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Abstract

We present a general sampling procedure to quantify model mimicry, defined as the ability of a model to account for data

generated by a competing model. This sampling procedure, called the parametric bootstrap cross-fitting method (PBCM; cf.

Williams (J. R. Statist. Soc. B 32 (1970) 350; Biometrics 26 (1970) 23)), generates distributions of differences in goodness-of-fit

expected under each of the competing models. In the data informed version of the PBCM, the generating models have specific

parameter values obtained by fitting the experimental data under consideration. The data informed difference distributions can be

compared to the observed difference in goodness-of-fit to allow a quantification of model adequacy. In the data uninformed version

of the PBCM, the generating models have a relatively broad range of parameter values based on prior knowledge. Application of

both the data informed and the data uninformed PBCM is illustrated with several examples.

r 2003 Elsevier Inc. All rights reserved.
1. Introduction

For many psychological phenomena under scientific
study, there exist several mutually exclusive explana-
tions. In some cases these competing explanations are
formalized as quantitative models, and this allows a
comparison between the competitor explanations based
on their descriptive accuracy or goodness-of-fit (GOF)
for the observed data. However, GOF cannot be the
only criterion for model selection, as the principle of
parsimony dictates that a relatively simple model is to be
preferred over a complex model when the latter yields
only a marginal gain in GOF. Therefore, a solution to
the problem of model selection requires a quantification
of the tradeoff between GOF and parsimony.
Among the traditional methods for model selection

are the likelihood ratio test (LRT; Wilks, 1938),
Akaike’s information criterion (AIC; e.g., Akaike,
1973; Burnham & Anderson, 2002; Parzen, Tanabe, &
Kitagawa, 1998; Wagenmakers & Farrell, in press), and
Schwarz’ Bayesian information criterion (BIC; e.g.,
Raftery, 1995; Schwarz, 1978). The LRT is based on a
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null-hypothesis framework and is almost exclusively
used for nested models (but see Vuong, 1989; Golden,
1995, 2003, for a generalization to nonnested and
possibly misspecified models). AIC and BIC can be
applied to nested as well as nonnested models, but both
these methods do not take the functional form of
the model parameters into account because they define
complexity solely as a function of the number of free
parameters (e.g., Djurić, 1998; Myung & Pitt, 1997).
In this article, we argue that a choice between models

should also be based on a measure that indicates
the relative flexibility of the models. Specifically, we
advocate examination of the extent to which the
candidate models can mimic each other. Throughout
this article, we will discuss the case of two nonnested
models, A and B: Now suppose we generate replicate/
simulated data sets from the models and find that model
B is better able to account for data patterns that are in
fact generated by model A than vice versa. Under
certain specific conditions, the observed difference in
GOF (DGOF) may then be in need of reinterpretation
or correction as a result of bias due to mimicry. Such a
bias correction reduces the tendency to prefer the
‘chameleon model’ B; which is able to give a relatively
good account for data it did not in fact generate, in
favor of the more idiosyncratic model A; which is
relatively poor at accounting for data it did not
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generate. Another way of saying this is that we want to
know how much evidence for or against model B is
provided by an observed difference in GOF between
model A and B: Assessment of the diagnosticity of a
given difference in GOF is the focus of this article.
The issue of model mimicry has received a lot of

attention recently (e.g., Collyer, 1985; Massaro, 1988,
1998; Navarro, Pitt, & Myung, 2003; Navarro, Myung,
Pitt, & Kim, 2003; Ratcliff, 1988a; Ratcliff & Smith, in
press; Van Zandt & Ratcliff, 1995; see also Townsend,
1972), as has the issue of model selection (e.g., Myung,
Forster, & Browne, 2000; Pitt, Myung, & Zhang, 2002).
Model mimicry is traditionally studied by means of
confusion matrices (i.e., a confusion matrix shows the
percentage of correctly and incorrectly recovered models
for sets of simulated data). The present work uses the
parametric bootstrap method to construct difference
distributions of GOF under the hypothesis that model A

is correct and under the hypothesis that model B is
correct. These difference distributions allow a more
informative quantification of model mimicry than is
usually provided by confusion matrices.
We would like to stress that the proposed method to

quantify model mimicry is very general and easy to
implement. All that is needed is a program for
estimating parameters from data, and a program for
generating simulated data from the estimated models.
This means that a quantification of model mimicry is
possible even for the most complex nonlinear and
nonnested psychological models such as production rule
systems (e.g., Anderson & Lebiere, 1998) or connec-
tionist models.
The outline of the paper is as follows. First, we will

describe the proposed method for assessing model
mimicry in some detail. This first version of this method
depends on the observed data, and is labeled ‘data
informed’ or ‘local’. We illustrate the use of this method
by an application to two models for information
integration. Next, we discuss assumptions and exten-
sions of the method. In particular, we will compare the
proposed method both to Bayesian methods for asses-
sing model adequacy and to Bayesian methods of model
selection. This comparison leads to the formulation of a
second version of the method. This second version does
not depend on the observed data and is labeled ‘data
uninformed’ or ‘global’. Finally, we will illustrate how
the proposed method can be used to aid experimental
design by estimating the number of observations needed
to discriminate between two competing models.
1Throughout this article we assume all observations to be

independent and identically distributed (i.e., i.i.d.). When successive

observations are not independent, one option is to filter out the

dependencies (e.g., by fitting a time series model) and bootstrap the

whitened residuals (e.g., Efron & Tibshirani, 1986).
2. The data informed parametric bootstrap cross-fitting

method

The bootstrap resampling method was introduced by
Efron (1979). Since then, the bootstrap has been
subjected to detailed study (e.g., Davidson & Hinkley,
1997; Diciccio & Romano, 1988; Efron & Tibshirani,
1986, 1993; Hall, 1988, 1992; Hinkley, 1988; Horowitz,
2001). As summarized by Hall and Wilson (1991), ‘‘The
nonparametric bootstrap is a particularly versatile tool
for data analysis. Its good performance in many
important statistical problems has been established
by theoretical analysis, by simulation study, and by
application to real data.’’ (p. 757). The bootstrap is
regularly used to estimate standard errors when analytic
approximations are not available or are unreliable
(Golden, 1995). The broad scope of the bootstrap and
its straightforward implementation make it very attrac-
tive for use in many psychological applications. So far,
however, use of the bootstrap in psychology has been
somewhat limited (but see Wichmann & Hill, 2001) and
this is perhaps due to the fact that the method is not
taught in standard statistics courses. Before outlining
the data informed PBCM for the assessment of model
mimicry, we will first briefly describe the bootstrap
technique (for an excellent introduction to the bootstrap
see Efron & Tibshirani, 1993).
Let x denote an i.i.d. sequence1 of n observations,

x ¼ ðx1; x2; :::; xnÞ: These observations originate from an
unobserved probability distribution F ; xBF ; which is
estimated by the observed (empirical) distribution F̂; F̂

assigning probability 1=n to every observed value
(i.e., each observation is assigned equal probability).
Now suppose we are interested in a parameter y
(e.g., the mean or the correlation coefficient) which is
a function of F : Generally, y based on F is approxi-
mated by #y calculated from F̂ (i.e., the plug-in principle,
Efron & Tibshirani, 1993, Chap. 4). The accuracy of this
approximation is given by the standard error (or by
confidence intervals). For many statistics of interest
standard errors cannot be calculated using a mathema-
tical formula. It is obviously of great importance to
obtain a quantitative indication of statistical accuracy,
and this is where the bootstrap comes in.
The basic idea of the bootstrap is that F̂; the empirical

distribution, is the best (i.e., maximum likelihood)
estimator of the true distribution F : An estimation of
the sampling variability for #y can then be obtained by
repeatedly sampling from F̂: Hence, the bootstrap
estimate of standard error for a parameter #y from F̂ is
calculated as follows. Sample with replacement from the
original data set F̂-x ¼ ðx1; x2; :::; xnÞ to obtain a
bootstrap sample x� of size n (a star indicates ‘boot-
strap’). For instance, if x ¼ ðx1; x2; x3Þ; then x� could be
ðx1;x1; x3Þ: The bootstrap sample x� is analyzed as if it
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Fig. 1. The data informed parametric bootstrap cross-fitting method

(PBCM) for model mimicry (see text for details).
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were the observed data x; that is, the statistic of interest,
#y�; is calculated using x�: A new bootstrap sample is
then selected from x; and a new value of #y� is obtained.
This procedure is repeated M times, resulting in M

values of #y�: The bootstrap estimate of standard error,
seboot; for a parameter #y from F̂ is then given by the
standard deviation of the M values of #y�: For an
accurate assessment of standard error, M usually varies
from 25 up to 200 (for details see Efron & Tibshirani,
1993, pp. 50–53). The computation of confidence
intervals with good coverage is more complicated,
and also requires larger M (i.e., roughly in the order
of M ¼ 1000; see Andrews & Buchinsky, 2000, and
Davidson & MacKinnon, 2000, for a discussion on how
to choose the number of bootstrap samples).
The foregoing has briefly described the nonparametric

bootstrap, in which resampling is done on the observed
data. An alternative procedure is to generate replicate or
simulated data sets from a parametric model that has
first been fitted to the observed data. These artificial
data sets are termed parametric bootstrap samples, since
they are obtained not by sampling from the observed
data, but instead by ‘sampling’ from a parametric
model. This procedure is known as the parametric

bootstrap (or earlier as a member of the class of Monte
Carlo methods, cf. Atkinson, Bower, & Crothers, 1965;
Bush & Mosteller, 1955; Metropolis & Ulam, 1949; Press,
Flannery, Teukolsky, & Vetterling, 1986, pp. 529–538;
von Neumann, 1951; see Ratcliff (1979, 1993) and
Ratcliff & Tuerlinckx (2002) for applications to
psychological phenomena).
After the above preliminaries, we are now ready to

outline the data informed PBCM. Suppose two models,
A and B; have been estimated from a data set
x ¼ ðx1; x2; :::; xnÞ by optimizing the values for their
parameters. Model fitting might be accomplished by
maximum likelihood estimation (MLE; e.g., Stuart &
Ord, 1991), or a method such as least-squares mini-
mization. The fitting procedure will result in a set of best
fitting or most likely parameters #yA for model A; and #yB

for model B: Each model also has a GOF value, and this
yields a difference in GOF between models A and B for
the observed data: DGOFAB ¼ GOFA � GOFB ¼ dAB:
As mentioned earlier, the diagnosticity of the evidence
that dAB yields for model A over model B is affected by
the extent to which models A and B can mimic each
other. The data informed PBCM is a method to quantify
such model mimicry and consist of the following stages:

1. Sample with replacement from the observed data x to
obtain a nonparametric bootstrap sample x�:

2. Fit both models A and B to the nonparametric sample
x�; resulting in MLE parameter vectors #y�A and #y�B:

3. Apply the parametric bootstrap to both models. That
is, generate a simulated data series D from model A

and model B using #y�A and #y�B; respectively.
4. Treat the simulated data series under model A; i.e.,
Dð#y�AÞ; and the simulated data series generated under
model B; i.e., Dð#y�BÞ; exactly as if they had been the
observed data. That is, fit model A and model B to
Dð#y�AÞ; thereby obtaining parameter estimates and,
more importantly, a difference in GOF given that the
data were generated by model A: DGOF�

ABjA ¼
GOF �

A � GOF�
B: The data simulated under model B;

i.e., Dð#y�BÞ are also fitted by model A and B; and this
also yields a difference in GOF: DGOF�

ABjB ¼
GOF �

A � GOF�
B:

5. Repeat steps 1–4 M times. This yields a distribution
of differences in GOF under model A; and a
distribution of differences in GOF under model B:
In the work presented here, M ¼ 1000:

Thus, the data informed PBCM combines the
nonparametric bootstrap (step 1) with the parametric
bootstrap (step 3). Fig. 1 illustrates the procedure.
Step 1, the nonparametric bootstrap, is included in

the procedure to account for uncertainty in parameter
estimation. By definition, the likelihood of observing the
data is highest when y ¼ #y: However, other values of #y
can also be considered, although their likelihood will be
smaller than the one for the point estimate. When only #y
is used to generate data for the data informed PBCM
there is the risk of drawing conclusions from the results
which do not hold for other plausible values of #y: More
specifically, ignoring the role of sampling variability in
parameter estimation can lead to overly optimistic
predictions and assessments, especially when the dis-
tribution of parameter values is not highly peaked
around its maximum value—a situation that is especially
likely when only few data are available and the models
under consideration are nonlinear. Aitchison & Duns-
more (1975, pp. 227–234) discuss and illustrate this
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point in more detail (see also Bollback, 2002, p. 1179).
Thus, sampling variability in #y needs to be taken into
account by considering a set of plausible values around
the point estimate #y:2

The method used here to obtain the sampling
distribution of #y is the nonparametric bootstrap (i.e.,
step 1 above). This is not only consistent with the
bootstrap approach advocated in this paper, but the
nonparametric bootstrap is also attractive because it
works even when the distribution of #y is not normal—
maximum likelihood theory only guarantees asymptotic

normality. A second method to obtain the sampling
distribution of #y is by means of the parametric
approach. The parametric method can perhaps be more
readily applied to data-sparse situations than can the
nonparametric method. Also, the parametric method
might be less sensitive to measurement noise than the
nonparametric method. This increase in robustness
comes at the cost of assuming that the fitted model is
approximately correct. Here we will use the nonpara-
metric approach, but it should be noted that both
methods, parametric and nonparametric, have their
merits.
Thus, the data informed PBCM yields two distribu-

tions of DGOF�
AB; one derived under the assumption

that model A is true, and one derived under the
assumption that model B is true. The diagnosticity of
dAB (i.e., the observed difference in GOF) can then be
quantitatively assessed with reference to these two
distributions. When dAB has a higher probability under
the distribution of DGOF�

AB (model A is true) than under
the distribution of DGOF�

AB (model B is true) this
suggests that model A is more adequate than model B: A
literature search revealed that this procedure (without
taking parameter uncertainty into account) was first
suggested and applied as a model selection tool for
nonnested models by Williams (1970a, b). For nested
mixture models, the parametric bootstrap has been used
to construct the difference distribution under the null-
hypothesis (e.g., Feng & McCulloch, 1996; McLachlan,
1987).3

At this point it is useful to stress that the conclusions
from this method are conditional on the specific data of
interest. That is, it is important to realize that models A

and B are not generic models, but rather specific
instantiations that use parameter values that provide
the best fit of the model to the data at hand. For a
2Parameter variability in psychological models can also be explicitly

accounted for (cf. Ratcliff & Rouder, 1998; Van Zandt & Ratcliff,

1995).
3 It should be pointed out that nonparametric bootstrap methods

(i.e., resampling from the data instead of from the fitted model) cannot

be applied to goodness-of-fit measures in a straightforward fashion

(Bollen & Stine, 1992; Wagenmakers, Farrell, & Ratcliff, in press). The

main obstacle is that F̂ almost certainly violates the null-hypothesis,

even if F̂ was in fact generated under the null-hypothesis.
different set of data, the best fitting models A and B are
likely to have different parameter values, and this may
in turn lead to different difference distributions. The
procedure discussed here focuses on specific instantia-
tions of models (‘‘model tokens’’) instead of generic
instantiations of models (‘‘model types’’). We will
discuss this issue in more detail later, but until that
point the reader should be aware that the method
discussed so far is only informative with respect to the
specific data set and the specific models that give the best
fit to those data. Thus, only under the provision that the
observed data are the only plausible data is it allowed to
interpret dAB as ‘‘evidence’’. Henceforth, specific in-
stantiations of models (i.e., models whose parameter
values are obtained by fitting the data of interest) will be
denoted model tokens, whereas the generic instantia-
tions will be denoted model types. Also, whenever the
need for the distinction arises, the PBCM applied to
model tokens and model types will be termed ‘data
informed PBCM’ and ‘data uninformed PBCM’,
respectively. Note that generic instantiations are not
necessarily uninformative with respect to parameter
values—if prior research has pointed to specific regions
of the parameter space that are relevant, these selective
areas could be used in a ‘data uninformed PBCM’
analysis. The important point, elaborated on later, is
that assessment of model mimicry based on model
tokens incorporates information from the experiment
itself, whereas an assessment of model mimicry based on
model types is based on general prior information that is
not directly dependent on the specific experimental data
that are the focus of the modeling enterprise. For now,
the focus is on the PBCM for assessment of mimicry
between model tokens (i.e., ‘data informed PBCM’).
We will first discuss what kind of information can be

extracted from the two difference distributions and the
observed difference dAB: Next, we will show an example
in which the data informed PBCM is applied to real
data. Fig. 2, top panel, shows two fictitious difference
distributions. Conclusions from these distributions with
respect to dAB follow from signal detection theory (e.g.,
Green & Swets, 1966). Let Pðx ¼ DGOF �

ABjA trueÞ be
denoted PAðxÞ; the probability of observing a difference
in GOF of x when A is the true data-generating model
token. Similarly, we denote Pðx ¼ DGOF�

ABjB trueÞ by
PBðxÞ:
The relative likelihood that the data originate from

model token A rather than from model token B; given
an observed difference in GOF, can be quantified by the
division of the estimated heights of the difference
distributions at the observed value dAB: PðdABjA trueÞ=
PðdABjB trueÞ ¼ PAðxÞ=PBðxÞ: We define the optimal
decision criterion (opt) to be the criterion that maximizes
the probability of a correct binary classification (i.e.,
either ‘token A is true’ or ‘token B is true’) and this
criterion is given by PAðoptÞ=PBðoptÞ ¼ 1: In other
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Fig. 2. Top panel: two hypothetical difference distributions obtained by the data informed PBCM. Bottom panel: confusion matrices constructed by

using the nominal criterion (left) and by using the optimal criterion (right), with reference to the difference distributions in the top panel.
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words, at the optimal decision criterion the ‘‘evidence’’
favors both model tokens to the same extent—this is the
point on the x-axis where the distributions cross.4

As can be seen from Fig. 2, top panel, the nominal
criterion of DGOFAB ¼ 0 is not optimal. Because model
token B is able to provide a better account for data
generated by model token A than vice versa, use of the
nominal criterion would lead to a bias in favor of model
token B: Assume that a binary decision is required.
According to the nominal criterion, the decision ‘token
A is true’ will be made when dAB ¼ GOFA � GOFBo0
(Assuming that low values of GOF are to be preferred,
as is the case for negative log likelihood or residual
squared error). That is, observed values to the left of the
criterion lead to ‘A’ classifications, and observed values
to the right of the criterion lead to ‘B’ classifications.
Fig. 2, bottom left panel, shows the resulting probability
of correct classification when the nominal criterion is
used. The fact that the nominal criterion is not optimal
results in an asymmetric confusion matrix: data from
model token B are less likely to be erroneously classified
as originating from model token A (p ¼ 0:05) than vice
versa (p ¼ 0:30). The overall probability of correct
4A different criterion would try to optimize classification perfor-

mance under the constraint that the probability of an error is the same

for both models. Visual inspection of the difference distributions will

be informative as to whether this criterion is more useful than the more

traditional criterion that optimizes overall classification performance.

Also, note that an asymmetrical payoff structure can change the setting

of the ‘optimal’ criterion.
classification is ð0:70þ 0:95Þ=2 ¼ 0:825: Fig. 2, bottom
right panel, shows the confusion matrix when the
optimal criterion opt is used instead of the nominal
criterion. Using the optimal criterion, the confusion
matrix is now symmetrical (i.e., both models are equally
confusable), and the overall probability of correct
classification is ð0:90þ 0:90Þ=2 ¼ 0:90 which is consid-
erably higher than 0.825. We will term the difference
between the nominal criterion and the optimal criterion
the mimicry bias bm:
We would like to stress here that a plot of the

difference distributions provides more information than
the confusion matrix. For instance, the hypothetical
example above illustrated that a biased criterion leads to
an asymmetric confusion matrix. The reverse, however,
is not necessarily true. Fig. 3, top panel, shows two
difference distributions that yield a symmetric confusion
matrix. That is, the optimal criterion opt-PAðoptÞ=
PBðoptÞ ¼ 1 is used (in this case, the optimal criterion
equals the nominal criterion DGOFAB ¼ 0). Fig. 3,
bottom panel, shows the same difference distributions,
the only change being that the variance of PBðxÞ is now
twice that of PAðxÞ: In this case the optimal criterion no
longer equals the nominal criterion, as is apparent from
the figure. More importantly, the optimal criterion
maximizes the overall probability of correct classifica-
tion but will nonetheless lead to an asymmetric
confusion matrix. Thus, asymmetric confusion matrices
can originate either from a suboptimal (i.e., biased)
decision criterion or from difference distributions that
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Fig. 3. Hypothetical difference distributions obtained by the data informed PBCM. Top panel: the two distributions have equal variance. Bottom

panel: the two distributions have unequal variance, causing the confusion matrix to be asymmetrical despite the fact that the decision criterion is set

optimally.
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have unequal variances. Only in the former case can
classification performance be improved upon.
We now illustrate the use of the data informed PBCM

with a popular example, and then turn to a discussion of
the underlying assumptions.

2.1. Example 1. Two models of information integration:

FLMP vs. LIM

In everyday life, most humans obtain perceptual
information through five sensory modalities. This raises
the question in what way the possibly conflicting
information from the various sources is combined to
result in subjective experience. The two models discussed
in this section provide different answers as to how
information from distinct modalities is blended or
integrated. For details on the many theoretical and
empirical issues involved we refer the reader to the
recent monograph by Massaro (1998).
In the experimental paradigm that is most often used

to study information integration, participants are
simultaneously exposed to auditory information (i.e.,
via a headset) and visual information (i.e., via a
computer monitor). The visual input is in the form of
a computer-generated face that is designed to mimic
facial expressions used in speech production. For
example, the movement of the computer-generated face
can be consistent with the production of the syllable /ba/,
/da/, or various levels between these two extremes. The
auditory input also provides information that can also
be consistent with the syllable /ba/, /da/, or various
levels between. The participant has to decide whether his
combined audiovisual experience for the produced
syllable was consistent with either /ba/ or /da/.
Obviously, this task is easiest when the information
from the visual and auditory modalities is consistent
(i.e., visual and auditory information are not in conflict)
and unambiguous (i.e., clearly a /ba/ or clearly a /da/).
By factorially combining the auditory and visual
evidence for /ba/ vs. /da/, it is possible to study how
information from these two modalities merges to create
subjective experience.
The first model that provides a quantitative account

of information-integration is the Fuzzy Logical Model
of Perception (FLMP; e.g., Massaro, 1998; Massaro,
Cohen, Campbell, & Rodriguez, 2001; Massaro &
Friedman, 1990; Oden & Massaro, 1978; see also
Movellan & McClelland, 2001). Let ai denote the level
of auditory information consistent with /da/, and let bj

denote the level of visual information consistent with
/da/, 0pfai; bjgp1: The FLMP probability of respond-
ing /da/ given these two sources of information, that is,
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PFLMPð=da=jai; bjÞ; is

PFLMPð=da=jai; bjÞ ¼
aibj

aibj þ ð1� aiÞð1� bjÞ
: ð1Þ

The degree of auditory and visual support for /ba/ is
given by ð1� aiÞ and ð1� bjÞ; respectively. Eq. (1)
follows from basic probability theory and combines
the available information in a manner that optimizes the
probability of correct classification. Crowther, Batch-
elder, and Hu (1995) have shown that the FLMP
equation can be rewritten as an item-response Rasch
model equation. As we will see later, the FLMP predicts
that the evidence from one modality will have more
effect to the extent that the evidence from the other
modality is ambiguous.
The FLMP has been shown to be consistent with

many empirical data sets, and this is sometimes taken to
suggest a universal principle of information integration
(Massaro, 1998; see also Movellan & McClelland, 2001).
In addition, the fits of the FLMP to empirical data are
almost always superior to that of competitor models.
Here we will focus on one particularly simple competitor
to the FLMP. This simple model is the Linear
Integration Model (LIM; Anderson, 1981), in which

