Specific models make testable predic-
tions, and this is a hallmark of good science (Roberts & Pashler,
2000). We conclude that the proposed new framework for human
cognition, although novel and interesting, is, at this point in its
development, quite seriously underspecified.

SOC in Human Cognition

Van Orden et al. (2003) advanced the opinion that human
cognition and behavior show SOC (e.g., Bak, 1996; Sornette,
2000; Ward, 2002). This concept is perhaps best explained by
considering the classic example of SOC: a pile of sand (see Jensen,
1998, for further details). Specifically, consider a system that
consists of grains of sand piled up in a corner (i.e., bounded by two
orthogonal edges or walls). At random positions along the edges,
new grains of sand are dropped onto the pile one by one. When the
local slope of the sand pile exceeds a certain threshold (i.e., it is
sufficiently steep), grains of sand will be transported downhill until
the local slope is again below threshold. As a result of this
mechanism, avalanches of different sizes can occur; if several
adjacent slopes happen to be near threshold, a single grain of sand
may be sufficient to cause a cascade of avalanches. If a grain of
sand is transported all the way down to the foot of the pile, it is
removed from the system (e.g., imagine the sand pile system
positioned on a table with grains of sand at the bottom of the pile
falling off the edges of the table).

The above pile of sand can be said to self-organize to reach a
critical state. Once the pile is in this critical state, small perturba-
tions (i.e., single grains of sand added to the pile) can sometimes
have dramatic consequences (i.e., large avalanches). Models based
on similar principles have also been applied to evolution (e.g., Bak
& Sneppen, 1993; but see Davidsen & Liithje, 2001), forest fires
(e.g., Malamud, Morein, & Turcotte, 1998), and earthquakes (e.g.,
Davidsen & Paczuski, 2002; Davidsen & Schuster, 2000, 2002)
and go under the generic label of SOC (for an overview, see
Paczuski, Maslov, & Bak, 1996). For SOC to be present, a system
needs to be gradually pushed toward a threshold, and, in addition,
there need to be dominant interactions between many degrees of
freedom or individual units. Hence, Jensen (1998) termed these
kinds of models “slowly driven, interaction-dominated threshold
systems” (p. 126).

Van Orden et al. (2003) claimed that human cognition behaves
just as piles of sand, evolution, and earthquakes do. That is, Van
Orden et al. hypothesized that the dynamics of these very diverse
systems share fundamental principles with human cognition and
that considering human cognition in terms of these systems is more
theoretically meaningful than standard “component dominant”
(see Van Orden et al., 2003, p. 335) approaches to cognition. We
believe that this theory deserves serious attention, if only because
of its generality and scientific appeal. For example, Bak and
colleagues (e.g., Bak & Chialvo, 2001; Chialvo & Bak, 1999) have
recently highlighted the adaptive nature of self-organizing neural
networks: A network that is in a state of criticality is able to
quickly reorganize and swiftly adapt to new situations (Alstrgm &
Stassinopoulos, 1995; cf. Linkenkaer-Hansen, 2002; Linkenkaer-
Hansen, Nikouline, Palva, & Ilmoniemi, 2001).

Traditional methods in psychology are not well suited to test
whether the workings of human cognition relate to the behavior of
a pile of sand. However, Van Orden et al. (2003) noted that time
series analysis of cognitive performance, or the analysis of how
cognitive performance fluctuates over the course of an experiment,
might be able to reveal aspects of human behavior supporting the
pile of sand hypothesis of human cognition. In particular, under
certain conditions, for certain dependent variables, SOC systems
display persistent serial correlations or 1/f* noise. In fact, the
notion of SOC was first introduced to explain why 1/f* noise
occurs in so many quite different natural systems (Bak, Tang, &
Wiesenfeld, 1987; but see Jensen, 1998, and Jensen, Christensen,
& Fogedby, 1989; for a recent review with respect to biological
systems, see Gisiger, 2001).

Motivated by this pile of sand hypothesis, Van Orden et al.
(2003) set out to determine whether the temporal fluctuations in
human cognition show 1/f* noise (cf. Gilden, 1997, 2001; Gilden,
Thornton, & Mallon, 1995), consistent with the predictions from
SOC. The pattern of serial correlations known as 1/f* noise is
special not just because it occurs often in all kinds of natural
systems but also because only particular types of models appear to
produce 1/f noise."

