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Abstract

Almost every empirical psychological study finds that the variance of a response time (RT) distribution increases with the mean.

Here we present a theoretical analysis of the nature of the relationship between RT mean and RT variance, based on the assumption

that a diffusion model (e.g., Ratcliff (1978) Psychological Review, 85, 59–108; Ratcliff (2002). Psychonomic Bulletin & Review, 9,

278–291), adequately captures the shape of empirical RT distributions. We first derive closed-form analytic solutions for the mean

and variance of a diffusion model RT distribution. Next, we study how systematic differences in two important diffusion model

parameters simultaneously affect the mean and the variance of the diffusion model RT distribution. Within the range of plausible

values for the drift rate parameter, the relation between RT mean and RT standard deviation is approximately linear. Manipulation

of the boundary separation parameter also leads to an approximately linear relation between RT mean and RT standard deviation,

but only for low values of the drift rate parameter.

r 2005 Elsevier Inc. All rights reserved.
1. Introduction

Two popular dependent measures in psychological
research are response accuracy (i.e., proportion of items
responded to correctly) and response time (RT; i.e., time
from stimulus onset until response execution). For
response accuracy of a random variable X, the binomial
model with success parameter p and number of
observations n allows for a simple and formal descrip-
tion of the mean, EðX Þ ¼ np; and its variance, varðX Þ ¼

npð1� pÞ: It follows that the binomial variance decreases
as p (and hence EðX Þ) becomes more extreme, that is, as
p gets closer to either zero or one. The fact that the
binomial variance depends on the binomial mean is a
violation of the ‘‘homogeneity of variance’’ assumption
of a traditional analysis of variance (ANOVA), and this
has inspired the development of variance-stabilizing
transformations such as the arcsine transform (i.e., ~p ¼

arcsinð
ffiffiffi
p

p
Þ; Snedecor & Cochran, 1989, p. 289) and
e front matter r 2005 Elsevier Inc. All rights reserved.
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motivated application of alternative statistical proce-
dures such as logistic regression (e.g., Pampel, 2000).
For RT, it has often been observed that here too the

variance fluctuates with the mean. Specifically, an
increase in RT mean is almost always accompanied by
an increase in RT variance. The precise nature of the
relationship between RT mean and RT variance is of
interest for several reasons. First, knowledge of this
relation may guide the search for an appropriate
variance stabilizing transformation (cf. Levine & Dun-
lap, 1983, p. 597; Snedecor & Cochran, 1989, pp.
286–287). For instance, when the variance is propor-
tional to the mean, such as for Poisson distributed data,
the square root transformation is appropriate, whereas
the logarithmic transformation is advisable when the
standard deviation is proportional to the mean. A
variance stabilizing transformation often also di-
minishes skew, further reducing the number of ANOVA
violations exhibited by RT data (cf. Emerson & Stoto,
2000; Keselman, Othman, Wilcox, & Fradette, 2004).
Second, several statistical techniques assume a specific

relation between mean and variance. For instance, in the
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Fig. 1. A diffusion model for two-choice RT and its parameters. See

text for details.
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aging literature it has recently been proposed that effects
of aging primarily express themselves in RT variability
rather than in RT mean (e.g., Hultsch, MacDonald, &
Dixon, 2002; Li, 2002; MacDonald, Hultsch, & Dixon,
2003; Shammi, Bosman, & Stuss, 1998). In order to
study differences in RT variability while controlling for
possible differences in RT means, researchers sometimes
use a linear regression technique whose aim is to partial
out effects of differences in RT mean on the observed
differences in RT standard deviation. Alternatively,
the coefficient of variation (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX Þ

p
=EðX Þ) is

sometimes used to control for baseline differences in
processing speed (e.g., Segalowitz & Segalowitz, 1993).
Both methods tacitly assume a linear relationship
between RT mean and RT standard deviation, and
their efficiency will depend on the extent to which this
assumption is correct.
Third, the claim is sometimes made that RT distribu-

tions are log-normally distributed (e.g., Van Orden,
Pennington, & Stone, 2001, p. 147); this is an important
claim in the context of nonlinear dynamical systems
theory, as the log-normal distribution can closely mimic
a self-similar power law (cf. Peterson & Leckman, 1998,
p. 1346; Sornette, 2000, pp. 80–82). When RTs are log-
normally distributed, the standard deviation is propor-
tional to the mean. Log-normally distributed data may
require a different method of analysis than do normally
distributed data (e.g., Zhou, Gao, & Hui, 1997).
Finally, we believe the relation between RT mean and