PLIMð=da=jai; bjÞ ¼
ai þ bj

2
: ð2Þ

Thus, in the LIM model the decision is based on the
arithmetic average of the support provided by the
auditory and visual information. In addition, there exist
several other competitor models to FLMP (Massaro,
1998), including the TRACE model (e.g., McClelland &
Elman, 1986) and the weighted average model (cf. Pitt,
Kim, & Myung, 2003), in which Pð=da=jai; bjÞ ¼ wai þ
ð1� wÞbj: The latter model reduces to LIM when w ¼ 1

2
:

We chose to illustrate the PBCM using FLMP and LIM
for two reasons. First, several recently published articles
on model complexity have also used the FLMP vs. LIM
example (e.g., Cutting, 2000; Myung & Pitt, 1997; Pitt
et al., 2002) and this allows us to compare the PBCM to
other methods such as minimum description length (e.g.,
Pitt et al., 2002). It is important to note here that the
FLMP vs. LIM debate has centered around the issue of
whether the superior fit of FLMP is due to excess
flexibility rather than inherent correctness (e.g., Cutting,
Bruno, Brady, & Moore, 1992; Dunn, 2000; Massaro,
1998; Massaro et al., 2001). In other words, it could be
argued that the FLMP will provide a relatively good fit
to the data, even when these data were in fact generated
by LIM.
Second, FLMP and LIM have an equal number of

free parameters: in both models, each level of auditory
and visual support for /da/ (i.e., ai and bj; respectively)
is associated with an estimated parameter. Because the
penalty term of AIC and BIC depends critically on the
number of free parameters, a difference in AIC or BIC
between FLMP and LIM is completely determined by
the difference in descriptive accuracy. Hence, AIC, BIC,
and unpenalized log likelihood are in complete agree-
ment with respect to the amount of statistical evidence
for FLMP vs. LIM. The difference distributions
obtained from the PBCM will thus be based on
differences in maximum log likelihood (i.e., log like-
lihood ratios). Note that the presence of an additive
penalty term would only shift the difference distribu-
tions along the x-axis, preserving both their shape and
the distance between them.

2.2. Experimental design and model fitting

As an example of how the data informed PBCM can
be applied to real data, we analyzed a database of
experimental results, kindly made available by Massaro
through the World Wide Web (i.e., http://mambo.ucs-
c.edu/psl/8236/). The experiment required participants
to distinguish between the syllables /da/ and /ba/, given
auditory support ai and visual support bj for /da/
(auditory and visual support for /ba/ is 1� ai and
1� bj; respectively). Both auditory and visual support
was varied on five levels. Hence, both FLMP and LIM
estimate 10 parameters: fa1; a2; a3; a4; a5g for auditory
support and fb1; b2; b3; b4; b5g for visual support
for /da/.
In the experimental design, the five levels of auditory

support for /da/ and the five levels of visual support for
/da/ were factorially combined to yield 5
 5 ¼ 25
conditions. In addition to these 25 ‘mixed’ conditions,
10 ‘pure’ conditions were present; in the pure conditions
only auditory support or only visual support was
presented, but not both. Thus, a total of 35 conditions
was obtained. Note that if the experiment only included
the 25 ‘mixed’ conditions, the FLMP would be identified
with 9 parameters instead of 10 (Crowther et al., 1995;
for a note on the identifiability problem for LIM see
Navarro et al., 2003, footnote 1). For each condition,
the datum of interest is the probability of responding
/da/, based on 24 binary judgments (for further details
see Massaro, 1998). To avoid averaging artifacts (cf.
Estes, 2002; Massaro, 1998, pp. 132–135), we will
examine two typical sample participants, #24 and, later,
#15.
The data from Massaro’s (1998) participant #24 were

fit both by FLMP and by LIM using maximum
likelihood estimation (MLE). More specifically, both
FLMP and LIM predict the proportion of binary (/da/
or /ba/) classifications for every experimental condition.
To assess goodness-of-fit, the probability density can be
computed from the predicted proportion using the
binomial probability density function pdf ðbinomialÞ ¼
p̂ki

i ð1� p̂iÞn�kiðn
kj
Þ; where ki is the number of /da/

responses out of n observations, and p̂i is the predicted
probability for condition i: The overall log likelihood

&ast;http://mambo.ucsc.edu/psl/8236/a4
&ast;http://mambo.ucsc.edu/psl/8236/a4
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Fig. 4. Data from Massaro’s (1998) participant #24. Top panel:

FLMP fit. Bottom panel: LIM fit. The numbers in the middle panels

indicate the level of visual support for the syllable /da/, ranging from 1

(low support) to 5 (high support). The lines give the model prediction.

See text for details.
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for FLMP over all i ¼ 1; :::; 35 conditions is given by

cFLMPp
X35
i¼1

log p̂ki

i;FLMPð1� p̂i;FLMPÞn�ki
n

ki

� �� �
; ð3Þ

where p̂i;FLMP is given by Eq. (1). cFLMP can be obtained
by replacing p̂i;FLMP by p̂i;LIM as given by Eq. (2).
We also fit FLMP and LIM using the root mean
squared deviation (RMSD), which is defined as

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðp̂i � piÞ2=N

q
; where N ¼ 35 is the

number of predicted data points and pi is the observed
probability for condition i (e.g., Massaro, 1998). The
results based on RMSD are very similar to the results
from the more principled MLE method reported here.
For both FLMP and LIM, the MLE parameter values

and their standard errors are presented in Table 1. The
standard errors were estimated by taking 1000 nonpara-
metric bootstrap samples from the data. Specifically,
when the observed probability of responding /da/ in
condition x; px; equaled 0.8, resampling was done by
drawing an integer number between 0 and 24 from
a binomial distribution, p�

xBBinðpx ¼ 0:8; n ¼ 24Þ:
Table 1 shows that the parameter estimates are more
reliable for extreme support values than for intermediate
support values, a regularity that is also present for
binomial models (i.e., a binomial model with parameter

p has seðp̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
; which is maximal when

p ¼ 1� p ¼ 1
2
). Also, the average parameter estimates

for the nonparametric bootstrap samples equal the
MLE point estimates almost exactly. This indicates that
the nonparametric bootstrap procedure does not lead
to a systematic overestimation or underestimation
(i.e., the procedure is unbiased, Efron & Tibshirani,
1993, Chap. 10).
The fit of FLMP (i.e., cFLMP ¼ �38:0) was much better

than the fit of LIM (i.e., cLIM ¼ �141:6). Fig. 4 shows the
data, and the predicted values for FLMP (top panel) and
LIM (bottom panel). The data clearly show that the effect
of visual support is largest when the auditory support is
ambiguous. In other words, the data from the mixed
Table 1

Parameter point estimates, nonparametric bootstrap mean parameter estima

Massaro’s (1998) Participant #24

a1 a2 a3 a4 a5

FLMP

Point 0.01 0.09 0.51 0.99 1.0

Mean 0.00 0.09 0.51 0.99 1.0

SE 0.01 0.03 0.06 0.01 0.0

LIM

Point 0.00 0.03 0.49 1.00 0.9

Mean 0.00 0.03 0.49 1.00 0.9

SE 0.00 0.02 0.07 0.00 0.0

Note: Point=parameter point estimate that maximizes log likelihood for the o

bootstrap samples. SE=Standard error for each parameter based on 1000 n
condition are shaped somewhat like an American foot-
ball, and this pattern is captured by FLMP. In contrast,
LIM predicts that the effect of a difference in visual
support is constant across the levels of auditory support, a
prediction that the data do not support.

2.3. Assessment of model flexibility: preliminary

comments

In the following, we study to what extent the better fit
of FLMP is due to excess flexibility. As mentioned at the
tes and nonparametric standard errors for FLMP and LIM, fitted to

b1 b2 b3 b4 b5

0 0.13 0.29 0.43 0.65 0.79

0 0.13 0.29 0.43 0.65 0.79

0 0.04 0.06 0.07 0.07 0.05

9 0.11 0.34 0.46 0.68 0.85

9 0.10 0.33 0.46 0.68 0.85

1 0.06 0.07 0.07 0.07 0.06

bserved data. Mean=average parameter value for 1000 nonparametric

onparametric bootstrap samples (see text for details).
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beginning, various model selection methods aim to
discount goodness-of-fit of flexible models by penalizing
lack of parsimony. Since FLMP and LIM each have 10
free parameters, differences in both AIC and BIC will be
determined by differences in GOF and hence favor
FLMP over LIM for this particular data set.
In contrast to AIC and BIC, the method of minimum

description length (MDL; e.g., Grünwald, 2000; Pitt
et al., 2002; Rissanen, 1996, 2001) and Bayesian model
selection (BMS; e.g., Kass & Raftery, 1995; Myung &
Pitt, 1997; Wasserman, 2000) are sensitive to the
functional form of the model parameters. Both BMS
and MDL are among the most promising and modern
model selection methods (see also Hastie, Tibshirani, &
Friedman, 2001, Chaps. 7 and 8). From an MDL
analysis of FLMP and LIM, Pitt et al. (2003) concluded
that FLMP is more complex than LIM, although the
authors nevertheless preferred FLMP.
Before turning to the results obtained by applying the

data informed PBCM, we first briefly discuss earlier
methods that are similar to the data informed PBCM.
Suppose two nonnested models, A and B; need to be
distinguished using a null-hypothesis testing framework.
That is, let H0 be the hypothesis that the data x are
distributed according to model A: A significance test
could then be based on a comparison of the observed
difference in GOF (e.g., log likelihood c) to the expected
value of the GOF difference given that H0 holds (Cox,
1962). The test statistic TA is then defined as

TA ¼ fcAð#yAÞ � cBð#yBÞg � EAfcAð#yAÞ � cBð#yBÞg; ð4Þ

where EA denotes the expectation given that model A is
the data-generating model. When this null-hypothesis is
true, TA is normally distributed with mean zero. When
If DGOFABobA; DGOFABobB the true model is A

DGOFAB4bA DGOFAB4bB the true model is B

DGOFAB4bA DGOFABobB neither model is true

DGOFABobA DGOFAB4bB model A and B cannot be discriminated:
the null-hypothesis is false, TA should be negative,
because the expectation of a better fit for model A than
for model B; given that model A is the data-generating
model, is an overestimate when model A did not, in fact,
generate the data. This procedure is very similar to the
data informed PBCM. Note that Cox’s method is
phrased in a null-hypothesis testing framework. One
model is assigned the role of null-hypothesis, and it is
either rejected or not rejected. In the case of two models,
separate analyses could be done, one based on model A

taking on the role of null-hypothesis, and one based on
model B taking on this role.
Williams (1970a) first suggested the use of the

parametric bootstrap to obtain two difference distribu-
tions, one under the hypothesis that model token A is
true and the other under the hypothesis that model
token B is true. The objective is then to associate the
observed difference in GOF with one of these two
distributions. Williams (1970b) applied this procedure to
choose between two regression token models for enzyme
synthesis. It is probably due to lack of computational
resources that Williams did not attempt to construct the
two difference distributions by generating a large
number of data series from each token model. Instead,
only M ¼ 10 parametric bootstrap samples were gener-
ated from each token model. Both models were then fit
to each parametric bootstrap sample, and the difference
between the maximized likelihoods was computed. Next,
the mean and standard deviation for each of the two
difference distributions were obtained as approxima-
tions of the ‘true’ difference distributions. As a result,
each model had associated with it an estimated
difference distribution that provides information about
the expected difference in GOF given that the model has
generated the data. In order to associate the observed
difference in likelihood with one of the two distribu-
tions, two boundaries were determined, bA associated
with the difference distribution fA (i.e., consisting of
data generated by model A) and bB associated with the
difference distribution fB: Specifically, bA ¼ maxf #mA þ
2 #sA;maxðx�Þg; and bB ¼ minf #mB � 2 #sB;minðx�Þg;
where #mA; #mB; and #sA; #sB are the means and standard
deviations of the difference distributions fA and fB;
respectively (due to the order of subtraction, #mAo #mB),
and x� is one of the M ¼ 10 bootstrap samples. The
observed DGOFAB was then compared to the boundaries
bA and bB: Williams (1970b, p. 28) used the following
guidelines:
Again, it is crucial to realize that these conclusions are
only valid when one restricts attention to the observed
data and hence to the specific instantiations of the
models.