1/f* Noise and How to Detect It

Most psychological research on 1/f“ noise proceeds globally as
follows. First, the temporal order in which the observations have

! See http://www.nslij-genetics.org/wli/1fnoise/ for an ordered summary
of the scientific literature on 1/f noise.
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been collected is kept intact. Often, condition means are subtracted
from each observation to reduce the impact of task difficulty on the
trial-by-trial fluctuations in performance. The resulting series is
then analyzed in the frequency domain (for an introduction of time
series analysis, see Priestley, 1981); this means that the temporal
fluctuations are reexpressed as an infinite sum of sine and cosine
terms, each with a specified frequency and amplitude. For exam-
ple, for a time series that can be characterized by pronounced slow
waves, its power (i.e., squared amplitude) will concentrate mostly
at the low frequencies. The results of the analysis in the frequency
domain are typically displayed by plotting frequency against
squared amplitude on log-log axes. In this so-called log-log power
spectrum, a 1/f“ noise process ideally produces a straight line with
slope —a. Thus, a best fitting straight line is drawn through the
spectrum, and the slope of this line estimates the intensity of the
1/f* noise process, where « usually ranges from 0.5 to 1.5. This is
the first method that Van Orden et al. (2003) used (for an extended
discussion of this method, see Wagenmakers et al., 2004).

The immediate problem with this procedure is that there is no
statistical test to determine whether 1/f“ noise is present. Although
fitting a regression line to a log-log power spectrum may yield a
negative slope, this does not imply that the data follow a straight
line. The reader is left to judge, by eye, whether he or she believes
the straight line produces an accurate fit. A second, related prob-
lem is that no alternative models are considered. This is particu-
larly worrisome when one considers the qualitative manner in
which 1/f* noise differs from the kind of temporal fluctuations
generated by very simple models. For a 1/f* noise process, serial
correlations (i.e., the correlations between ordered trials) decay
very slowly with the number of intervening trials (i.e., persistent
serial correlations). Specifically, the correlation C with k interven-
ing trials is given by C(k) = |k|™, with y between O and 1.
Thus, the decay of serial correlations follows a power function. In
contrast, transient serial correlations decay fairly quickly with the
number of intervening trials, for instance, as an exponential func-
tion. Such transient correlations are easily generated by standard
time series models such as the class of autoregressive moving
average (ARMA) models, in which behavior at time ¢ is related to
behavior at time ¢ — k via a procedure similar to linear regression:

P q
X, =2 ¢,X,_, +e,+ 2 0,¢,_,, where ¢ is white noise and
r=1 r=1

p and g determine the order of the ARMA process. The foregoing
implies that the difference between 1/f“ noise and standard,
readily explained processes that yield transient correlations can
also be formulated as the difference between power function decay
and, for example, exponential function decay (Beran, 1994). Thus,
the difference between a persistent 1/f noise process and a tran-
sient ARMA process is not in the absolute value of serial corre-
lations but in the rate of decay of these serial correlations with
increasing lag. These different patterns of serial correlation map
directly onto the power spectrum (i.e., via the Wiener—Khinchin
theorem; e.g., Priestley, 1981) such that a 1/f“ noise process
follows a straight line in the power spectrum, whereas a transient
process flattens at the lower frequencies. The leveling off at the
lower frequencies indicates that there are no correlations between
trials that are spaced widely apart.

We are now in a position to discuss the analyses and the data
from Van Orden et al. (2003) in more detail. In Van Orden et al.
(2003), the top right panel of their Figure 1 (p. 336) plots the

log-log power spectrum together with the best fitting straight line
for an example subject from their Experiment 1 (i.e., simple
response time; RT). The slope of this line is about —0.6. Can one
infer from this, as Van Orden et al. did, that the underlying process
is indeed a 1/f* noise process with o about 0.6? The answer is
emphatically no. Rather than testing the hypothesis of 1/f* noise,
the above procedure already assumes that the underlying process is
a 1/f“ noise process. If the authors assumed a different kind of
underlying process was at work in this situation, then it would
make no sense to fit a straight line to the spectrum, because the
log-log spectra of many different kinds of processes are not linear.
In fact, close examination of Van Orden et al.’s Figure 1 suggests
that their observed spectrum may level off at the low frequencies,
a phenomenon indicative of a simple ARMA process, not a 1/f“
noise process. Although our perception might be mistaken, this
highlights the case that, without quantitative assessment of alter-
natives, the nature of power spectra is open to alternative
interpretation.

To be fair, we must mention that the authors did perform one
statistical test: They tested whether the serial correlations (quan-
tified, rightly or wrongly, by the spectral slopes) differed signifi-
cantly from a white noise process without any serial correlations.
It comes as no surprise that the null hypothesis of no serial
correlation was confidently rejected. Of course, the null hypothesis
would also have been rejected if the data came from a standard
ARMA process that produces transient serial correlations. Hence,
this analysis does not address the issue of whether the observed
data are generated by a 1/f* noise process or an ARMA process
(cf. Rangarajan & Ding, 2000, p. 4995). The very same comments
apply to the spectral analysis of Experiment 2 (word reading),
except that the reported slopes are so shallow that they fall outside
of the range of what is typically considered a 1/f noise process
(Beran, 1994). An important reason for disregarding shallow
slopes is that because the underlying processes are stochastic in
nature, such a pattern is extremely hard to distinguish from an
ARMA pattern of transient correlations.

