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Fitting the Cusp Catastrophe Model 

1. Introduction 

Catastrophe theory describes how small, continuous changes in control parameters 

(i.e., independent variables that influence the state of a system) can have sudden, 

discontinuous effects on dependent variables. Such discontinuous, jump-like changes are 

called phase-transitions or catastrophes. Examples include the sudden collapse of a bridge 

under slowly mounting pressure, and the freezing of water when temperature is gradually 

decreased. Catastrophe theory was developed and popularized in the early 1970’s (Thom, 

1975; Zeeman, 1977). After a period of criticism (Zahler & Sussmann, 1977) catastrophe 

theory is now well established and widely applied, for instance in the field of physics, (e.g., 

Aerts et al., 2003; Tamaki, Torii, & Meada, 2003), chemistry (e.g., Wales, 2001), biology 

(e.g., Torres, 2001; van Harten, 2000), and in the social sciences (e.g., Hołyst, Kacperski, & 

Schweitzer, 2000). 

In psychology, catastrophe theory has been applied to multi-stable perception (Stewart 

& Peregoy, 1983), transitions between Piagetian stages of child development (van der Maas 

& Molenaar, 1992), the perception of apparent motion (Ploeger, van der Maas, & Hartelman, 

2002), sudden transitions in attitudes (van der Maas, Kolstein, & van der Pligt, 2003), and 

motor learning (Newell, Liu, & Mayer-Kress, 2001; Wimmers, Savelsbergh, van der Kamp, 

& Hartelman, 1998), to name just a few. Before proceeding to describe the statistical method 

required to fit the most popular catastrophe model – the cusp model – we first outline the 

core principles of catastrophe theory (for details see Gilmore, 1981; Poston & Stewart, 

1978). 

2. Catastrophe Theory 

A key idea in catastrophe theory is that the system under study is driven toward an 

equilibrium state. This is best illustrated by imagining the movement of a ball on a curved 
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one-dimensional surface, as in Figure 1. The ball represents the state of the system, whereas 

gravity represents the driving force. 

============================================================= 

Insert Figure 1 about here 

============================================================= 

Figure 1, middle panel, displays three possible equilibria. Two of these states are stable 

states (i.e., the valleys or minima) – when perturbed, the behavior of the system will remain 

relatively unaffected. One state is unstable (i.e., a hill or maximum) – only a small 

perturbation is needed to drive the system toward a different state. 

Systems that are driven toward equilibrium values, such as the little ball in Figure 1, 

may be classified according to their configuration of critical points, that is, points at which 

the first or possibly second derivative equals zero. When the configuration of critical points 

changes, so does the qualitative behavior of the system. For instance, Figure 1 demonstrates 

how the local minimum (i.e., a critical point) that contains the little ball suddenly disappears 

as a result of a gradual change in the surface. As a result of this gradual change, the ball will 

suddenly move from its old position to a new minimum. These ideas may be quantified by 

postulating that the state of the system, x, will change over time t according to 

( );dx dt dV x c dx= − ,      (1) 

where V x  is the potential function that incorporates the control variables c that affect the 

state of the system. 

( ;c)

( );cV x  yields a scalar for each state x and vector of control variables c. 

The concept of a potential function is very general – for instance, a potential function that is 

quadratic in x will yield the ubiquitous normal distribution. A system whose dynamics obey 

Eq. 1 is said to be a gradient dynamical system. When the right-hand side of Eq. 1 equals 

zero, the system is in equilibrium. 
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As the behavior of catastrophe models can become extremely complex when the 

number of behavioral and control parameters is increased, we will focus here on the simplest 

and most often applied catastrophe model that shows discontinuous behavior: the cusp 

model. The cusp model consists of one behavioral variable and only two control variables. 