2.4. Application of the data informed PBCM to FLMP

and LIM

We now apply what might be considered an extended
version of this idea to the data from Fig. 4. It should be
noted that Massaro et al. (2001, pp. 7–8) used a very
similar procedure, but they did not discuss their results
in any detail. Recall that in order to calculate standard
errors for the FLMP and LIM parameters, M ¼ 1000
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Fig. 5. Difference distributions obtained by the data informed PBCM

applied to the experimental data from Fig. 4 (participant #24). The

dashed vertical line indicates the difference in log likelihood that was

observed for the participant. The bin-width for the bar graph and the

kernel estimate was 3.
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nonparametric bootstrap samples were used. Each of
these nonparametric samples yielded estimates #y�FLMP:NP
and #y�LIM:NP (NP stands for nonparametric). To in-
corporate parameter uncertainty in the construction of
the difference distributions, M ¼ 1000 parametric boot-
strap samples were generated from FLMP and LIM by
using the M ¼ 1000 nonparametric parameter vectors
DFLMP ¼ f#y�FLMP:NPð1Þ; #y�FLMP:NPð2Þ; :::; #y�FLMP:NPðMÞg
and DLIM ¼ f#y�LIM:NPð1Þ; #y�LIM:NPð2Þ; :::; #y�LIM:NPðMÞg:
Each nonparametric parameter vector (i.e., each element
of DFLMP and DLIM) was used once to generate data by
first computing, from the best fitting parameters (i.e.,
#y�FLMP:NPðiÞ and #y�LIM:NPðiÞ), the probability of respond-
ing /da/ in each condition (according to the model).
Next, sampling was done from a binomial distribution,
Binðpi; n ¼ 24Þ; where pi is the probability of responding
/da/ for condition i: Thus, M data sets were generated
from FLMP, and M data sets were generated from
LIM, taking parameter uncertainty into account.5

Each generated data set was then fit both by FLMP
and by LIM, and the difference in log likelihood
calculated. In fitting FLMP and LIM back to the
generated data, the starting values for the
fa1; a2; a3; a4; a5; b1; b2; b3; b4; b5g parameter vector were
f0:01; 0:25; 0:50; 0:75; 0:99; 0:01; 0:25; 0:50; 0:75; 0:99g;
and each parameter was constrained to take on values
between 0 and 1 only. The difference distributions, each
based on M ¼ 1000 differences in log likelihood—one
given token FLMP was the generating model, one given
token LIM was the generating model—are shown in
Fig. 5. The figure shows the bar graph and a Gaussian
kernel smoothing estimate (e.g., Silverman, 1986; Van
Zandt, 2002).
For this particular data set, Fig. 5 allows several

conclusions:

1. Based on the nominal criterion of no difference in log
likelihood, all simulated data sets are correctly
classified. In other words, the entire distribution
fLIM lies to the left of the nominal criterion cFLMP �
cLIM ¼ 0; and the entire distribution fFLMP lies to the
right of this criterion. This observation is in agree-
ment with that of Massaro et al., 2001.

2. The observed difference in log likelihood is located
near the middle of the fFLMP distribution. This fact, in
combination with the previous observation of perfect
discrimination, indicate that the data are much more
likely under the token version of FLMP than under
the token version of LIM (cf. Cox, 1962; Williams,
1970a, b).
5 Incorporating parameter uncertainty did not lead to qualitative

changes in the difference distributions. This indicates that the pattern

of results holds over a range of slightly different data sets and

parameter estimates, at least for the models and data sets examined

here.
3. The difference distributions are not symmetrical
around the nominal criterion of Dc ¼ 0: This
indicates that LIM is relatively poor at accounting
for FLMP-patterns, whereas FLMP is better (but still
poor) at accounting for LIM-patterns. This analysis
shows that FLMP is more flexible than LIM in terms
of mimicry (cf. Pitt et al., 2002, 2003).

In sum, results from the data informed PBCM
demonstrate that, for this particular data set, FLMP is
much to be preferred over LIM, despite the fact that
FLMP is better able to mimic LIM than vice versa. Note
that the criterion that optimizes overall classification
performance ranges anywhere between a difference in
log likelihood of about 0–70—when the difference
distributions do not overlap, as is the case here, precise
location of an optimal criterion is difficult. The aim of
this example was not to argue for or against FLMP (or
LIM). Rather, the data informed PBCM illustrates how
consideration of the difference distributions can increase
understanding of the mimicry problem.
The data set analyzed here was fairly typical. Another

pattern that often appeared in the database of 82
participants (from Massaro, 1998) was characterized by
similarly located difference distributions as depicted in
Fig. 5, but with the observed difference in log likelihood
located just outside the fFLMP distribution, toward fLIM
but clearly above the nominal criterion of Dc ¼ 0: This
pattern of results is illustrated by applying the same
method of analysis to Massaro’s participant #15. Fig. 6
shows the maximum likelihood fit of FLMP (top panel)
and LIM (bottom panel). Again, the fit of FLMP
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(cFLMP ¼ �56:7) is better than that of LIM
(cLIM ¼ �59:5), although the difference in GOF is much
less pronounced than it was for participant #24. The
data give the impression of being noisy and idiosyncratic.
Table 2 shows the MLE parameter estimates and their
bootstrap standard errors. Fig. 7 shows the results of
applying the data informed PBCM. It is evident that the
observed likelihood ratio falls precisely in between the
two distributions of likelihood ratios.
The pattern of results shown in Fig. 7 could be judged

to be more consistent with token FLMP than with token
LIM, as would be the case when only the nominal
Table 2

Maximum likelihood parameter point estimates, nonparametric bootstrap m

and LIM, fitted to Massaro’s (1998) Participant #15

a1 a2 a3 a4

FLMP

Point 0.09 0.13 0.59 0.88

Mean 0.09 0.13 0.59 0.88

SE 0.02 0.03 0.06 0.03

LIM

Point 0.00 0.07 0.72 1.00

Mean 0.00 0.07 0.72 1.00

SE 0.00 0.05 0.06 0.00

Note: Point=parameter point estimate that maximizes log likelihood for the o

bootstrap samples. SE=Standard error for each parameter based on 1000 n

Fig. 6. Data from Massaro’s (1998) participant #15. Top panel:

FLMP fit. Bottom panel: LIM fit. The numbers in the middle panels

indicate the level of visual support for the syllable /da/, ranging from 1

(low support) to 5 (high support). The lines give the model prediction

(see text for details).
criterion were to be used. However, we believe the more
appropriate labeling of such a pattern would be
‘ambiguous’. The fact that the observed Dc falls outside
the FLMP generated difference distribution strongly
suggests that something is amiss either in the data or in
the model. This interpretation is consistent with that of
Cox (1962) and Williams (1970b), who argued that such
a pattern of results casts doubt on both models. For an
in-depth analysis of the FLMP vs. LIM debate we refer
the interested reader to Massaro (1998). Thus, the data
informed PBCM can be used to assess the relative
adequacy of the models under consideration. In
particular, Fig. 7 shows that the PBCM is able to
classify data as inconclusive or ambiguous, despite the
fact that the nominal criterion yields perfect model
recovery.
ean parameter estimates and nonparametric standard errors for FLMP

a5 b1 b2 b3 b4 b5

0.90 0.21 0.58 0.88 0.91 0.94

0.90 0.21 0.57 0.88 0.90 0.93

0.03 0.05 0.06 0.03 0.03 0.02

0.97 0.15 0.58 0.96 0.96 0.99

0.97 0.16 0.57 0.96 0.96 0.98

0.02 0.05 0.07 0.03 0.03 0.02

bserved data. Mean=average parameter value for 1000 nonparametric

onparametric bootstrap samples. See text for details.

Fig. 7. Difference distributions obtained by the data informed PBCM

applied to the experimental data from Fig. 6 (participant #15). The

dashed vertical line indicates the difference in log likelihood that was

observed for the participant. The bin-width for the bar graph and the

kernel estimate was 2.
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3. Assumptions and extensions

Up to this point we have outlined the data informed
PBCM, and illustrated its use by an application to two
models of information integration. We now turn to a
more detailed discussion of the underlying assumptions,
advantages, and limitations of the data informed
PBCM. This discussion will ultimately lead to a similar
but different version of the PBCM, a version that does
not depend on the observed data.

3.1. Data informed PBCM as a frequentist

implementation of the Bayesian posterior predictive

distributions

To recapitulate, the PBCM for model tokens gen-
erates parametric bootstrap samples from a token model
with MLE parameter vector #y:Uncertainty in parameter
estimation can be taken into account using the
nonparametric bootstrap for data x, yielding slightly
different parameters #y� for every x�: The bootstrap
samples generated from the model can be considered
future or replicate data, given that the model under
consideration is true.
In this section we will briefly point out a striking

similarity between the data informed PBCM and what is
known as Bayesian posterior predictive p-values (BPP;
e.g., Berkhof, van Mechelen, & Gelman, in press;
Bollback, 2002; Gelman, Goegebeur, Tuerlinckx, & van
Mechelen, 2000; Meng, 1994; Rubin, 1984, Section 5). We
are grateful to In Jae Myung (personal communication)
for pointing this out to us. To anticipate, the data
informed PBCM can be interpreted as a frequentist
implementation of BPP. The use of the Bayesian posterior
predictive p-values is usually advocated as a method to
assess model adequacy, although similar Bayesian ideas
have been proposed as methods for model selection
(e.g., Aitkin, 1991; Laud & Ibrahim, 1995).
Before proceeding it is useful to introduce certain

Bayesian ideas and establish some notation. One of the
characteristic features of a Bayesian analysis is that it
requires the specification of plausible parameter values
prior to the observation of the data. The prior density
for y is updated or altered by the impact of observed
data x and the result is a posterior distribution of y:

pðyjxÞ ¼ pðyÞpðxjyÞ
pðxÞ ; ð5Þ

where pðxÞ ¼
R
Y pðyÞpðxjyÞ dy is the normalizing con-

stant (for an early application to psychology see
Edwards, Lindman, & Savage, 1963). The predictive
density for unseen data xnew; after observing data x, is
then given by (e.g., Aitchison & Dunsmore, 1975)

pðxnewjxÞ ¼
Z
Y

pðxnewjyÞpðyjxÞ dy: ð6Þ
This predictive density can be used as a diagnostic tool
to assess whether the proposed model performs ade-
quately or not. It is relatively straightforward to
evaluate pðxnewjxÞ using Monte Carlo techniques. The
first step in a Monte Carlo approximation of pðxnewjxÞ is
to sample a set of i parameter vectors, yi; i ¼ 1; :::; I ;
from pðyjxÞ; the posterior distribution of y: In the
second step, each parameter vector yi is then used to
generate a replicated data set (or future data set) xnewi :
The entire collection of replicate data sets
fxnew1 ; xnew2 ; :::; xnewI g is then representative of the poster-
ior predictive distribution pðxnewjxÞ: Next, a goodness-
of-fit measure is computed both for the observed data x

and for the replicate data sets fxnew1 ; xnew2 ; :::; xnewI g: The
GOF measure may be absolute or relative—an example
of the latter category is the likelihood ratio test statistic
(Rubin & Stern, 1994). A comparison of the distribution
of GOF values for the replicate data sets versus the
GOF value for the observed data can then be used to
assess model adequacy. This assessment can be quanti-
fied by the tail area probability of the replicate
distribution associated with the observed GOF value
(i.e., a small tail area probability indicates a deviation
between the model and the observed data).
Thus, both the data informed PBCM and BPP

generate distributions of expected GOF values from
the models under consideration. These distributions can
be used to assess model mimicry and model adequacy.
The difference between the data informed PBCM and
BPP lies in the fact that the generating model for the
BPP is explicitly Bayesian. The data informed PBCM
generates simulated data from a model whose para-
meterization is determined by sampling from a distribu-
tion of parameter values that is obtained using the
nonparametric bootstrap. The BPP, in contrast, gen-
erates simulated data by sampling from the posterior
distribution for the parameter values. Therefore, the
data informed PBCM and the BPP will yield exactly the
same result if the nonparametric bootstrap distribution
of model parameters is identical to the Bayesian
posterior distribution of model parameters. This identity
condition is closely approximated for multinomial
models (e.g., Hastie et al., 2001; Rubin, 1981). In such
circumstances the use of the nonparametric distribution
has practical advantages over the use of the Bayesian
posterior distribution:

(y) the bootstrap distribution represents an
(approximate) nonparametric, noninformative pos-
terior distribution for our parameter. But this boot-
strap distribution is obtained painlessly—without
having to formally specify a prior and without having
to sample from the posterior distribution. Hence we
might think of the bootstrap distribution as a ‘‘poor
man’s’’ Bayes posterior. By perturbing the data, the
bootstrap approximates the Bayesian effect of
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Fig. 8. Difference distributions obtained by the data informed PBCM

applied to Nð0; 1Þ data fitted by two nested models: model A (i.e.,

Nðm; 1Þ) and model B (i.e., Nðm;sÞ). The theoretical distributions of
two times the log likelihood ratio for data generated from model A and

from model B are the w2df¼1 and the noncentral w2df¼1 distribution,
respectively. The noncentrality parameter was estimated to be 0.55.