In sum, the spectral analyses by Van Orden et al. (2003) con-
vincingly demonstrated the presence of serial correlations.? Al-
though it may be of scientific interest (Laming, 1968), this general
finding does not confirm Van Orden et al.’s hypothesis. Van Orden
et al. wanted to test whether the data are consistent with a 1/f“
noise process. Their analyses do not address this issue, because a
process that yields only transient correlations (e.g., an ARMA
process) may have been responsible for generating their data.

In a second analysis reported by Van Orden et al. (2003), they
plotted variance as a function of sample size. Like the spectral
slope measure, such a dispersion analysis is a heuristic measure
(Beran, 1994). For the kind of sample sizes used in psychology,
transient ARMA processes may spuriously affect the best fitting
slope of a dispersion analysis (e.g., Rangarajan & Ding, 2000).
Again, for such an analysis, a test against the white noise null

2 Note that the serial correlations in Van Orden et al.’s (2003) simple RT
experiment are much more pronounced than those reported in Gilden et al.
(1995) and Wagenmakers et al. (2004). This might be due to the fact that
Van Orden et al. used fixed intervals that made the onset of the stimulus
completely predictable. This may effectively turn the experiment into a
temporal estimation task, which is known to result in relatively high serial
correlations (Gilden, 2001; Wagenmakers et al., 2004).
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hypothesis does show that serial correlations are present, but it
does not reveal the nature of these serial correlations.

The above discussion highlights the need to test the hypothesis
of a 1/f“ noise process versus the hypothesis of an alternative
process that incorporates serial correlations other than that of the
1/f* type. An ideal candidate for such an alternative process is the
standard ARMA process that generates transient correlations. A
test between the 1/f* noise model and the ARMA model may be
accomplished by autoregressive fractionally integrated moving
average (ARFIMA) time series modeling, popular in statistics and
economics (e.g., Baillie, 1996; Beran, 1994; Wagenmakers et al.,
2004). The fractional integration in ARFIMA models is incorpo-
rated as a single parameter d that is associated with a 1/f“ noise
process. ARFIMA models are a generalization of ARMA models
and are able to describe both transient and persistent serial corre-
lations. Model selection techniques (e.g., Burnham & Anderson,
2002; Myung, Forster, & Browne, 2000; Wagenmakers & Farrell,
2004) can then be used to determine which members of the
ARFIMA family are the most plausible (cf. Farrell, Wagenmakers,
& Ratcliff, 2004). A detailed discussion about ARFIMA models
can be found elsewhere (e.g., Baillie, 1996; Beran, 1994; Hosking,
1981, 1984). In the next section, we apply the ARFIMA modeling
technique to the data presented in Van Orden et al. (2003).

ARFIMA Modeling of the Van Orden et al. (2003) Data

In their article, Van Orden et al. (2003) presented the results of
two experiments: the first, a simple RT experiment with 10 par-
ticipants; the second, a word-reading (or word-naming) experiment
with 20 participants. The ARFIMA analyses of these data are
based on the preprocessed individual time series. Preprocessing
involved detrending and standardizing (cf. Van Orden et al., 2003).
Each individual time series consisted of 1,024 observations.

To each individual time series from Van Orden et al. (2003), we
fitted 18 models using maximum likelihood estimation as imple-
mented in the Ox ARFIMA software package (Doornik, 2001;
Doornik & Ooms, 2003; Ooms & Doornik, 1999). Nine of the
models are ARMA models and hence do not contain long-range
serial correlations or 1/f* noise. These ARMA models differ only
in the number of autoregressive (AR) and moving average (MA)
parameters. The number of parameters was systematically varied
(see Table 1), ranging from a model without any serial depen-
dence—that is, ARMA (0, 0)—to an ARMA (2, 2) model. To
illustrate, the ARMA (2, 2) model has two AR parameters and two
MA parameters: X, = ¢, X,_, + $.X,_, + & + 0,e,_, +
0,e,_,. The other 9 models are ARFIMA models and differ
from the set of ARMA models by their inclusion of a
parameter d that represents the persistence of serial correlations.?