This may seem like a small number, especially since there are probably numerous variables 

that exert some kind of influence on a real-life system – however, very few of these are likely 

to qualitatively affect transitional behavior. As will be apparent soon, two control variables 

already allow for the prediction of quite intricate transitional behavior. The potential function 

that goes with the cusp model is ( ) 1 14 2
4 2

;x c x bx axV = − + +

3; 0x bx a+ + =

, where a and b are the control 

variables. Figure 2 summarizes the behavior of the cusp model by showing, for all values of 

the control variables, those values of the behavioral variable for which the system is at 

equilibrium. That is, Figure 2 shows the states for which the derivative of the potential 

function is zero (i.e., V x ). Note that one entire panel from Figure 1 is 

associated with only one (i.e., a minimum), or three (i.e., two minima and one maximum) 

points on the cusp surface in Figure 2. 

( )c′ = −

============================================================= 

Insert Figure 2 about here 

============================================================= 

We now discuss some of the defining characteristics of the cusp model in terms of a 

model for attitudinal change (Flay, 1978; van der Maas et al., 2003; Zeeman, 1977). More 

specifically, we will measure attitude as regards political preference, ranging from left-wing 

to right-wing. Two control variables that are important for attitudinal change are involvement 

and information. The most distinguishing behavior of the cusp model takes places in the 

foreground of Figure 2, for the highest levels of involvement. Assume that the lower sheet of 

the cusp surface corresponds to equilibrium states of being left-wing. As “information” (e.g., 



 Fitting the Cusp Catastrophe Model    5 

experience or environmental effects) more and more favors a right-wing view, not much 

change will be apparent at first, but at some level of information, a sudden jump to the upper, 

“right-wing” sheet occurs. When subsequent information becomes available that favors the 

left-wing view, the system eventually jumps back from the upper sheet unto the lower sheet – 

but note that this jump does not occur at the same position! The system needs additional 

impetus to change from one state to the other, and this phenomenon is called hysteresis. 

Figure 2 also shows that a gradual change of political attitude is possible, but only for 

low levels of involvement (i.e., in the background of the cusp surface). Now assume one’s 

political attitude starts out at the neutral point in the middle of the cusp surface, and 

involvement is increased. According to the cusp model, an increase in involvement will lead 

to polarization, as one has to move either to the upper sheet or to the lower sheet (i.e., 

divergence), because for high levels of involvement, the intermediate position is 

inaccessible. Hysteresis, divergence, and inaccessibility are three of eight catastrophe flags 

(Gilmore, 1981), that is, qualitative properties of catastrophe models. Consequently, one 

method of investigation is to look for the catastrophe flags (i.e., catastrophe detection). 

A major challenge in the search of an adequate cusp model is the definition of the 

control variables. In the cusp model, the variable that causes divergence is called the splitting 

variable (i.e., involvement), and the variable that causes hysteresis is called the normal 

variable (i.e., information). When the normal and splitting variable are correctly identified, 

and the underlying system dynamics are given by catastrophe theory, this often provides 

surprisingly elegant insights that cannot be obtained from simple linear models. In the 

following, we will ignore both the creative aspects of defining appropriate control variables 

and the qualitative testing of the cusp model using catastrophe flags (van der Maas & 

Molenaar, 1992). Instead, we will focus on the problem of statistically fitting a catastrophe 

model to empirical data. 

3. Fitting the Cusp Catastrophe Model to Data 
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Several cusp fitting procedures have been proposed, but none is completely satisfactory 

(for an overview see Hartelman, 1997; van der Maas et al., 2003). The most important 

obstacle is that the cusp equilibrium surface is cubic in the dependent variable. This means 

that for control variables located in the bifurcation area (cf. Figure 2, bottom panel), two 

values of the dependent variable are plausible (i.e., left-wing/lower sheet and right-

wing/upper sheet), whereas one value, corresponding to the unstable intermediate state, is 

definitely not plausible. Thus, it is important to distinguish between minima of the potential 

function (i.e., stable states) and maxima of the potential function (i.e., unstable states). 