The observed difference in two times the likelihood ratio is given by the

dotted vertical line. The optimal criterion bm; given by the dashed

vertical line, was calculated from the empirical distribution functions,

not from the w2df¼1 distributions.
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perturbing the parameters, and is typically much
simpler to carry out. (Hastie et al., 2001, p. 236)

3.2. Model mimicry versus model selection

The PBCM provides information about model
mimicry. For overlapping difference distributions,
calculation of bm gives the criterion that optimizes
overall classification performance when the choice is
between two models, given that one of the models is the
true data-generating model. The criterion bm is deter-
mined by the two difference distributions. Suppose that
for each parametric sample a model selection criterion
based on penalized log likelihood would be calculated
instead of log likelihood alone (e.g., AIC or BIC, both
having an additive penalty term for the number of free
parameters). The penalty term would have the same
influence for every generated sample, regardless of
which model generated the sample. Hence, an additive
penalty term shifts the two difference distributions along
the x-axis, preserving shape and relative distance. Note
that such a shift changes bm by a constant, but does not
influence the discrete selection probabilities when the
optimal criterion is used (i.e., the confusion matrix is left
intact). The robustness of PBCM against additive
penalty terms highlights an important difference be-
tween it and model selection methods, and this is
illustrated by the next example.

3.3. Example 2. Nested models

The data informed PBCM allows the calculations of
an optimal criterion bm for choosing between two
specific models, given one of these models is true and
both models are a priori equally likely. To get a feeling
for what this means, consider the case of two nested
models. Model A is Nðm; 1Þ and model B is Nðm; sÞ: The
data are standard noise, Nð0; 1Þ; consistent with the
simple model A: We generated n ¼ 1000 observations
from Nð0; 1Þ; and applied the PBCM (cf. Fig. 1). The
MLE estimate for m from model A equals #mAE� 0:066;
and for model B #mBE� 0:066 and #sBE0:950: The fit of
model B (cB ¼ �136:73) was slightly better than that of
model A (cA ¼ �136:99). The value of #sB is close to the
true value of 1, as expected. Surely, the minimal
improvement in log likelihood does not warrant
selection of the more complex model B—this is
confirmed by AIC, BIC, and the likelihood ratio test.
For these model selection methods, the decision is an
easy one.
In contrast, the problem is extraordinarily difficult

for the data informed PBCM. The data informed
PBCM tries to answer the question ‘‘are the observed
data generated by token model A (i.e., parameter
#mAE� 0:066), or by token model B (i.e., parameters
#mBE� 0:066 and #sBE0:950)?’’ Because token models A
and B generate very similar data patterns, the choice of
discriminating between the token models is hard. Fig. 8
shows the two difference distributions, each based on
M ¼ 1000 parametric bootstrap samples generated
from the MLE point estimates for the parameters.
The difference distributions overlap considerably, and
bm ¼ 0:50:
This example clearly shows that the data informed

PBCM is biased in favor of complex models. The root of
this problem is that the observed data have been used
twice: once to determine the best fitting parameters, and
again to assess the reasonableness of the model (the
same problem is well known in the case of the BPP
analysis, e.g., the discussion following Aitkin, 1991, and
Thurman, 2001). By focusing on the parameter esti-
mates from the data, the data informed PBCM
effectively ignores the additional complexity associated
with regions of parameter space that are extremely
unlikely given the observed data.
Thus, the data informed PBCM ignores a priori

considerations about model complexity, and therefore,

unlike AIC and BIC, does not assess model general-

izability. When the difference distributions overlap
completely, this indicates perfect mimicry and zero
discriminability, regardless of how complex the
models under consideration are. In contrast, general
model selection methods such as AIC and BIC focus
on discounted goodness-of-fit, which can usually be



ARTICLE IN PRESS
E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 48 (2004) 28–50 41
expressed as an absolute number. However, these
methods do not assess model adequacy or model
mimicry with respect to a specific data set. In general,
complex models will be able to mimic simpler models. It
can therefore be argued that to some extent model
selection methods implicitly take mimicry into account.
However, increasing complexity does not necessarily
increase the ability to mimic (Myung, 2002).
Because the data informed PBCM and model selec-

tion methods address related but different questions, we
believe model evaluation should be based on applying
both techniques. This is especially true for models of
cognition, where the issue of mimicry is particularly
pronounced (e.g., Van Zandt & Ratcliff, 1995). Future
work could investigate the possibility of combining
model mimicry and model selection methods. For
instance, the MDL method of model selection (e.g.,
Rissanen, 1996, 2001) has an interpretation in differ-
ential geometry (e.g., Pitt et al., 2002)—an MDL
measure of model mimicry could be developed based
on the overlap of models in the space of predicted
probability distributions (e.g., Myung, 2002).
Another option is to extend the data informed PBCM

to incorporate an a priori preference for the simpler
model. One way in which to accomplish preference in
the data informed PBCM is to base a binary decision
not on the criterion bm (i.e., the criterion that optimizes
overall classification performance), but on an adjusted
criterion ba; such that PAðbaÞ=PBðbaÞ ¼ k: When k ¼ 1
we have the optimal criterion. When k41 or ko1; ba is
non-optimal and favors token model B or token model
A; respectively. This adjustment is similar to what
happens according to signal detection theory when the
payoff matrix is asymmetrical (i.e., one response is more
desirable or more likely than the other). The criterion
bias bm � ba can be considered a prior that influences
the evidence ratio away from the more complex model.
It is, however, not immediately clear how to determine
this prior in a principled manner.
We believe the most principled method to punish

the more complex model is to consider not just the
parameter values that were determined by fitting
the model to a specific set of data, but to consider the
entire (plausible) range of parameter values. This data
uninformed version of PBCM (i.e., ‘global’ PBCM) is
explored next.

3.4. Types versus tokens in model selection

As mentioned previously, the data informed PBCM
can only discriminate between models to the extent that
they are functionally different (i.e., generate different
sets of data). If a model is structurally more complex,
but functionally identical to a simpler model, the data
informed PBCM selection will be potentially misleading.
Such a situation can arise for instance in nested models
when the additional parameters of the complex model
have relatively little impact. Intuitively, we would like to
punish the more complex model because of its addi-
tional free parameters—only if these free parameters are
important should they be included in the model. The
following example shows how this can be accomplished
in a Bayesian framework. We are indebted to Rich
Shiffrin (personal communication) for suggesting this
example and its interpretation.

3.5. Example 3. Coin tossing

A coin, randomly drawn from an urn that contains an
equal number of fair and unfair coins, needs to be
classified as fair or unfair. Let the extent to which the
unfair coin is biased be uniformly distributed, ranging
from y ¼ 0 (i.e., the coin always lands tails) to y ¼ 1
(i.e., the coin always lands heads). The coins is tossed
n ¼ 100 times. In other words, the data vector of length
n is x ¼ ðx1; x2; :::; xnÞ; and each i.i.d. element is either 1
(for heads) or 0 (for tails), xiAf0; 1g: How do we make
an optimal choice between the fair coin model F and the
unfair coin model U? Model F says that x is generated
from a binomial distribution with parameter y ¼ 1

2
;

whereas model U states that yA½0; 1�; ya1
2
: In this

example, the prior probability of the coin being fair
before observing a single datum is 1

2
; which means that

the posterior odds and the Bayes factor (Kass &
Raftery, 1995) coincide:

F ¼ pðxjFÞ
pðxjUÞ ¼

L 1
2

� 

R 1
0 LðyÞpðyÞ dy

; ð7Þ

where L is the likelihood function and pðyÞ is a uniform
prior (cf. Wasserman, 2000).
An optimal choice compares the likelihood of the data

under the F model to the average likelihood under the U

model. If F41; the F model is more plausible; if Fo1;
the U model is more plausible. The probability of
observing x under model F is 1

2

n
(i.e., each sequence of

heads and tails is equally likely). When we take the prior
to be the flat Betað1; 1Þ distribution, the average
likelihood under the U model after observing h heads
and t tails out of n tosses becomes Betaðh þ 1; t þ 1Þ ¼R 1
0 y

hð1� yÞt dy ¼ h!t!

ðn þ 1Þ!: The odds that the coin is fair

is then given by F ¼ 2�nðn þ 1Þ!
h!t!

: For h ¼ 59; h ¼ 60;

and h ¼ 61 the odds of the coin being fair, based on
n ¼ 100 tosses, are about 1.60, 1.10, and 0.72, respec-
tively.
Thus, for n ¼ 100 and h ¼ 60 the posterior odds F is

fairly close to one, that is, the probability of the coin
being fair is about the same as the probability of it
being unfair. To study how the data informed PBCM
would perform when the evidence is inconclusive, we
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constructed the data to be x ¼ fh ¼ 60; t ¼ 40g: Next,
we applied the nonparametric bootstrap on x to get a
distribution of estimated values for the binomial
parameter y under model U ; based on M ¼ 1000
bootstrap samples. Note that this nonparametric boot-
strap distribution is very similar to the Bayesian
posterior distribution for y (e.g., Rubin, 1981). Next,
each of the 1000 y’s is used to generate a new, replicate
data set. For model F ; a fixed value of y ¼ 1

2
is used to

likewise generate M ¼ 1000 replicate data sets. Each
replicate data set is then fit by the U and F models, and
the difference in maximum likelihood between these
models is calculated. The U model has one free
parameter y; whereas in the F model y is fixed at 1

2:
Because y is free in the U model, the GOF value for U

will always be higher than that for F : The optimal
criterion bm calculated using the data informed PBCM
was estimated to be somewhere between h ¼ 55 and h ¼
56: This result again shows that the data informed
PBCM is biased toward selection of the complex model;
in the above case of h ¼ 60; a data informed PBCM
analysis would indicate that the coin is unfair, whereas
we know that the evidence is really inconclusive.
A similar bias would be evident from a BPP analysis
(see previous section).
In addition to the data informed PBCM analysis, we

also performed a simulation in which the y’s for
generating data from the U model are sampled not
from the distribution for y obtained by the nonpara-
metric bootstrap, but instead from a uniform distribu-
tion yBUniform½0; 1�: From a Bayesian perspective, this
means that replicate data sets are generated based on the
uniform prior pðyÞ rather than on the posterior
distribution for y: In a simulation, the optimal criterion
(i.e., the point where the difference distributions cross)
did agree closely with the theoretical value of h ¼ 60:
This simple example highlights what it is about the data
informed PBCM that makes it well-suited for addressing
model adequacy, but less suited for general model
selection.
In the coin tossing example, the data informed PBCM

does not actually test whether the coin is fair or unfair.
Instead, the data informed PBCM tests whether the coin
is fair or whether it has a specific kind of unfairness—a
kind of unfairness that is informed by the data. Thus,
after observing h ¼ 60; t ¼ 40; the data informed PBCM
tests model F as y ¼ 1

2
versus a specific instantiation of

model U (i.e., a distribution of y centered around the
maximum likelihood value y ¼ 0:6). Obviously, the fact
that model U is inspired by the data will lead to a bias in
its favor. If one wants to make general model selection
claims that do not just apply to specific instantiations of
models, sampling should arguably be done from the
uninformed priors (cf. Box, 1980; but see Aitkin, 1991,
and Laud & Ibrahim, 1995, for a discussion). One
difficulty with sampling from the uninformed priors is
how to determine such priors (for reviews see Berger,
1985; Kass & Wasserman, 1996)—indeed, the fact that
the uninformed approach places probability mass on
parameter values that prove to be extremely implausible
is one of the motivations for using the informed
approach:

If the prior is intended to be ‘objective’, rather than to
represent one’s subjective belief, why should this
objective prior assign weight to values (y) which are
untenable given the data, thus reducing the prob-
ability of the observed data to zero? If the probability
of the observed data goes to zero under the integrated
model, this surely means that the prior assignment is
untenable (Aitkin, 1991, p. 115).