If the Van Orden et al. (2003) data contain persistent correla-
tions or 1/f* noise, the ARFIMA models are expected to outper-
form the transient ARMA models. Thus, the issue of deciding
between transient and persistent processes is reduced to the issue
of selecting between ARMA and ARFIMA models (cf. Bisaglia,
2002; Bisaglia & Guégan, 1998; Hosking, 1984, Table 4). In the
process of deciding between several competing models (i.e., model
selection), it is not appropriate to focus solely on goodness of fit
(i.e., the maximum likelihood values). Models with many param-
eters may spuriously obtain a relatively good fit to data by cap-
turing idiosyncratic noise (overfitting; Myung et al., 2000). Such
models will not generalize well to other comparable data sets.

Table 1

Average Model Weights, Average Rank Order, and Number of
Rank Order Ones (i.e., Wins) for ARMA and ARFIMA Models
Fitted to Van Orden, Holden, and Turvey’s (2003) Experiment 1
(i.e., Simple Response Time), Separately for AIC and BIC

AIC BIC
Weight Weight
Model M SD Rank Wins M SD Rank Wins
Transient correlation
ARMA (0, 0) .00 .00 18.0 0 00 .00 18.0 0
ARMA (1, 0) .01 .01 130 0 22 .25 5.0 3
ARMA (2, 0) .06 .07 8.5 1 14 .18 54 2
ARMA (0, 1) .00 .00 16.9 0 00 .00 16.6 0
ARMA (0, 2) .00 .00 152 0 00 .01 1338 0
ARMA (1, 1) .07 .08 7.5 1 14 .14 34 1
ARMA (2, 1) 09 .05 5.1 0 03 .03 6.7 0
ARMA (1, 2) .07 .05 6.9 0 02 .02 7.6 0
ARMA (2, 2) .08 .08 74 1 00 .00 119 0
Persistent correlation
ARFIMA (0,4, 0) .01 .04 139 0 16 .30 104 2
ARFIMA (1, d, 0) .06 .07 7.5 2 13 .16 3.9 1
ARFIMA (2,d, 0) .06 .03 6.6 0 01 .01 74 0
ARFIMA (0,4, 1) .04 .06 10.5 1 11 .19 7.1 1
ARFIMA (0, d, 2) .06 .05 7.8 0 02 .02 8.7 0
ARFIMA (1,d, 1) .06 .03 7.2 0 01 .01 7.5 0
ARFIMA (2,4, 1) .16 .15 52 3 00 .01 11.1 0
ARFIMA (1,d, 2) .06 .06 7.9 1 .00 .00 12.0 0
ARFIMA (2,d,2) .09 .06 5.9 0 .00 .00 145 0

Note. Weight denotes the average model weights (i.e., averaged over
participants). Rank denotes the average rank order of the models (i.e.,
averaged over participants). The ARMA and ARFIMA models that are best
in terms of average weight, average rank order, and total number of wins
are in bold. AIC = Akaike’s information criterion; BIC = Bayesian
information criterion; ARMA = autoregressive moving average; ARFIMA
= autoregressive fractionally integrated moving average.

Hence, model selection requires that goodness of fit be discounted
as a function of model complexity.

One popular method for model selection is Akaike’s informa-
tion criterion (AIC; e.g., Akaike, 1974; Burnham & Anderson,
2002), given by AIC = —2In L + 2k, where L is the maximum
likelihood and k is the number of free parameters. The model with
the lowest AIC value is preferred. Thus, AIC discounts goodness
of fit as a function of the number of free parameters. Another
often-used model-selection method is the Bayesian information
criterion (BIC; e.g., Raftery, 1995; Schwarz, 1978), given by BIC
= —2In L + kIn (n), where n is the number of observations (for
details, see Kass & Raftery, 1995). Thus, the BIC penalty term
incorporates both sample size and the number of free parameters.
For the data sets considered here, n = 1,024, and the BIC penalty
term for having one additional parameter, that is, In(1024) ~ 6.93,
is considerably higher than the corresponding AIC penalty term of

3 In previous work, we specifically compared performance of the tran-
sient ARMA (1, 1) model to that of the persistent ARFIMA (1, d, 1) model
(Wagenmakers et al., 2004). The current approach is more general as it
includes a wider range of models.
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2. This means that compared with AIC, the BIC will prefer models
with fewer free parameters. Because AIC and BIC may give
different results, we decided to report both.

The raw information criterion (IC, denoting either AIC or BIC)
values can be quite difficult to interpret, and hence we performed
a simple transformation that yields model weights, as follows:

K

w(IC) = exp{—3A,(IC)}/ D exp{—1A,(IC)}.

k=1

In this equation, the subscript i denotes the model under consid-
eration, and A,(IC) is the difference in the information criterion
(IC) between model i and the best IC model, that is, A,(IC) = IC,
—min IC. The sum in the denominator is over all K candidate
models (cf. Wagenmakers & Farrell, 2004). The IC weights pro-
vide a measure that allows assessment of the strength of evidence
for a model conditional on the set of candidate models and the
particular IC used.