RT variance is important because of general theoretical
considerations. The field of mathematical psychology
has invested considerable effort in the study of RT
distributions (cf. Van Zandt, 2000, 2002), and the
relation between RT mean and RT variance is a
fundamental property of a family of RT distributions.
In order to study the precise relationship between RT

mean and RT variance, we ideally need a mathematical
model that is generally acknowledged to provide a close
fit to a wide range of empirical RT distributions, much
like the binomial model is an accepted statistical model
for response accuracy. Such a mathematical model
allows any conclusions to be very general and unaffected
by measurement noise. The model that is the focus of
our work here is the continuous random walk or
diffusion model (e.g., Diederich & Busemeyer, 2003;
Ratcliff, 1978, 2002; Smith, 2000).
Our choice for the diffusion model as an RT

counterpart to the binomial model for accuracy was
motivated by mathematical tractability, by the fact that
the diffusion model often performs better than compe-
titor sequential sampling models (cf. Ratcliff & Smith,
2004), and—most important—by the fact that the
diffusion model has been successfully applied to a wide
range of two-choice tasks. The different paradigms to
which the diffusion model has been applied include
short- and long-term recognition memory tasks, same/
different letter-string matching, numerosity judgments,
visual-scanning tasks, brightness discrimination, letter
discrimination, and lexical decision (e.g., Ratcliff, 1978,
1981, 2002; Ratcliff & Rouder, 1998, 2000; Ratcliff, Van
Zandt, & McKoon, 1999; Ratcliff, Gomez, & McKoon,
2004). In all these applications, the diffusion model
provided a close fit to the observed RT distributions. In
addition, the above applications provide a range of
plausible parameter values (i.e., the so-called practical
distribution, Raftery & Zheng, 2003) that can be used in
the formal study of the RT mean–variance relationship.
The outline of this article is as follows. The next

section briefly describes the diffusion model used here.
We then derive closed-form analytical expressions for
the mean and variance of the diffusion model RT
distribution. Next, these expressions are used to
illustrate the mean–variance relation for plausible
ranges of diffusion model parameter values.
2. Brief outline of a diffusion model for response times

The diffusion model is a continuous-time random
walk sequential sampling model (for similar models see
Brown & Heathcote, 2005; Link, 1992; Link & Heath,
1975; Laming, 1968). The theoretical properties of the
diffusion model are well known (e.g., Luce, 1986;
Ratcliff, 2002; Ratcliff & Smith, 2004; Townsend &
Ashby, 1983; for a mathematical treatment see for
instance Gardiner, 2004; Honerkamp, 1994) and a range
of different methods for fitting the model to data is
available (Diederich & Busemeyer, 2003; Ratcliff &
Tuerlinckx, 2002; Smith, 2000).
In a diffusion model, illustrated in Fig. 1, noisy

accumulation of information drives a decision process
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that terminates when the accumulated evidence in favor
of one or the other response alternative exceeds thresh-
old (i.e., a relative rather than absolute response
criterion). The diffusion model has several key para-
meters: (1) drift rate v, �1ovo1; which quantifies the
deterministic component of the continuous-time ran-
dom walk process. For high absolute values of v (e.g.,
high-frequency words in a lexical decision task, Ratcliff
et al., 2004), processing will terminate relatively quickly
at one of the absorbing response boundaries;1 in
applications of the diffusion model to real data, v

usually ranges from 0.1 to 0.5; (2) s2; the variance of the
diffusion function, which quantifies the random compo-
nent of the continuous-time random walk process. This
parameter is usually treated as a scaling parameter and
set to a default value of 0.01;2 (3) boundary separation a

and starting point z ¼ 1
2

a: In many applications of the
diffusion model, the decision process is not very biased
against one or the other response alternatives—conse-
quently, the starting point is about equidistant from
the response boundaries. As an added bonus, with
the starting point in the middle there is no need to
complicate the presentation of the results by condition-
ing on the specific boundary that was reached first: when
z ¼ 1