Thus, the data informed version of the PBCM takes
the extreme position that the only plausible data are the
data that were observed in the experiment. This solves
the problem that it is unclear in many models for
psychological phenomena what exactly is the range of
plausible parameter values. It should be kept in mind
though, that the data informed PBCM yields a measure
of local mimicry by comparing specific rather than
generic instantiations of models.
In sum, applying the PBCM by generating simulated

data sets from models that have first been fitted to the
data implies testing model tokens, whereas generating
simulated data sets from data uninformed models
implies testing model types. In model selection, the
interest is usually in the latter type of inference. Of
course, prior knowledge does not need to be unin-
formative; if prior experience has taught that y is, say,
Betað3; 2Þ distributed, we can certainly use this prior
instead of the uniform Betað1; 1Þ prior. The crucial point
is that in order to select between model types,
information from the data under consideration should
not be used to constrain or specify the models of
interest. The data uninformed PBCM method is some-
times called ‘‘landscaping’’ and is also discussed in detail
by Navarro et al. (2003).
To further contrast the data informed versus the data

uninformed versions of the PBCM, we now revisit
Example 1, models of information integration. Recall
that we previously contrasted two models of informa-
tion integration (i.e., FLMP and LIM), and assessed
model mimicry by cross-fitting replicate data sets that
were generated by specific, data inspired versions of
FLMP and LIM. We now present the results of a
simulation in which the parameters of the two models
are not based on the data. All other aspects of the
simulation remained the same. Since the parameters of
FLMP and LIM are probabilities, a first idea might be
to let each simulated data set be generated by a new set
of randomly (i.e., BUniform½0; 1�) determined para-
meter values. However, the experimental design is such
that the amount of support for each level i þ 1 is always



ARTICLE IN PRESS
E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 48 (2004) 28–50 43
higher than for level i: Therefore, each of the M ¼ 1000
sets of parameter values was constructed by drawing
i ¼ 5 numbers from a uniform distribution on the
interval from 0 to 1, ordering these random values, and
then assigning them to the parameters in that order
(cf. Myung & Pitt, 1997). This was done separately for
FLMP and for LIM, and separately for the auditory
parameters and the visual parameters. After the para-
meter values were assigned in this data uninformed
fashion, the PBCM was applied in the usual manner. As
can be seen from Fig. 9, the results confirm several
conclusions that were based on the data informed
PBCM analysis. First, the variability in the difference
in maximum log likelihood is much greater for data
generated from the FLMP than for data generated from
LIM. Second, for the amount of data in the Massaro
(1998) experiment, the FLMP and LIM models are not
very confusable (i.e., the difference distributions overlap
only slightly). Nonetheless, the FLMP is better able to
account for LIM-generated data than vice versa. This
asymmetry leads to a relatively small adjustment of the
optimal criterion. The simulation shows that a differ-
ence in log likelihood of zero actually constitutes
evidence in favor of LIM, and that a difference in log
likelihood of 4 in favor of the FLMP represents the state
of inconclusive evidence.
It is interesting to compare the data uninformed

PBCM solution to the MDL solution with respect to the
FLMP versus LIM problem. Using the MDL method,
Navarro et al.(2003) found that the difference in
‘geometric complexity’ equaled about 1.88. It is im-
portant to realize that MDL complexity depends on a
Fig. 9. Difference distributions obtained by the data uninformed

PBCM when parameter values are determined semi-randomly instead

of by first fitting the models to data. The optimal criterion bm;

indicated by the dashed line, was calculated from the empirical

distribution functions, not from the Gaussian kernel estimates. The

bin-width for the bar graph and the kernel estimate was 1.
number of factors, such as sample size and experimental
design (cf. Pitt et al., 2002, pp. 485–486). For
comparison purposes, we performed a data uninformed
PBCM analysis using the same 2
 8 factorial design and
the same parameter estimation procedure employed by
Navarro et al. (2003). The overall PBCM results were
similar to the results shown in Fig. 9, with the exception
that LIM model recovery for the 2
 8 design was
relatively poor when the nominal criterion was used.
We performed the data uninformed PBCM analysis for
n ¼ 24; i.e., the same sample size used by Navarro et al.
(2003), and estimated the optimal PBCM criterion to be
equal to a difference in log likelihood of about 2.7.
Thus, the results from an MDL analysis are relatively
close to those from a data uninformed PBCM analysis.
Note that the difference in MDL complexity between
FLMP and LIM is not affected by sample size, because
sample size adds the same amount of complexity for
both models (cf. Pitt et al. Eq. (8), noting that both
models have the same number of free parameters).
It is interesting that based on the same 2
 8 design,

Pitt et al. (2002) report a difference in geometric
complexity between FLMP and LIM equal to 8.74,
obviously much larger than the 1.88 figure reported in
Navarro et al. (2003). We suspected that the smaller
number from Navarro et al. (2003) might have been due
to the fact that Navarro et al. incorporated ordinal
constraints on the parameter values, whereas Pitt et al.
(2002) might not have done so—this was later confirmed
by I. J. Myung (personal communication, November 7,
2003). To further investigate this issue, we performed a
data uninformed PBCM analysis for the same design
used by Pitt et al. (2002), omitting any ordinal
parameter constraints. As expected, the optimal PBCM
criterion was now substantially increased, and roughly
equaled 11. These simulations show that the incorpora-
tion of parameter constraints greatly reduce the a priori
difference in model flexibility between FLMP and LIM.
In addition, the correspondence between the data
uninformed PBCM and MDL in the two cases is
remarkable.
Model selection methods such as MDL and BMS aim

to minimize prediction error and hence maximize
generalizability—the better a model approximates the
true data-generating process, the higher its predictive
value for data that have yet to be observed (cf. Hastie
et al., 2001, Chap. 7). The PBCM does not focus directly
on model generalizability, but instead addresses the
issue of model mimicry. Despite the fact that MDL/
BMS and the data uninformed PBCM are motivated by
different ideas, the fact that in several examples (i.e.,
coin tossing, FLMP vs. LIM) we have found a relatively
close correspondence between these methods warrants
further research (e.g., along the lines of the ‘partial
information Bayes factor’, Geweke, 1999a, b Sections 6
and 5; Geweke & McCausland, 2001).
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In sum, the data informed version of the PBCM is
useful to assess model adequacy and model mimicry for
a specific data set. When it is necessary to make more
general claims about the plausibility of model types
rather than model tokens, the data uninformed version
of the PBCM is more appropriate. Since the two
methods address different issues and operate at different
levels (e.g., types versus tokens, global versus local
mimicry) both should ideally be used. We would like to
mention that a data uninformed PBCM analysis could
very well incorporate prior knowledge about ranges of
plausible parameter values and parameter covariance.
For instance, much research has been done exploring
parameters of the diffusion model by fitting the model to
a wide range of data (e.g., Ratcliff, Gomez, & McKoon,
in press; Ratcliff & Rouder, 1998, 2000; Ratcliff,
Thapar, & McKoon, 2001; Ratcliff & Tuerlinckx,
2002). The data uninformed PBCM could be used by
sampling parameter values from the parameter ranges
identified by this prior work. For instance, Ratcliff et al.
(2001) and Thapar, Ratcliff, and McKoon (2003)
present distributions of diffusion model parameters for
groups of old and young participants. When a new but
related experiment was to be performed with the aim of
assessing model mimicry for the diffusion model versus
a competitor model (cf. Ratcliff & Smith, in press), these
distributions of parameter values could be combined
with uniform priors to yield informed prior distributions
for the diffusion model. A data uninformed PBCM
analysis would then have the diffusion model generate
simulated data from these informed priors.

3.6. A priori power analysis using PBCM

Up to this point we have discussed the PBCM as a
tool to assess model mimicry. An assessment of model
mimicry can have useful practical applications. In
particular, the PBCM can provide an estimate of the
number of empirical observations that would be
required to distinguish two models with a certain
probability of success. We now illustrate how such an
a priori analysis in terms of statistical power is done
with respect to two models that provide different
descriptions of how response accuracy increases to
asymptote as a function of processing time.

3.7. Example 4. Speed–accuracy curves

A considerable amount of research in psychology has
produced data that can be described by curves that
initially rise quickly and then slowly approach asymp-
tote, such as learning curves (e.g., Estes, 1956). The
functions considered here are speed–accuracy trade-off
(SAT) curves and describe the growth of accuracy as a
function of time in procedures such as the response
signal method (e.g., Ratcliff & Iverson, 1984; Reed,
1976; Wickelgren, 1977). Two specific SAT models are
examined: an exponential SAT function and an SAT
function derived from the diffusion model (e.g., Ratcliff,
1978 for details) to describe the accumulation of
information during retrieval. The two SAT models are
of similar shape yet do not mimic each other exactly,
and so are identifiably different, given sufficient data.
Dosher (1981) and McElree & Dosher (1989) have

fitted both SAT models to data and have found that the
exponential SAT curve provides a slightly better fit than
the diffusion model SAT curve. Here we will attempt to
examine the issue in more detail. Discrimination
between these two models is of theoretical interest
because the models represent different theoretical
interpretations of information processing (see Dosher,
1981; Ratcliff, 1978, 1988b; Usher & McClelland, 2001,
pp. 559–568; Wickelgren, 1976).
The equation for the exponential growth to a limit is:

d 0ðtÞ ¼ Af1� exp½�R�1ðt � IÞ�g; t4I ;

d 0ðtÞ ¼ 0; tpI ; ð8Þ

where A is the asymptotic value of d 0; R is the time
constant (for t ¼ R þ I ; the curve is about 2/3 the way
to asymptote), and I is the time intercept (i.e., the time
at which performance starts to exceed chance). The
equation derived from the diffusion model (e.g.,
Ratcliff, 1978, Eq. (10)) is:

d 0ðtÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V=ðt � IÞ½ �

p ; t4I ;

d 0ðtÞ ¼ 0; tpI ; ð9Þ

where V is a constant rate parameter that determines the
rate of approach to asymptote. Now suppose the aim is
to perform an experiment to distinguish between the two
SAT curves described above. Simulations using the
PBCM can provide an indication of how many
observations are required to make a choice between
the two SAT models with some level of certainty. First,
parameter values and values of the independent
variables (t) should be chosen that are typical of
response signal experiments (e.g., Corbett, 1977;
Dosher, 1981; McElree & Carrasco, 1999; McElree &
Dosher, 1993; Ratcliff, 1978; Reed, 1976; Wickelgren,
Corbett, & Dosher, 1980). In the simulations reported
here, the parameters for the exponential SAT function
were set to A ¼ 3; I ¼ 320; and R ¼ 200 (cf. Eq. (8)).
The parameter values of the diffusion SAT function that
provides the best least-squares fit to the exponential
SAT function were A ¼ 3:5; I ¼ 346; and V ¼ 399
(cf. Eq. (9)). The information processing times t used in
the simulation were t ¼ ð350; 400; 500; 600; 800; 1000;
1500; 2000Þ: Fig. 10 shows the noise-free SAT functions
for the exponential model and the diffusion model.
In an experimental situation we expect that the SAT

functions are not deterministic but rather stochastic.
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Assuming additive normal noise with constant variance
over time and using the parameter values specified
above, 1000 data sets were generated from each model
by d 0ðtÞ ¼ f ðtÞ þ Nð0; seÞ; where f ðtÞ for the exponential
SAT curve and the diffusion SAT curve are given by
Eqs. (8) and (9), respectively. Thus, each simulated data
set consisted of 8 d 0 values, one for each level of
processing time t: Occasional negative d 0 values can
occur, especially when processing time t is very limited.
The impact of the noise component was varied on three
levels, se ¼ 0:25; se ¼ 0:15; and se ¼ 0:10: When the
standard deviation of the noise component is relatively
large, we expect the PBCM difference distributions to
have large variance and relatively much overlap, making
discrimination difficult.
The exponential SAT function and the diffusion SAT

function were fit to the 1000 data sets generated by
exponential model and to the 1000 data sets generated
by the diffusion model using least-squares minimization.
Thus, the PBCM was applied, resulting in two difference
distributions for each of the three noise levels. Fig. 11
shows these difference distributions in RMSD
(cf. footnote 4), from which it is apparent that the
overlap of the distributions diminishes as the impact of
noise on d’ is reduced. Overall, the distributions appear
to be roughly symmetrical around the nominal criterion
of DRMSD ¼ 0: A more precise quantitative analysis is
presented in Table 3. The analysis in Table 3 focuses on
the probability of correct model recovery. This prob-
ability is usually presented in a confusion matrix
Fig. 10. The noise-free exponential SAT function (e.g., Dosher, 1981;