For each of the 18 candidate models (i.e., 9 ARMA models and
9 ARFIMA models), we calculated AIC weights and BIC weights
separately for each participant in the Van Orden et al. (2003)
experiments. Table 1 summarizes the results for Van Orden et al.’s
simple RT experiment. For every model, Table 1 shows the mean
AIC weights and the mean BIC weights, obtained by averaging
model weights over the 10 participants, as well as the standard
deviation of these weights. Table 1 also shows the mean rank order
of each model (i.e., 1.0 being the best possible value and 18.0
being the worst possible value) and the number of participants for
which each model yielded the best AIC or BIC fit.

The results demonstrate that there is a considerable difference
between AIC and BIC model selection. AIC prefers relatively
complex models, whereas the heavy In(1024) ~ 6.93 penalty term
leads BIC to prefer relatively simple models. Second, according to
the AIC, the ARFIMA (2, d, 1) model is best with a model weight
W, 41 (AIC) = .16. This result provides only limited support
for the 1/f* noise hypothesis, however. The value of .16 is not
very high (like probabilities, weights add to 1), and as many as five
transient ARMA models have AIC weights that are over one third
of the weight for the ARFIMA (2, d, 1) model. In addition, the BIC
shows an overall preference for the ARMA (1, 0) model,
w o(BIC) = .22, although the difference with the best
ARFIMA model is arguably small, w, ,,(BIC) = .16.

It is generally the case that models with high weights have low
(i.e., primary) rank orders and relatively high numbers of wins. An
exception is the BIC ARFIMA (0, d, 0) model that has a surpris-
ingly high rank order. Inspection of the weights confirmed that for
1 participant, the ARFIMA (0, d, 0) model performed particularly
well, whereas it performed relatively poorly for the majority of
participants.

For the Van Orden et al. (2003) simple RT experiment, then,
Table 1 shows that no strong conclusions can be drawn with
respect to the presence of persistent serial correlations or 1/f“
noise: The AIC weights are relatively evenly distributed over
transient ARMA and persistent ARFIMA models, and the BIC
weight is highest for the transient ARMA (1, 0) model.

Table 2 shows the results of the same analyses applied to the
data from Van Orden et al.’s (2003) Experiment 2, the word-
naming task. Again, AIC weights are spread out over a relatively
wide range of models, whereas BIC weights concentrate mostly at
the models that have only few free parameters. In addition, AIC

Table 2

Average Model Weights, Average Rank Order, and Number of
Rank Order Ones (i.e., Wins) for ARMA and ARFIMA Models
Fitted to Van Orden, Holden, and Turvey’s (2003) Experiment 2
(i.e., Word Naming), Separately for AIC and BIC

AIC BIC
Weight Weight
Model M SD Rank Wins M SD Rank Wins
Transient correlation
ARMA (0, 0) .00 .00 18.0 0 00 .00 16.8 0
ARMA (1, 0) .04 .06 109 2 21 .24 54 6
ARMA (2, 0) .04 .05 8.9 0 03 .05 7.7 0
ARMA (0, 1) .02 .04 143 0 09 .13 8.9 0
ARMA (0, 2) .03 .06 114 2 03 .10 9.5 1
ARMA (1, 1) .06 .06 7.3 1 04 .08 5.1 0
ARMA (2, 1) 06 .05 7.3 0 00 .00 9.3 0
ARMA (1, 2) .06 .04 7.1 1 00 .00 8.8 0
ARMA (2, 2) .03 .02 113 0 00 .00 149 0
Persistent correlation
ARFIMA (0,4, 0) .07 .08 8.0 3 47 .35 2.5 12
ARFIMA (1, d, 0) .06 .03 6.4 0 03 .02 4.5 0
ARFIMA (2,4, 0) .03 .02 103 0 00 .00 10.9 0
ARFIMA (0,d, 1) .05 .03 7.1 0 03 .02 5.2 0
ARFIMA (0,d,2) .04 .04 108 0 00 .01 11.0 0
ARFIMA (1,d, 1) .06 .08 9.1 1 04 .18 9.4 1
ARFIMA (2,4, 1) .14 .14 7.0 7 00 .01 123 0
ARFIMA (1,d,2) .09 .12 9.3 1 .00 .02 132 0
ARFIMA (2,d,2) .11 .15 6.9 2 .00 .00 16.1 0

Note. Weight denotes the average model weights (i.e., averaged over
participants). Rank denotes the average rank order of the models (i.e.,
averaged over participants). The ARMA and ARFIMA models that are best
in terms of average weight, average rank order, and total number of wins
are in bold. AIC = Akaike’s information criterion; BIC = Bayesian
information criterion; ARMA = autoregressive moving average;
ARFIMA = autoregressive fractionally integrated moving average.