2
a; the RT distributions that terminate at the top

and bottom boundaries are identical, irrespective of drift
rate v (e.g., Laming, 1973, p. 192, footnote 7; Link &
Heath, 1975; Smith & Vickers, 1988; Tuerlinckx, Maris,
Ratcliff, & De Boeck, 2001).3 Large values of a indicate
the presence of a conservative response criterion: the
system requires relatively much discriminative informa-
tion before deciding on one or the other response
alternative. A conservative response criterion results in
long RTs, but also in highly accurate performance, since
with large a it is unlikely that the incorrect boundary
will be reached by chance fluctuations. Therefore,
manipulation of boundary separation a provides a
natural mechanism to model the speed-accuracy trade-
off (e.g., Wickelgren, 1977). In practical applications, a

generally ranges from 0.07 to 0.17.
Before proceeding, we would like to point out that the

diffusion model outlined above is a simplified version of
1In most of Ratcliff’s work on the diffusion model, x is the drift rate
of an individual trial, whereas v is the mean drift rate associated with

an across-trial distribution of drift rates. In this article, we ignore

across-trial variability in drift rate, which implies that v ¼ x:
2Several equations simplify when s2 ¼ 1 is used. We chose to use

s2 ¼ 0:01 for historical reasons. Moreover, changing s2 would also

change the ranges of plausible parameter values obtained from earlier

applications of the model that all use s2 ¼ 0:01:
3This identity no longer holds when across-trial variability in drift

rate or starting point is included in the model (Ratcliff & Rouder,

1998). For the purpose of this paper (i.e., to study the relation between

RT mean and RT variance in the diffusion model) these possible

sources of variability have been ignored (see also below). Note that

Link and Heath (1975) provide equations for mean RT in the more

general case of za 1
2

a:
the model that is used to fit empirical data. When the
diffusion model is fitted to empirical data, several
additional free parameters come into play, such as
across-trial variability in drift rate and starting point,
and an additive amount of time allotted to the non-
decisional component of processing (which may also
vary from trial-to-trial). As the aim of this paper is not
to fit empirical data, but rather to determine the general
mean–variance relationship of a diffusion process, we
prefer the model in its simplest form.
In addition, it should be noted that many of the

additional free parameters that enter the diffusion model
when it is fitted to data either do not affect the
mean–variance relationship (i.e., the mean of the non-
decisional processing time which simply adds to the
decisional processing time), or make it more difficult to
detect the underlying relationship because these free
parameters add noise (i.e., across-trial variability in drift
rate and starting point), somewhat comparable to
overdispersion for a binomial model. As we will
demonstrate below, the version of the diffusion model
described here allows a closed-form mathematical
solution for RT mean and RT variance, and this greatly
enhances mathematical tractability and conceptual
clarity.
In sum, the diffusion model is a popular sequential

sampling model. Two important parameters of the
model are drift rate v and boundary separation a.
Fig. 2 illustrates how these parameters affect both RT
mean and RT variance. Specifically, decreasing drift rate
will lead to an increase in RT mean and an increase in
RT variance; increasing boundary separation will also
lead to an increase in RT mean and an increase in RT
variance. Before studying the precise nature of the
mean–variance relationship we will first discuss three
procedures to obtain the mean and variance of the
diffusion process outlined above.
3. Mean and variance of a diffusion model RT