A ¼ 3; I ¼ 320; R ¼ 200 in Eq. (14); the solid line) and the noise-free

diffusion SAT function (e.g., Ratcliff, 1978; A ¼ 3:5; I ¼ 346; V ¼ 399

in Eq. (15); the dashed line) for the information processing times used

in the simulations presented here, i.e., t ¼ ð350; 400; 500; 600;
800; 1000; 1500; 2000Þ: The parameters of the diffusion SAT function

were determined by least-squares fitting of the noise-free exponential

SAT function.
(cf. Fig. 2, bottom panel) and given by the area of the
difference distribution to the left or to the right of the
nominal decision criterion. As can be seen from Table 3,
for all levels of noise there is an asymmetry in the
confusion matrix that indicates the exponential model to
be more flexible than the diffusion model when the
nominal criterion is used. However, we have already
shown that an asymmetric confusion matrix need not
imply a biased decision criterion when the variances of
the difference distributions are unequal (cf. Fig. 3).
Hence, Table 3 also presents the estimated optimal
decision criterion bm: For all three noise levels, the
overall probability of correct model recovery increases
when the decision criterion is shifted away from the
nominal criterion so as to favor the diffusion SAT curve.
This means that the nominal criterion DRMSD ¼ 0 is
biased and that the exponential SAT function is better
able to capture SAT data generated by the diffusion
model than vice versa.
It should be noted that this bias is not very reliable,

as can be seen from the standard errors for both
confusion matrix asymmetry and bm presented in
Table 3 (the standard errors were calculated from
500 bootstrap samples of the two difference distribu-
tions). Nevertheless, the exponential SAT curve is
arguably more flexible than the diffusion SAT curve
when all noise levels are simultaneously taken into
account. The effect is not very large in an absolute
sense, and is unlikely to be of great practical
significance.
Fig. 11. Difference distributions in RMSD obtained by the PBCM

applied to the exponential SAT function and the diffusion SAT

function. Top panel: standard deviation of normally distributed noise

in d 0 (i.e., se)=0.25. Middle panel: se ¼ 0:15: Bottom panel: se ¼ 0:1:

The optimal criteria bm; indicated by dashed lines, were calculated

from the empirical distribution functions, not from the Gaussian

kernel estimates. The bin-width for the bar graph and the kernel

estimate was 0.005 (see text for details).
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Table 3

Probability of correct model recovery for three noise levels, using the nominal criterion or (between brackets) the optimal criterion

se Exp. Diffusion Asym. seboot (Asym.) bm seboot (bm)

0.10 0.969 (0.955) 0.954 (0.975) 0.015 0.008 0.010 0.003

0.15 0.890 (0.873) 0.858 (0.877) 0.032 0.015 0.005 0.006

0.25 0.743 (0.711) 0.728 (0.769) 0.015 0.020 0.005 0.006

Note: se=standard deviation of the normally distributed noise in d 0; Exp.=exponential model. The exponential parameters were A ¼ 3:0; R ¼ 200;

I ¼ 320: The diffusion model parameters were A ¼ 3:5; V ¼ 399; I ¼ 346: These two sets of parameters were parameters that gave the best fits to the

data points generated from the other model. Values of t used were 350, 400, 500, 600, 800, 1000, 1500, and 2000. Asym.=asymmetry in the confusion

matrix (i.e., first column minus second column). The bootstrap estimates for standard error, seboot, are based on 500 samples from each difference

distribution.
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We will now address the question we set out to
answer, that is, how many observations are needed to
distinguish the exponential SAT curve from the diffu-
sion curve, given certain plausible parameter values and
a given noise level? Given that the exponential model is
true, the probability of the exponential fitting the data
better is 0.969, and given the diffusion model is true the
probability of the diffusion model fitting the data better
is 0.954 (for se ¼ 0:10). Thus we have a power analysis:
if a set of future data is to have the power to
discriminate the diffusion and exponential models at a
95% level of confidence, a sample size must be used that
is sufficient to produce standard deviations in the data
of about 0.1 (for the specific parameter values used
here).
A rough calculation can give the sample size: for a d 0

of 3.1 (A in Eqs. (14) and (15)), hit and false alarm rates
are 0.94 and 0.06, respectively. For a standard error of
0.1 in d 0; the hit and false alarm rate for d 0 ¼ 3:2 would
be 0.945 and 0.055. Thus changes in the hit and false
alarm rate of 0.005 would be equivalent to a change of
0.1 in d 0: Given that seðp̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
for the

binomial, then for a standard error of 0.005 in p with
p ¼ 0:94; n would have to be about 2250. Thus, 2250
observations per condition would be needed for a single
experiment to distinguish the two models with prob-
ability 0.95 (or a little better). Similarly, a 0.75
probability of correct model classification is associated
with a standard error in d 0 of about 0.25 (cf. Table 3).
Following the above, it can be calculated that about 220
observations per condition would be required to achieve
this standard error.
Although this example is only approximate and

applies only in the specific parameter domain used
above, the example does demonstrate that useful
information can be obtained about the ability of
experiments to discriminate between models. For
example, the diffusion and exponential models have
been compared a number of times for goodness-of-fit
and the conclusion has been drawn that both models fit
the data quite well (e.g., Dosher, 1981). Usually the
exponential fits the data a little better, but the above
analysis shows that the exponential should fit the data
slightly better (e.g., the exponential SAT function fits
data generated by the diffusion SAT function slightly
better than vice versa). Inspection of the cases in the
above simulations in which the exponential fits better
than the diffusion model when the diffusion model is
true indicates that this occurs when the first point on the
function is relatively high by chance. When the first
point is relatively low, the diffusion model fits better
when the exponential is true. This can be understood by
realizing that the rise of the diffusion model is faster
than the rise of the exponential: the diffusion model
intercepts the abscissa with an infinite slope (i.e., rises
perpendicularly at the x-axis). Thus the exponential can
deal with a more linear rise while the diffusion model
can deal with a more step-like rise. One way to address
this problem is to add variability to the starting point of
the SAT functions, corresponding to a variable onset of
retrieval from memory. Such a variable onset can be
achieved by assuming that the non-decision component
of response time (i.e., Ter in the diffusion model, the
time needed for encoding and response processes) varies
across trials (e.g., Ratcliff et al., in press; Ratcliff &
Smith, in press; Ratcliff & Tuerlinckx, 2002). In this case
the diffusion model will no longer have such a steep
rise and will probably fit the data just as well as the
exponential even when the rise in the data appears more
linear. An alternative possibility is that the observed
behavior in signal-to-response experiments is a mixture
of processes that have terminated (i.e., reached a
response boundary in the diffusion model) by the time
the signal-to-respond is detected, and guesses that can or
cannot be based on partial information (cf. Ratcliff,
1988b).
Regardless of the details for the SAT models under

consideration, the SAT simulations presented here
demonstrate how the PBCM can be used to estimate
the amount of data needed to discriminate two models
with a certain probability of success. Such an a priori
power analysis will increase the efficiency of experiments
designed to provide data that discriminate two models.
As noisy data are less informative than ‘clean’ data, we
recommend to use the PBCM for different noise levels,
as illustrated in Fig. 11.
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4. Discussion

Although the important role of model mimicry in the
evaluation of mathematical models of psychological
phenomena is widely acknowledged (e.g., Massaro,
1998; Ratcliff, 1988a; Townsend, 1972; Van Zandt &
Ratcliff, 1995), no general method has been proposed to
quantitatively assess such model mimicry. In this article,
we have shown how the parametric bootstrap cross-
fitting method (e.g., Williams, 1970a, b) can be used to
assess model mimicry, model discriminability, and
model adequacy. Uncertainty in parameter estimation
can be easily incorporated in the PBCM by taking
nonparametric bootstrap samples from the data. Use of
the PBCM was illustrated by an application to two
models for information integration (i.e., FLMP and
LIM). Conceptually, the PBCM is closely related to the
diagnostic model check using Bayesian posterior pre-
dictive distributions.
The PBCM has a number of distinct advantages.

First, the PBCM is a quite general and easy to
implement procedure. The importance of this point
should not be underestimated. Models in psychology
have grown more and more complex in recent years,
often making analytic solutions practically impossible.
The PBCM is based on simple resampling techniques
and does not depend on the availability of analytic
solutions, nor is it based on asymptotic approximations
that may not hold for limited data. The only require-
ments for using the PBCM are a program that estimates
model parameters and a program that generates
simulated data from the model. Thus, the PBCM
circumvents many mathematical complications by com-
puter-intensive simulations. The PBCM affords useful
insights about the relative flexibility and appropriateness
of competing models for a given data set with minimal
investments in time and mathematical development.
Also, since it is based on a simple resampling scheme,
the PBCM can be applied to any kind of GOF measure,
and is not constrained to problems that can be solved by
maximum likelihood estimation. This opens up the
possibility of addressing local and global mimicry
properties of models such as connectionist models,
random walk or diffusion models for response time and
accuracy (e.g., Ratcliff & Smith, in press), and models
based on procedural rule systems (e.g., ACT-R,
Anderson & Lebiere, 1998).
Second, the PBCM can be used in advance of any

data collection. This is of relevance because the PBCM
may provide an estimate of how many experimental
data are needed to reliably distinguish competing
models, as was illustrated by two competing SAT
functions. More generally, the PBCM has the potential
to help identify the most diagnostic experimental
conditions or measures of performance. In a similar
fashion, bootstrap methods may be used to assess the
relative flexibility of models as a function of their
parameter values. That is, certain models may be easily
mimicked by other models only for a specific subset of
parameter values (cf. Ratcliff & Smith, in press; see
Myung, 2002; Navarro et al., 2003; and Pitt et al., 2003,
for details on the ‘landscaping’ technique).
The PBCM as implemented here is only appropriate

for pair-wise model comparisons. Therefore, the method
is less helpful in problems of variable selection. The
main strength of the PBCM lies in the evaluation of a
limited set of complex nonnested models. When using
the data informed version of the PBCM it is particularly
important to realize that it gives a local indication of
model mimicry, model discriminability, or model
adequacy. A measure of global mimicry can be obtained
by sampling either from an uninformative prior
distribution for the parameters, or by sampling from a
limited range of parameter values that has been
determined by an extensive body of prior work. The
PBCM should however, at its present state of develop-
ment, not be used to assess model generalizability. It
should also be remembered that the PBCM is based on
expected differences in goodness-of-fit provided that one
of the competing models is true.
In sum, we believe that both the data informed and

the data uninformed versions of the PBCM are useful
tools for assessing model adequacy and model mimicry.
The generality of the PBCM and the continuous
increase in cheap computing power holds considerable
promise for future application of the PBCM to complex
models of human cognition.
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Djurić, P. M. (1998). Asymptotic MAP criteria for model selection.

IEEE Transactions on Signal Processing, 46, 2726–2735.

Dosher, B. A. (1981). The effects of delay and interference: A speed-

accuracy study. Cognitive Psychology, 13, 551–582.

Dunn, J. C. (2000). Model complexity: The fit to random data

reconsidered. Psychological Research, 63, 174–182.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical

inference for psychological research. Psychological Review, 70, 193–242.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife.

Annals of Statistics, 7, 1–26.