Two methods for fitting the cusp catastrophe models, namely GEMCAT I and II 

(Lange, Oliva, & McDade, 2000; Oliva, DeSarbo, Day, & Jedidi, 1987) and Guastello’s 

polynomial regression technique (Guastello, 1988, 1992) both suffer from the fact that they 

consider as the starting point for statistical fitting only those values for the derivative of the 

potential function that equal zero. The equation ( ) 3; 0dt dV x c dx x bx adx = − = − + + =  is, 

however, valid both for minima and maxima – hence, neither GEMCAT nor the polynomial 

regression technique are able to distinguish between stable equilibria (i.e., minima) and 

unstable equilibria (i.e., maxima). Obviously, the distinction between stable and unstable 

states is very important when fitting the cusp model, and neglecting this distinction renders 

the above methods suspect (for a more detailed critique on the GEMCAT and polynomial 

regression techniques see Alexander, Herbert, Deshon, & Hanges, 1992; van der Maas et al., 

2003). 

The most principled method for fitting catastrophe models, and the one under 

discussion here, is the maximum likelihood method developed by Cobb and co-workers 

(Cobb 1978, 1981, Cobb & Zacks, 1985). First, Cobb proposed to make catastrophe theory 

stochastic by adding a Gaussian white noise driving term ( )dW t dt  with standard deviation 

 to the potential function, leading to ( )D x
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( ) ( ) ( );dx dt dV x c dx D x dW t dt= − + .    (2)  

Eq. 2 is a stochastic differential equation (SDE) , in which the deterministic term on the 

right-hand side, ( );dV x c dx− , is called the (instantaneous) drift function, while  is 

called the (instantaneous) diffusion function, and 

( )2D x

( )W t  is a Wiener process (i.e., idealized 

Brownian motion). The function  is the infinitesimal variance function and 

determines the relative influence of the noise process (for details on SDE’s see Gardiner, 

1983; Honerkamp, 1994). 

( )2D x

Under the assumption of additive noise (i.e., ( )D x  is a constant and does not depend 

on x), it can be shown that the modes (i.e., local maxima) of the empirical probability density 

function (pdf) correspond to stable equilibria, whereas the antimodes of the pdf (i.e., local 

minima) correspond to unstable equilibria (see e.g., Honerkamp, 1994, p. 273). More 

generally, there is a simple one-to-one correspondence between an additive noise SDE and 

its stationary pdf. Hence, instead of fitting the drift function of the cusp model directly, it can 

also be determined by fitting the pdf:  

( ) 1 14 2
4 2

| , exp yp y N y yα β β− α = + +  
,    (3) 

where N is a normalizing constant. In Eq. 3, the observed dependent variable x has been 

rescaled by ( )y x λ σ= − , and α  and β  are linear functions of the two control variables a 

and b as follows: 0 1 2ak k k bα = + +  and 0 1 2l l a l bβ = + + . The parameters λ , σ , 

, and l  can be estimated using maximum likelihood procedures (Cobb & 

Watson, 1980). 

0 1 2, , ,k k k l0 1, l 2

Although the maximum likelihood method of Cobb is the most elegant and statistically 

satisfactory method for fitting the cusp catastrophe model to date, it is not used often. One 

reason may be that Cobb’s computer program for fitting the cusp model can sometimes 
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behave erratically. This problem was addressed in (Hartelman, 1997; Hartelman, van der 

Maas, & Molenaar, 1998), who outlined a more robust and more flexible version of Cobb’s 

original program. The improved program, Cuspfit, uses a more reliable optimization routine, 

allows the user to constrain parameter values and to employ different sets of starting values, 

and is able to fit competing models such as the logistic model. Cuspfit is available at 

http://users.fmg.uva.nl/hvandermaas/. 

We now illustrate Cobb’s maximum likelihood procedure with a practical example on 

sudden transitions in attitudes (van der Maas et al., 2003). The data set used here is taken 

from Stouffer et al. (1950), and has been discussed in relation to the cusp model in Latané 

and Nowak (1994). US soldiers were asked their opinion about three issues (i.e., post-war 

conscription, demobilization, and the Women’s Army Corps). An individual attitude score 

was obtained by combining responses on different questions relating to the same issue, 

resulting in an attitude score that could vary between 0 (unfavorable) to 6 (favorable). In 

addition, respondents indicated the intensity of their opinion on a six-point scale. Thus, this 

data set consists of one behavioral variable (i.e., attitude) and only one control variable (i.e., 

the splitting variable ‘intensity’). 