distribution

Several methods are available to determine the mean
and variance of a diffusion model RT distribution, and
three of these are described in detail below. The method
of brute force simulation requires a substantial amount
of iterations to converge. The method based on
integrating the probability density function (pdf) will
yield results that convergence in a much shorter amount
of computer time. Nevertheless, integration of the
diffusion pdf involves an infinite sum inside an infinite
integral, which is still computationally demanding and
does not provide much conceptual insight. Also, when
the decision to stop the evaluation of the infinite integral
and the infinite sum is premature, the solution will of
course be incorrect. The third method is to analytically
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Fig. 2. Diffusion model probability density functions for several combinations of parameter values of drift rate v and boundary separation a. Note

the different scaling on the y-axis.
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derive closed-form solutions for the mean and variance
of a diffusion model RT distribution, based on the
backward Fokker–Planck equation. This derivation
produces two relatively simple formulas. The reader
may easily compare the properties of the various
methods by using a free-ware software program written
in the statistical computation environment R, available
at the first author’s internet site.4 The reader who is
mainly interested in the results may safely skip to the
next section.

3.1. The method of brute force simulation

The method of brute force simulation (for details see
Feller, 1968, Chap. 14; Ratcliff & Tuerlinckx, 2002, pp.
441–442; for a review of four different brute force
methods see Tuerlinckx et al., 2001) is usually employed
whenever it is necessary to obtain quantities from the
diffusion model that are not available from more
efficient analytical procedures or whenever diffusion
model data are needed to check the adequacy of specific
model fitting procedures. The brute force procedure is
4The open source statistical computation environment R (R

Development Core Team, 2004) is available free of charge from

http://cran.r-project.org/. The software program that performs the

calculations is available at http://www.psych.nwu.edu/	ej/diffvar.R,

and the accompanying help file is available at http://www.psych.n-

wu.edu/	ej/help.txt
based on the approximation of the continuous-time
random walk process by a discrete-time, small-step
process. Let the step size in time be given by h, and let
the step size in space be given by d ¼ s

ffiffiffi
h

p
: It can be

shown that if the probability of taking a step of size d
down is given by PðdownÞ ¼ 1

2
½1� ðv

ffiffiffi
h

p
=sÞ�; the diffusion

process can be simulated by using a random number
generator and taking a small step down when the
randomly drawn variable X	Uniformð0; 1Þ is smaller
than PðdownÞ; and taking a step up otherwise.5 After the
process has reached a boundary, the RT for a single trial
is calculated as nh, where n is the number of steps taken.
Obviously, this is a time consuming process. Moreover,
we found that even 10,000 trials are not always sufficient
to get a stable estimate for the variance.

3.2. The method of integrating the probability density

function

One of the standard methods to obtain the mean
and the variance for a given model is by integrating
over the pdf and calculating expected values. The
pdf of first-passage times for a diffusion process in
which the starting point in equidistant from the
response boundaries is given by (e.g., Feller, 1968;
5Ratcliff and Tuerlinckx (2002, p. 442) give the probability of a step

down as PðdownÞ ¼ 1
2
½1� ðv

ffiffiffiffiffiffiffi
h=s

p
Þ�—a typographical error.

http://cran.r-project.org/
http://www.psych.nwu.edu/~ej/diffvar.R
http://www.psych.nwu.edu/~ej/diffvar.R
http://www.psych.nwu.edu/~ej/help.txt
http://www.psych.nwu.edu/~ej/help.txt
http://www.psych.nwu.edu/~ej/help.txt
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Ratcliff & Smith, 2004)

gðtÞ ¼
ps2

a2
exp

va

2s2
�

v2t

2s2

� �



X1
k¼1

k exp
�k2p2s2t

2a2

� �
sin 1

2
kp

� �� 	
, ð1Þ

which can be further simplified to (Tuerlinckx et al.,
2001):