prefers the ARFIMA (2, d, 1) model, as it did for the simple RT
experiment. The ARFIMA (2, d, 1) model also has the best AIC
value for 7 out of 20 participants. Several other ARFIMA models
also perform well, and the evidence for persistent correlations is
somewhat stronger here than in the simple RT experiment. None-
theless, the summed AIC weight for all ARMA models is a
respectable .34 and cannot be ignored. According to the BIC, the
decision is between ARMA (1, 0) and ARFIMA (0, d, 0), again as
in the simple RT experiment. This time, the ARFIMA (0, d, 0)
model scores a clear win, w, ,o(BIC) = .47, even though the
ARMA (1, 0) model cannot be ignored, as its weight,
w; o(BIC) = .21, is almost half of that for the ARFIMA (0,
d, 0) model. For the Van Orden et al. naming experiment, then,
persistent ARFIMA models tend to outperform transient ARMA
models, although arguably not by a wide margin.

In sum, the model-fitting procedures showed some support for
the existence of persistent serial correlations. However, this sup-
port does not appear to be very strong. We conclude, therefore, that
the transient ARMA models are competitive and cannot be ex-
cluded from consideration on the basis of the results from Van
Orden et al. (2003).
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Does Human Cognition Really Behave Like
a Pile of Sand?

In this section, we consider more conceptual issues and focus on
what the theoretical implications would be if the presence of 1/f“
noise had been indisputable. How much evidence would such a
finding yield for the hypothesis that the workings of human cog-
nition are similar to the behavior of a pile of sand?

Certainly, the prediction from a SOC account of 1/f“ noise in
human cognition is, at first sight, very surprising. We agree with
Roberts and Pashler (2000) that the confirmation of surprising
predictions constitutes strong support for a theory. SOC also
distinguishes itself by addressing the trial-to-trial temporal dynam-
ics of human behavior, in contrast to many current models for
information processing in simple laboratory tasks that do not
address such issues (but see Botvinick, Braver, Barch, Carter, &
Cohen, 2001, pp. 640-643; Laming, 1968). However, several
arguments suggest that even if Van Orden et al. (2003) had
convincingly demonstrated the presence of 1/f“ noise in their data,
such a demonstration would not have provided the strong support
for the SOC hypothesis that Van Orden et al. seem to have implied.

First, the finding of 1/f“ noise in human cognition is not
universal, despite Van Orden et al.’s (2003) claims to the contrary.
In fact, some experiments find no serial correlations at all (e.g.,
Busey & Townsend, 2001; Townsend, Hu, & Kadlec, 1988),
whereas other experiments find only exponentially decaying, tran-
sient correlations (e.g., Laming, 1968, 1979). When one associates,
as did Van Orden et al., the presence of 1/f“ noise with the
presence of SOC, the finding of serial dependencies other than
those of the 1/f“ type is problematic; such a finding casts doubt on
the robustness and generality of the claim that the human brain
operates as a SOC system. In response, proponents of the SOC
hypothesis may argue that the human brain operates as a SOC
system only under certain specific experimental conditions. It may
also be argued that external and perhaps unidentified experimental
factors can obscure the 1/f“ noise process or can turn it into a
transient ARMA process. However, these arguments certainly
require further explanation (i.e., how exactly would a 1/f“ noise
process be transformed into an ARMA process?), and in the
absence of a process model that addresses the origin of serial
correlations, the above arguments appear to be ad hoc.

Second, even if all SOC systems necessarily gave rise to 1/f“
noise, the presence of 1/f“ noise does not guarantee that the
generating system is a SOC system. Jensen (1998) noted, “Al-
though 1/f-like spectra might be indicative of critical behavior,
they do not guarantee it. There are plenty of ways to produce 1/f
spectra without any underlying critical state” (p. 13).* One such
explanation is popular in econometrics and is due to Granger
(1980). Granger hypothesized that the 1/f“ noise observed in
global economic measures comes about via aggregation of multi-
ple component processes that separately generate transient corre-
lations. Specifically, assume each of a possible infinite number of
component processes, X,(i), i = 1, 2, ..., is a simple indepen-
dent first-order autoregressive process, that is, AR(1),
where behavior at time 7 depends partially on behavior at time
t—1: X)) = ¢,X,_ (i) + &,i), where ¢,£(—1,1) and ¢, is an
independent white-noise process with mean zero and variance o7.
It is well-known that each of these component AR(1) processes
generates transient rapidly decaying serial correlations. The overall
behavior of the system is assumed to be a simple aggregation of

the behavior of the component processes: X, = 2 X,(i). When the
i=1

parameters ¢; come from a beta distribution with suitable param-
eters, Granger (1980) showed that the aggregate series X, displays
persistent serial correlations (see also Beran, 1994, pp. 14-16).
Granger’s account can easily be applied to human cognition. All
that needs to be assumed is that the observed behavior is an
aggregation of the behavior of many independent groups of neu-
rons, each with their own different autoregressive decay parameter
(cf. Chen, Ding, & Kelso, 2001; Ding, Chen, & Kelso, 2002).