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard

errors, confidence intervals, and other measures of statistical

accuracy. Statistical Science, 1, 54–77.
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap.

New York: Chapman & Hall.

Estes, W. K. (1956). The problem of inference from curves based on

group data. Psychological Bulletin, 53, 134–140.

Estes, W. K. (2002). Traps in the route to models of memory and

decision. Psychonomic Bulletin & Review, 9, 3–25.

Feng, Z. D., & McCulloch, C. E. (1996). Using bootstrap likelihood

ratios in finite mixture models. Journal of the Royal Statistical

Society B, 58, 609–617.

Gelman, A., Goegebeur, Y., Tuerlinckx, F., & van Mechelen, I. (2000).

Diagnostic checks for discrete-data regression models using

posterior predictive simulations. Applied Statistics, 49, 247–268.

Geweke, J. (1999a). Simulation methods for model criticism and

robustness analysis. In J. M. Bernardo, J. O. Berger, A. P. Dawid,

& A. F. M. Smith (Eds.), Bayesian statistics 6 (pp. 275–299).

Oxford: Oxford University Press.

Geweke, J. (1999b). Using simulation methods for Bayesian econo-

metric models: Inference, development, and communication.

Econometric Reviews, 18, 1–126.

Geweke, J., & McCausland, W. (2001). Bayesian specification analysis

in econometrics. The American Journal of Agricultural Economics,

83, 1181–1186.

Golden, R. M. (1995). Making correct statistical inferences using a

wrong probability model. Journal of Mathematical Psychology, 39,

3–20.

Golden, R. M. (2003). Discrepancy risk model selection test theory for

comparing possibly misspecified or nonnested models. Psychome-

trika, 68, 229–249.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and

psychophysics. New York: Wiley.

Grünwald, P. (2000). Model selection based on minimum description

length. Journal of Mathematical Psychology, 44, 133–152.

Hall, P. (1988). Theoretical comparison of bootstrap confidence

intervals. Annals of Statistics, 16, 927–953.

Hall, P. (1992). The bootstrap and Edgeworth expansion. New York:

Springer.

Hall, P., & Wilson, S. R. (1991). Two guidelines for bootstrap

hypothesis testing. Biometrics, 47, 757–762.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of

statistical learning: Data mining, inference, and prediction. New

York: Springer.

Hinkley, D. V. (1988). Bootstrap methods. Journal of the Royal

Statistical Society B, 50, 321–337.

Horowitz, J. L. (2001). The bootstrap. In J. J. Heckman, & E. E.

Leamer (Eds.), Handbook of econometrics: Vol. 5 (pp. 3159–3228).

Amsterdam: Elsevier Science.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the

American Statistical Association, 90, 773–795.

Kass, R. E., & Wasserman, L. (1996). The selection of prior

distributions by formal rules. Journal of the American Statistical

Association, 91, 1343–1369.

Laud, P. W., & Ibrahim, J. G. (1995). Predictive model selection.

Journal of the Royal Statistical Society B, 57, 247–262.

Massaro, D. W. (1988). Some criticisms of connectionist models

of human performance. Journal of Memory and Language, 27,

213–234.

Massaro, D. W. (1998). Perceiving talking faces: From speech

perception to a behavioral principle. Cambridge, MA: MIT Press.

Massaro, D. W., Cohen, M. M., Campbell, C. S., & Rodriguez, T.

(2001). Bayes factor of model selection validates FLMP. Psycho-

nomic Bulletin & Review, 8, 1–17.

Massaro, D. W., & Friedman, D. (1990). Models of integration

given multiple sources of information. Psychological Review, 97,

225–252.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech

perception. Cognitive Psychology, 18, 1–86.



ARTICLE IN PRESS
E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 48 (2004) 28–50 49
McElree, B., & Carrasco, M. (1999). The temporal dynamics of visual

search: Speed-accuracy tradeoff analysis of feature and conjunctive

searches. Journal of Experimental Psychology: Human Perception

and Performance, 25, 1517–1539.

McElree, B., & Dosher, B. A. (1989). Serial position and set size in

short-term memory: The time course of recognition. Journal of

Experimental Psychology: General, 118, 346–373.

McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the

recovery of order information. Journal of Experimental Psychology:

General, 122, 291–315.

McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test

statistic for the number of components in a normal mixture.

Applied Statistics, 36, 318–324.

Meng, X.-L. (1994). Posterior predictive p-values. The Annals of

Statistics, 22, 1142–1160.

Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal

of the American Statistical Association, 44, 335–341.

Movellan, J. R., & McClelland, J. L. (2001). The Morton-Massaro law

of information integration: Implications for models of perception.

Psychological Review, 108, 113–148.

Myung, I. J. (2002). Comparing models with ‘landscaping’. Presentation

for the 1st Annual Summer Interdisciplinary Conference, Squamish

(B.C.), Canada, August 2002.

Myung, I. J., Forster, M. R., & Browne, M. W. (Eds.), (2000). Model

selection [Special issue]. Journal of Mathematical Psychology, 44(1–2).

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in

modeling cognition: A Bayesian approach. Psychonomic Bulletin

and Review, 4, 79–95.

Navarro, D. J., Myung, I. J., Pitt, M. A., & Kim, W. (2003). Global

model analysis by landscaping. Proceedings of the 25th annual

conference of the cognitive science society.

Navarro, D. J., Pitt, M. A., & Myung, I. J. (2003). Assessing the

distinguishability of models and the informativeness of data.

Manuscript submitted for publication.

Oden, G. C., & Massaro, D. W. (1978). Integration of featural

information in speech perception. Psychological Review, 85,

172–191.

Parzen, E., Tanabe, K., & Kitagawa, G. (Eds.), (1998). Selected papers

of Hirotugu Akaike. New York: Springer.

Pitt, M. A., Kim, W., & Myung, I. J. (2003). Flexibility versus

generalizability in model selection. Psychonomic Bulletin and

Review, 10, 29–44.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of

selecting among computational models of cognition. Psychological

Review, 109, 472–491.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T.

(1986). Numerical recipes. Cambridge: Cambridge University Press.

Raftery, A. E. (1995). Bayesian model selection in social research

(with discussion). In P. V. Marsden (Ed.), Sociological methodology

(pp. 111–196). Cambridge: Blackwells.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological

Review, 85, 59–108.

Ratcliff, R. (1979). Group reaction time distributions and an analysis

of distribution statistics. Psychological Bulletin, 86, 446–461.

Ratcliff, R. (1988a). A note on mimicking additive reaction time

models. Journal of Mathematical Psychology, 32, 192–204.

Ratcliff, R. (1988b). Continuous versus discrete information proces-

sing: Modeling accumulation of partial information. Psychological

Review, 95, 238–255.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers.

Psychological Bulletin, 114, 510–532.

Ratcliff, R., Gomez, P., & McKoon, G. A diffusion model account of

the lexical decision task. Psychological Review, in press.

Ratcliff, R. & Iverson, G. J. (1984). Methods for investigating

parameters spaces of models. Paper presented at the Seventeenth

Annual Mathematical Psychology Meeting, Chicago, IL.
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-

choice decisions. Psychological Science, 9, 347–356.

Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of

masking in two-choice letter identification. Journal of Experimental

Psychology: Human Perception and Performance, 26, 127–140.

Ratcliff, R. & Smith, P. L. A comparison of sequential sampling

models for two-choice reaction time. Psychological Review, in press.

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on

reaction time in a signal detection task. Psychology and Aging, 16,

323–341.

Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model

analysis of the effects of aging on brightness discrimination.

Perception and Psychophysics, 65, 523–535.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the

diffusion model: Approaches to dealing with contaminant reaction

times and parameter variability. Psychonomic Bulletin and Review,

9, 438–481.

Reed, A. V. (1976). List length and the time-course of recognition in

immediate memory. Memory & Cognition, 4, 16–30.

Rissanen, J. (1996). Fisher information and stochastic complexity.

IEEE Transactions on Information Theory, 42, 40–47.

Rissanen, J. (2001). Strong optimality of the normalized ML models as

universal codes and information in data. IEEE Transactions on

Information Theory, 47, 1712–1717.

Rubin, D. B. (1981). The Bayesian bootstrap. Annals of Statistics, 9,

130–134.

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency

calculations for the applied statistician. Annals of Statistics, 12,

1151–1172.

Rubin, D. B., & Stern, H. S. (1994). Testing in latent class models

using a posterior predictive check distribution. In A. von Eye, & C.

Clogg (Eds.), Latent variable analysis: Applications for Develop-

mental Research. Thousand Oaks, CA: Sage.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of

Statistics, 6, 461–464.

Silverman, B. W. (1986). Density estimation for statistics and data

analysis. London: Chapman & Hall.

Stuart, A. & Ord, J. K. (1991). Kendall’s advanced theory of statistics.

(Vol. 2). New York: Oxford University Press.

Thapar, A., Ratcliff, R., & McKoon, G. (2003). A diffusion model

analysis of the effects of aging on letter discrimination. Psychology

and Aging, 18, 415–429.

Thurman, W. N. (2001). Bayesian specification analysis in econo-

metrics: Comment. The American Journal of Agricultural Econom-

ics, 83, 1187–1189.

Townsend, J. T. (1972). Some results concerning the identifiability of

parallel and serial processes. British Journal of Mathematical and

Statistical Psychology, 25, 168–197.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual

choice: The leaky, competing accumulator model. Psychological

Review, 108, 550–592.

Van Zandt, T. (2002). Analysis of response time distributions. In J. T.

Wixted (Ed.), Stevens’ handbook of experimental psychology (pp.

461–516) Vol. 4 (3rd ed.). New York: Wiley Press.

Van Zandt, T., & Ratcliff, R. (1995). Statistical mimicking of reaction

time data: Single-process models, parameter variability, and

mixtures. Psychonomic Bulletin and Review, 2, 20–54.

von Neumann, J. (1951). Various techniques used in connection with

random digits. National Bureau of Standards, Applied Mathematics

Series, 12, 36–38.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and

non-nested hypotheses. Econometrica, 57, 307–333.

Wagenmakers, E.-J., & Farrell, S. AIC model selection using Akaike

weights. Psychonomic Bulletin & Review, in press.

Wagenmakers, E.-J., Farrell, S., & Ratcliff, R., Naı̈ve nonparametric

bootstrap model weights are biased. Biometrics, in press.



ARTICLE IN PRESS
E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 48 (2004) 28–5050
Wasserman, L. (2000). Bayesian model selection and model averaging.

Journal of Mathematical Psychology, 44, 92–107.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II.

Bootstrap-based confidence intervals and sampling. Perception and

Psychophysics, 63, 1314–1329.

Wickelgren, W. A. (1976). Network strength theory of storage and

retrieval dynamics. Psychological Review, 83, 466–478.

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information

processing dynamics. Acta Psychologica, 41, 67–85.

Wickelgren, W. A., Corbett, A. T., & Dosher, B. A. (1980). Priming

and retrieval from short-term memory: A speed accuracy trade-off
analysis. Journal of Verbal Learning and Verbal Behavior, 19,

387–404.

Wilks, S. S. (1938). The large-sample distribution of the likelihood

ratio for testing composite hypotheses. Annals of Mathematical

Statistics, 9, 60–62.

Williams, D. A. (1970). In discussion of ‘‘A method for discriminating

between models’’ by A.C. Atkinson. Journal of the Royal Statistical

Society B, 32, 350.

Williams, D. A. (1970a). Discrimination between regression models to

determine the pattern of enzyme synthesis in synchronous cell

cultures. Biometrics, 26, 23–32.


	Assessing model mimicry using the parametric bootstrap
	Introduction
	The data informed parametric bootstrap cross-fitting method
	Example 1. Two models of information integration: FLMP vs. LIM
	Experimental design and model fitting
	Assessment of model flexibility: preliminary comments
	Application of the data informed PBCM to FLMP and LIM

	Assumptions and extensions
	Data informed PBCM as a frequentist implementation of the Bayesian posterior predictive distributions
	Model mimicry versus model selection
	Example 2. Nested models
	Types versus tokens in model selection
	Example 3. Coin tossing
	A priori power analysis using PBCM
	Example 4. Speed-accuracy curves

	Discussion
	Acknowledgements
	References