gðtÞ ¼
ps2

a2
exp

va

2s2
�

v2t

2s2

� �



X1
n¼0

ð2n þ 1Þð�1Þn exp
�ð2n þ 1Þ2p2s2t

2a2

� �� 	
: ð2Þ

The mean, E(T), can then be calculated as EðTÞ ¼R1

t¼0 t 
 gðtÞ dt; and the variance, var(T), can be calcu-
lated as

varðTÞ ¼ Eð½T � EðTÞ�2Þ ¼ EðT2Þ � ½EðTÞ�2

¼

Z 1

t¼0

t2 
 gðtÞ dt �

Z 1

t¼0

t 
 gðtÞ dt

� 	2
, ð3Þ

where E denotes statistical expectation. The application
of this procedure presents two challenges. First, the pdf
contains an infinite sum over k. Ratcliff and Tuerlinckx
(2002, p. 478) recommend to truncate this sum at the
point where the series contains two consecutive values
that are both less than some tolerance value, say 10�29

times the current sum of the series. Second, the integral
over t also needs to be truncated at some point. One
possibility is to again terminate the integral (or the sum,
since we approximate the integral by discrete small
steps) at the point where the values add less than
some tolerance value. Other solutions to this problem
exist (i.e., explicitly solving the integral over t or
transforming the interval of integration) but these will
not be explored here.
7We thank Richard Chechile for providing this argument.
8Exchanging the order of integration and differentiation is permitted

because the following three conditions hold (e.g., Amemiya, 1985,

Theorem 1.3.2): First, p is continuous in both t and x, as their

derivatives exist by Eq. (6). Second, the integral
R a

0 pðx; tjz; 0Þ dx ¼
3.3. The closed-form solutions

The most satisfying solution is to derive closed form
expressions for RT mean and RT variance.6 In
mathematical terms, our aim is to derive the moments
of the first passage time distribution for a homogeneous
(i.e., drift rate and diffusion variance are independent)
diffusion process with two absorbing boundaries. These
moments may be obtained using the adjoint or ‘‘back-
ward’’ Fokker–Planck equation, and the general method
of solution is described for instance in Gardiner (2004,
pp. 136–138) and Honerkamp (1994, pp. 279–285); see
also (Karlin & Taylor, 1981, p. 197). For the Ornstei-
n–Uhlenbeck process, Busemeyer and Townsend (1992,
6A Maple spreadsheet that shows the derivation is available at

http://www.psych.nwu.edu/	ej/meanvarderivation.mws
p. 271) present equations for the raw moments that are
derived on the same basis.
To briefly reiterate the notation, let the drift rate be v,

the diffusion variance be s2; let the bottom boundary be
located at 0 and the top boundary be located at a, and
let the starting point be z, z 2 ½0; a�: Let pðx; tjz; 0Þ denote
the time-dependent pdf of the continuous random walk
occupying position x at time t, given that the process
started at z. The walk ends as soon as it hits one of the
absorbing boundaries. Thus, the probability that the
position x of the walker is in the interval [0, a] after
absorption is zero. Consequently, the probability that
the process never left the [0, a] interval before a certain
time t is given by GðtjzÞ ¼

R a

0 pðx; tjz; 0Þ dx: At the same
time, if T is the time of absorption, that is, the time at
which the random walk reaches one of the two
boundaries, then also PrðTXtÞ ¼

R a

0 pðx; tjz; 0Þ dx: Con-
sequently, GðtjzÞ ¼ PrðTXtÞ; and hence FT ðtÞ ¼

1� GðtjzÞ ¼ PrðTotÞ gives the distribution of T. The
moments of T as a function of the starting point z are
given by

MnðzÞ ¼ EðTnjzÞ ¼

Z 1

�1

tnf T ðtÞ dt

¼ �

Z 1

0

tnqtGðtjzÞ dt; ð4Þ

where f T ðtÞ ¼
d
dt

FT ðtÞ ¼ �qtGðtjzÞ is the density func-
tion. Integrating the right-hand side of Eq. (4) by parts
yields MnðzÞ ¼ n