Several other models are able to mimic 1/f* noise for series
lengths that are used in the study of human cognition (cf. Wagen-
makers et al., 2004). Among other explanations, we suggested a
regime-switching model for 1/f* noise in human cognition. In a
regime-switching model, performance jumps discretely from one
level to another, such as when the participant suddenly adopts a
different response criterion for some number of trials or suddenly
switches to a different strategy for performing the experimental
task. Van Orden et al. (2003) asserted that the existence of differ-
ent levels of performance in regime-switching models will give
rise to “terraces” (p. 344) in performance and that these terraces
are never observed in human performance. In practice, we have
observed that when a simple AR(1) process is added to the regime-
switching process, the noise in the resulting time series makes it
difficult to detect terraces in simulated data sets. In addition, we
note that one of the characteristic qualitative features of 1/f* noise
is that “there are relatively long periods where the observations
tend to stay at a high level, and on the other hand, there are long
periods with low levels” (Beran, 1994, p. 41).

Van Orden et al. (2003) focused on how RT fluctuates from trial
to trial. As Van Orden et al. pointed out, sequential sampling
models such as the diffusion model (i.e., a continuous-time random
walk model; cf. Ratcliff, 1978) are currently very successful in
describing several aspects of RT performance (e.g., RT distribu-
tions for correct responses and error responses, the effects of
speed—accuracy manipulations, the effects of aging; see, e.g., Rat-
cliff, Thapar, & McKoon, 2001; Ratcliff, Van Zandt, & McKoon,
1999). The diffusion model incorporates trial-to-trial fluctuations
(e.g., Ratcliff & Rouder, 1998, 2000; Ratcliff & Smith, 2004;
Ratcliff & Tuerlinckx, 2002) in various components of processing
such as drift rate and starting point. However, this across-trial
variability is random, and, until recently, the diffusion model had
not been applied to long-range dependencies or 1/f* noise (for an
application to short-range sequential effects, see Ratcliff, 1985;
Ratcliff et al., 1999).

In another article (Wagenmakers et al., 2004), we proposed that
sequential sampling models such as the diffusion model could be
extended to handle the observed serial correlations in two-choice
tasks by incorporating changes on different time scales. This
proposal is in agreement with Treisman and Williams (1984), who
developed a model for sequential effects in which criterion setting
involves two processes: a short-term process that adjusts the cri-
terion on a trial-by-trial basis (i.e., based on the sequence of prior
decisions) and a relatively long-term process that is based on

+ Another explicit demonstration that power laws are not uniquely as-
sociated with SOC is provided by Newman (1997).
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factors such as prior knowledge or payoff values (Treisman &
Williams, 1984, pp. 93-97).

Van Orden et al.’s (2003) main objection against sequential
sampling models such as the diffusion model was that the model is
“one part of a largely unspecified system” (p. 334). In reply, we
point out that the generality of the diffusion model framework
allows it to be successfully applied to a wide array of experiments
from different paradigms. In the diffusion model, various sensory
input mechanisms transmit information into decision stages that
are related to various output mechanisms (vocal, manual, sac-
cadic). This level of generality is needed if the diffusion model is
to account for two-choice decisions for a variety of stimulus and
cognitive dimensions. Also, the predictions of the diffusion model
can be rigorously derived by analytical methods or simulations,
and in this sense it is very specific—this is in sharp contrast to the
framework of SOC as currently proposed by Van Orden et al.
Further, recent work has used single-cell recordings in the monkey
saccade system in an attempt to ground the diffusion model more
firmly in biological reality (e.g., Ratcliff, Segraves, & Cherian,
2003). In simple two-choice tasks, the behavior of the cells under
study (movement-sensitive cells in the frontal eye field,
movement-sensitive cells in the lateral interparietal cortex, and
buildup/prelude cells in the superior colliculus) appears to involve
the accumulation of evidence toward one of two decisions, as
predicted by the diffusion model. This conclusion is based on the
fact that the aggregate behavior of neuronal activity follows the
time course of accumulation of information within the decision
model fit to the behavioral data (Gold & Shadlen, 2001; Ratcliff et
al., 2003; Roitman & Shadlen, 2002; Smith & Ratcliff, 2004).