Figure 3 displays the histograms of attitude scores for each level of intensity 

separately. The data show that as intensity increases, the attitudes become polarized (i.e., 

divergence) resulting in a bimodal histogram for the highest intensities. The dotted line 

shows the fit of the cusp model. The maximum likelihood method as implemented in Cuspfit 

allows for easy model comparison. For instance, one popular model selection method is the 

Bayesian information criterion (BIC; e.g., Raftery, 1995), defined as 

2 log logBIC L k n= − + , where L is the maximum likelihood, k is the number of free 

parameters, and n is the number of observations. The BIC implements Occam’s razor by 

quantifying the trade-off between goodness-of-fit and parsimony, models with lower BIC 

values being preferable. 
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============================================================= 

Insert Figure 3 about here 

============================================================= 

The cusp model, whose fit is shown in Figure 3, has a BIC value of 1787. The Cuspfit 

program is also able to fit competing models to the data. An example of these is the logistic 

model, which allows for rapid changes in the dependent variable but cannot handle 

divergence. The BIC for the logistic model was 1970. To get a feeling for how big this 

difference really is, one may approximate ( )logistic | dataP , the probability that the logistic 

model is true and the cusp model is not, given the data, by 

( ){ } ( ){ } ( ){ cuspexp BIC+  (e.g., Raftery, 1995). This 

approximation estimates  to be about zero – consequently, the complement 

 equals about one. 

(logistic | dataP )

(cusp | dataP

}1 1 1
logistic logistic2 2 2exp expBIC BIC − − − 

)

One problem of the Cobb method remaining to be solved is that the convenient relation 

between the pdf and the SDE (i.e., modes corresponding to stable states, antimodes 

corresponding to unstable states) breaks down when the noise is multiplicative, that is, when 

 in Eq. 2 depends on x. Multiplicative noise is often believed to be present in economic 

and financial systems (e.g., time series of short-term interest rates, Jiang & Knight, 1997). In 

general, multiplicative noise arises under nonlinear transformations of the dependent variable 

x. In contrast, deterministic catastrophe theory is invariant under any smooth and revertible 

transformation of the dependent variable. Thus, Cobb’s stochastic catastrophe theory loses 

some of the generality of its deterministic counterpart (see Hartelman, 1997, for an in-depth 

discussion of this point). 

( )D x

4. Summary and Recommendation 
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Catastrophe theory is a theory of great generality that can provide useful insights as to 

how behavior may radically change as a result of smoothly varying control variables. We 

discussed three statistical procedures for fitting one of the most popular catastrophe models, 

i.e., the cusp model. Two of these procedures, Guastello’s polynomial regression technique 

and GEMCAT, are suspect because these methods are unable to distinguish between stable 

and unstable equilibria. The maximum likelihood method developed by Cobb does not have 

this problem. The one remaining problem with the method of Cobb is that it is not robust to 

nonlinear transformations of the dependent variable. Future work, along the lines of 

Hartelman (1997), will have to find a solution to this challenging problem.  
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Figure captions 

Figure 1. Smooth changes in a potential function may lead to a sudden jump. V x  is 

the potential function, and c denotes the set of control variables. 

( ;c)

Figure 2. The cusp catastrophe model for attitude change. Of the two control variables, 

‘information’ is the normal variable, and ‘involvement’ is the splitting variable. The 

behavioral variable is ‘attitude’. The lower panel is a projection of the ‘bifurcation’ area onto 

the control parameter plane. The bifurcation set consists of those values for ‘information’ and 

‘involvement’ combined that allow for more than one attitude. See text for details. Adapted 

from van der Maas et al. (2003). 

Figure 3. Histograms of attitude scores for five intensities of feeling (data from 

Stouffer et al., 1950). The dotted line indicates the fit of the cusp model. Both the data and 

the model show that bimodality in attitudes increases with intensity of feeling. Adapted from 

van der Maas et al. (2003). 
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