R1

0 tn�1GðtjzÞ dt
� 


� ½tnGðtjzÞj10 �: If
�tnGðtjzÞ ! 0 as t ! 1; it follows that the second
term vanishes. It can be seen as follows that this is in fact
the case. Let u ¼ 1=t; and write limt!1 tnGðtjzÞ ¼

limu!0 Gð1=ujzÞ=un: Because as t ! 1 the process will
terminate with probability one, G tjzð Þ as well as all of its
first n derivatives approach zero, and hence one may
apply l’Hôpital’s rule n times to show that this limit is in
fact zero.7 Therefore,

MnðzÞ ¼ n

Z 1

0

tn�1GðtjzÞ dt: (5)

The pdf of the diffusion process under investigation,
pðx; tjz; 0Þ; is governed by the backward Fokker–Planck
equation (Gardiner, 2004):

qtpðx; tjz; 0Þ ¼ vqzpðx; tjz; 0Þ þ 1
2
s2q2zpðx; tjz; 0Þ. (6)

Integrating both sides: qt

R a

0
pðx; tjz; 0Þ dx ¼ vqz

R a

0
pðx;

tjz; 0Þ dx þ 1
2
s2q2z

R a

0
pðx; tjz; 0Þ dx:8
PðTXtÞ is bounded because it represents a probability. Third,R a

0 jqtpðx; tjz; 0Þj dx is bounded because otherwise Eq. (6) has no

solution in the interval from 0 to a.

http://www.psych.nwu.edu/~ej/meanvarderivation.mws
http://www.psych.nwu.edu/~ej/meanvarderivation.mws
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Recalling that GðtjzÞ ¼
R a

0 pðx; tjz; 0Þ dx then yields the
governing equation for G:

qtGðtjzÞ ¼ vqzGðtjzÞ þ 1
2
s2q2zGðtjzÞ. (7)

Note that G satisfies the boundary conditions:

Gð0jzÞ ¼ 1 0pzpa,

Gð0jzÞ ¼ 0 z elsewhere;

which state that the time until absorption is greater than
zero when the starting point is located in between the
two boundaries. Another boundary condition is
Gðtj0Þ ¼ GðtjaÞ ¼ 0; which states that if the process
starts at one of the absorbing boundaries, it is absorbed
immediately.
After multiplying both sides of Eq. (7) by tn�1;

and integrating t from 0 to 1; we are left withR1

0 tn�1qtGðtjzÞ dt ¼ vqz

R1

0 tn�1GðtjzÞ dt þ 1
2
s2q2z

R1

0 tn�1

GðtjzÞ dt: From the definition of moments it follows thatR1

0 tn�1qtGðtjzÞ dt ¼ �Mn�1ðzÞ; and from Eq. (5) it
follows that

R1

0 tn�1GðtjzÞ dt ¼ MnðzÞ=n: Substituting
these identities, and multiplying both sides of the
equation by n gives the recursion equation

�nMn�1ðzÞ ¼ v@zMnðzÞ þ
1
2s
2@2zMnðzÞ, (8)

which holds for all existing moments of T (e.g.,
Gardiner, 2004, p. 138). In particular, for n ¼ 1 this
yields

v@zM1ðzÞ þ
1
2
s2@2zM1ðzÞ ¼ �1, (9)

as M0 ¼ 1: All moments are subject to the boundary
conditions mentioned above, that is, Mnð0Þ ¼ MnðaÞ ¼

0; n ¼ 1; 2; . . . . Solving Eq. (9) for M1ðzÞ and evaluation
in the symmetric starting point z ¼ 1

2a results in the
mean absorption time

EðTÞ ¼ M1
1

2
a

� �
¼

a

2v

h i 1� expðyÞ

1þ expðyÞ
, (10)

where y ¼ �va=s2: In the limit when drift rate v goes to
zero, v ! 0; the mean absorption time is given by
EðTÞ ¼ a2