Third, not all SOC systems generate 1/f“ noise under all con-
ditions. Typically, SOC systems only generate 1/f“ noise for
specific dependent variables under certain specific conditions. For
instance, in the case of the self-organizing pile of sand, the total
mass of the sand pile shows 1/f noise across a wide range of
frequencies (for details, see Jensen, 1998, pp. 30—42). However,
this only happens when the new grains of sand are added along the
edges (i.e., along the two orthogonal walls)! When the grains of
sand are added to random positions on the interior of the pile, there
is no 1/f noise (see Jensen, 1998, p. 42). Further, certain specific
piles do not generate 1/f noise when they are made up of grains of
sand, but they do generate 1/f noise when they are made up of
grains of rice (for details, see Jensen, 1998). Because the nature of
the interacting primitives in an SOC theory of human cognition is
not clear, it is also not clear that SOC will necessarily lead to 1/f
noise in human cognition. Also, Van Orden et al. (2003) did not
specify how an SOC system can go from a perfect intrinsic 1/f
noise pattern to the observed pattern of 1/f*, with o much smaller
than 1. Van Orden et al. mentioned that the intrinsic pattern is
“decorrelated” (p. 338) by external factors, but how adding noise
to a 1/f process reduces a in SOC systems is not specifically
explained. It might well be possible to make a SOC system
produce 1/f* with @ much smaller than 1, but this has not been
shown by the authors in any convincing way (i.e., via simulations
or analytic methods).

Fourth, it is not clear what kind of new predictions follow from
the characterization of human cognition as a pile of sand other than
that it predicts persistent serial correlations (under certain situa-
tions and for certain dependent variables). How can the SOC
framework be applied to human cognition except to note the
persistence of serial correlations? Although the components, vari-

ables, or parameters in many dynamical systems models have
some clear psychological meaning, the nature of the interacting
primitives and the manner in which they give rise to the spectrum
of complex human behaviors is not apparent from Van Orden et
al.’s (2003) proposal.

A final, related argument is that the account, as it currently
stands, is underspecified. When SOC systems have been proposed
for sand piles, earthquakes, forest fires, evolution, or populations
of neurons (da Silva, Papa, & de Souza, 1998; Usher, Stemmler, &
Olami, 1995), such systems have always been implemented as
specific models. This makes it possible to identify precisely what
makes the models behave as they do. Also, such models might then
be subjected to additional tests. We found it very difficult to
extract from the Van Orden et al. (2003) article how exactly to
apply the SOC framework to human cognition other than in very
general terms. We hazard to guess that the authors’ view is that the
slow driving of SOC systems (cf. adding grains of sand to the pile)
corresponds to the gradual accrual of information and that when
the threshold is passed, the system responds (cf. avalanches in the
sand pile). After the response is made, the state of the system is
relaxed, and the process of information accrual starts again when
a new stimulus is presented.

The above framework could be an interesting start, but to apply
it to human cognition, several details need to be specified. The fact
that information gradually accumulates until a decision threshold
is passed is inherent in the majority of psychological models of
choice response time (cf. Ratcliff & Smith, 2004). These models,
such as the diffusion model (e.g., Ratcliff, 1978; Stone & Van
Orden, 1993), might be underspecified in certain areas, as Van
Orden et al. (2003) argued they are, but at least they are specified
in enough detail to allow a wide range of data to be successfully
described and, more important for scientific rigor, predicted. We
believe the SOC framework proposed by Van Orden et al. is
intellectually stimulating and interesting, but we challenge the
authors to develop a specific model for how SOC operates in
human cognition. It could be, for instance, that such a specific
model would produce time series that are uncharacteristic of
human performance, or it could be that correct behavior of such a
model would depend on crucial assumptions that can be empiri-
cally tested.

Summary

The analyses reported by Van Orden et al. (2003) do not support
their claim of 1/f“ noise in repeated measurements of human
performance or the implication of SOC. We argued that the evi-
dence in favor of persistent serial correlations should be evaluated
against the evidence for transient serial correlations, and we
showed how this may be accomplished using the family of
ARFIMA time series models. We believe that the finding of 1/f“
noise constitutes only circumstantial evidence for the framework
of SOC. The SOC framework does not necessarily lead to 1/f“
noise under all circumstances or with respect to all dependent
variables (Jensen, 1998). This observation underscores the need
for a specific implemented model for SOC in human cognition. We
briefly presented a simple alternative model (Granger, 1980) that
can account for 1/f* noise by the aggregation of many independent
autoregressive processes that together determine behavior. The
above considerations strongly suggest that the paradigm shift
proposed by Van Orden et al. is premature and that such an
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approach requires the application of specific, empirically testable,
and preferably quantitative models of human behavior.
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