4s2
: Solving the second order moment M2

1
2
a

� �
from the recursion equation and using the equality
varðTÞ ¼ EðT2Þ � ½EðTÞ�2 one obtains

varðTÞ ¼ M2
1

2
a

� �
� M1

1

2
a

� �� 	2

¼
a

2v

h i s2

v2

� 	
2y expðyÞ � expð2yÞ þ 1

ðexpðyÞ þ 1Þ2
. ð11Þ

In the limit of v ! 0; varðTÞ ¼ a4

24s4
:

From Eqs. (10) and (11) it follows that a closed-form
expression for the relation between mean and variance is
given by

varðTÞ ¼

E Tð Þ
s2

v2

� 	
exp 2yð Þ � 2y exp yð Þ � 1

exp 2yð Þ � 1
if va0;

E Tð Þ
a2

6s2
if v ¼ 0:

8>>><
>>>:

(12)

To the best of our knowledge, Eqs. (11) and (12) have
not yet been reported in the psychological literature on
RT modeling. The standard literature on stochastic
differential equations (e.g., Gardiner, 2004; Honer-
kamp, 1994) also does not mention these equations,
although they may be easily derived.
Note that Eqs. (11) and (12) are not conditional on

whether responses are correct or in error. For a
diffusion model with starting point equidistant from
the response boundaries and with no variability across
trials in drift-rate, the distribution of T is the same
for correct and incorrect responses (e.g., Laming, 1973,
p. 192, footnote 7).
4. Relation between diffusion model mean and variance as

a function of drift rate

As mentioned earlier, drift rate v, �1ovo1;
quantifies the deterministic component of the decision
process, and in practical applications v usually ranges
from absolute values of 0.1 to about 0.5 (e.g., Ratcliff,
Thapar, & McKoon, 2003; Ratcliff et al., 2004). Setting
the diffusion variance s2 to its default value of 0.01, the
left panel of Fig. 3 plots the relation between mean and
variance when drift rate is systematically decreased from
0.5 to 0.1. Each of the six lines corresponds to a different
plausible value of the boundary separation parameter a.
The left panel of Fig. 3 clearly shows that the relation
between RT mean and RT variance resulting from a
change in drift rate is highly nonlinear, as the variance
increases faster than the mean. In contrast, the relation
between RT mean and RT standard deviation, shown in
the right panel of Fig. 3, is very close to linear across the
entire parameter space of plausible drift rate values.
Moreover, this approximate linearity holds for the entire
range of plausible boundary separation values. Thus, a
decrease in drift rate makes the standard deviation
increase approximately linearly with the mean.
The above result implies that effects of processing

speed on response variability may perhaps best be
discounted by using the coefficient of variability,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX Þ

p
=EðX Þ: That is, if participants or experimental

conditions only differ in processing speed (i.e., drift
rate), their CVs should be almost identical. A further
consequence of the almost perfect linearity between RT
mean and RT standard deviation as a function of drift
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rate differences is that the log transform gains credence
as a suitable variance-stabilizing transformation.
Finally, it is interesting that the literature on

automaticity and learning has shown that practice
decreases the mean and the standard deviation at
approximately the same rate (e.g., Logan, 1988, 1992;
Kramer, Strayer, & Buckley, 1990)—a phenomenon
predicted by Logan’s instance theory (e.g., Logan, 1988,
1992). Cohen, Dunbar, and McClelland (1990, pp.
345–346) developed a neural network for which simula-
tions showed that practice decreases RT mean and RT
standard deviation at approximately the same rate. In
their model, output from a neural net drives a random
walk decision process. The right panel from Fig. 3
confirms that if automaticity or learning selectively
affects the drift rate parameter of a diffusion process, an
approximate linear relation between RT mean and RT
standard deviation will result.
9The focus of this article has been on response time, and not on

response accuracy. Equations for diffusion model response accuracy

can be found, for instance, in Ratcliff (1978) and in Link (1992).
5. Relation between diffusion model mean and variance as

a function of boundary separation

In practical applications, the parameter for boundary
separation usually varies from 0.07, a very risky
progressive response criterion, to 0.17, which is a very
safe conservative response criterion (e.g., Ratcliff et al.,
2003, 2004). Similar to our illustration of the effect of
drift rate differences, we now examine the effect of an
increase in boundary separation on the mean–variance
relationship.
The left panel of Fig. 4 plots five lines, one for each of

five plausible values of the drift rate parameter. Each
line separately is constructed by calculating both mean
and variance for a range of different plausible values for
boundary separation. Fig. 4, left panel, shows that the
relation between mean and variance is approximately
linear for high values of drift rate, but becomes strongly
nonlinear for low values of drift rate, such that the
variance increases as a faster rate than the mean.
The right panel of Fig. 4 plots the mean against the

standard deviation. For low values of the drift rate
parameter, the mean varies approximately linearly with
the standard deviation. For high values of the drift rate
parameter, however, the relation is more curvilinear.
Thus, it turns out that the relation between mean and
standard deviation is more complex for a difference in
boundary separation than it is for a difference in drift
rate: the relation between mean and standard deviation
that results from a difference in boundary separation is
conditional on the value of the drift rate parameter,
whereas the effects of differences in drift rate are
qualitatively unaffected by the specific values of the
boundary separation parameter (cf. Fig. 3, right panel).
6. Summary and conclusion

In this article, we studied the relation between the
mean and the variance of a diffusion model RT
distribution.9 We used a simple diffusion model (i.e.,
starting point always equidistant from the response
boundaries, no across-trial variability in drift rate or
starting point) to obtain closed-form expressions for RT
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mean and RT variance as a function of drift rate,
diffusion variance, and boundary separation. Next, we
studied how the variance goes with the mean when
either drift rate or boundary separation is gradually
increased along a range of plausible parameter values.
The results showed that RT mean increases in an
approximately linear fashion with RT standard devia-
tion as drift rate is decreased. When boundary separa-
tion is gradually increased, the relation between RT
mean and RT standard deviation depends on the value
of the drift rate parameter: only when drift rate is
relatively low will the relation between mean and
standard deviation be approximately linear.
In this theoretical note, the focus has been entirely on

the diffusion model for choice RT. It is certainly
possible, and potentially informative, to study the
mean–variance relationship for alternative models of
choice RT, such as accumulator models (e.g., Smith &
Vickers, 1988), Poisson counter models (e.g., LaBerge,
1994; Pike, 1966, 1973; Townsend & Ashby, 1983),
Ornstein–Uhlenbeck models with non-negligible decay
in drift-rate, and the recently proposed ballistic model of
choice RT (Brown & Heathcote, 2005). These alter-
native models may or may not produce approximate
linearity between RT mean and RT standard deviation
as the efficiency of processing is manipulated. As
mentioned above, at least one alternative model (i.e.,
Logan’s instance model) yields results that are similar to
those derived from the diffusion model.
The theoretical work presented here also outlines a

qualitative prediction for the diffusion model that could
be subjected to empirical tests. That is, two-choice
experiments that manipulate task-difficulty (e.g., word
frequency in a lexical decision task) across many
different levels should find an approximate linear
relationship between RT mean and RT standard
deviation. Unfortunately, most experiments to date
have manipulated task difficulty across only two or
three levels, and this is clearly an insufficient number to
empirically assess the mean–variance relationship. A few
experiments, however, did systematically manipulate
task difficulty across many levels (Chocholle, 1940;
Green & Luce, 1971). The results, summarized in Luce
(1986, p. 64), support the theoretical analysis reported
here, as both studies found a strong linear relationship
between RT mean and RT standard deviation. Also, the
extensive data sets presented by Logan (1988, 1992)
provide evidence that the result of practice is to decrease
RT mean and RT standard deviation at the same rate.
This result is consistent with a diffusion model account
in which the effect of practice is to increase drift rate.
In sum, Eq. (12) gives the relation between the mean

and variance of a diffusion model RT distribution. In
general, the variance will always increase with the mean,
but the specific form of this relation depends on the
nature of the model parameters that differ between
experimental conditions or participants.
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